Cardiovascular Engineering

, Volume 8, Issue 1, pp 23–29 | Cite as

Variability in Cardiovascular Control: The Baroreflex Reconsidered

  • John M. Karemaker
  • Karel H. Wesseling
Original Paper


Although blood pressure control is often viewed as a paradigmatic example of a “homeostatic” biological control system, blood pressure levels can fluctuate considerably over shorter and longer time scales. In modern signal analysis, coherence between heart rate and blood pressure variability is used to estimate baroreflex gain. However, the shorter the measurement period, the more variability this gain factor reveals. We review evidence that this variability is not due to the technique used for the estimation, but may be an intrinsic property of the circulatory control mechanisms. The baroreflex is reviewed from its evolutionary origin, starting in fishes as a reflex mechanism to protect the gills from excessively high pressures by slowing the heart via the (parasympathetic) vagus nerve. Baroreflex inhibition of cardiovascular sympathetic nervous outflow is a later development; the maximally possible extent of sympathetic activity probably being set in the central nervous system by mechanisms other than blood pressure per se. In the sympathetic outflow tract not only baroreflex inhibition but also as yet unidentified, stochastic mechanisms decide to pass or not pass on the sympathetic activity to the periphery. In this short essay, the “noisiness” of the baroreflex as nervous control system is stressed. This property is observed in all elements of the reflex, even at the––supposedly––most basic relation between afferent receptor nerve input and efferent––vagus––nerve output signal.


Noise Variability Evolution Sympathetic Parasympathetic History of science 


  1. Aronson D, Mittleman MA, Burger AJ. Measures of heart period variability as predictors of mortality in hospitalized patients with decompensated congestive heart failure. Am J Cardiol 2004;93:59–63.PubMedCrossRefGoogle Scholar
  2. Benarroch EE. overview of the organization of the central autonomic network. In: Benarroch EE, editor. Central autonomic network: functional organization and clinical correlations. Armonk, NY: Futura Publishing Company, Inc.; 1997, 3–28.Google Scholar
  3. Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 1992;85:164–71.PubMedGoogle Scholar
  4. Czermak JN. Über mechanische Vagusreizung beim Menschen. Jenaische Zeitschrift für Medicin und Naturwissenschaft 1865–1866;2:384–6.Google Scholar
  5. de Cyon E, Ludwig C. Die Reflexe eines der sensiblen Nerven des Herzens auf die motorischen der Blutgefässe. Ber Verh Kön Sächs Ges Wiss Lpz (Math.-phys Cl) 1866;18:307–28.Google Scholar
  6. DeBoer RW, Karemaker JM, Strackee J. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol 1987;253:H680-9.PubMedGoogle Scholar
  7. Gallagher KM, Fadel PJ, Smith SA, Stromstad M, Ide K, Secher NH, Raven PB. The interaction of central command and the exercise pressor reflex in mediating baroreflex resetting during exercise in humans. Exp Physiol 2006;91:79–87.PubMedCrossRefGoogle Scholar
  8. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci 2006;7:335–46.PubMedCrossRefGoogle Scholar
  9. Hering HE. Die Karotissinusreflexe auf Herz und Gefässe vom normal-physiologischen, pathologisch-physiologischen und klinischen Standpunkt. Dresden: Theodor Steinkopff Verlag; 1927.Google Scholar
  10. Heymans CJF, Folkow B. Vasomotor control and the regulation of blood pressure. In: Fishman AP, Richards DW, editors. Circulation of the blood. Men and ideas. Bethesda, Maryland: American Physiological Society; 1982, 407–86.Google Scholar
  11. Iriuchijima J. Cardiovascular physiology; nerve, flow and pressure. Tokyo: Igaku Shoin; 1972.Google Scholar
  12. Kienbaum P, Karlssonn T, Sverrisdottir YB, Elam M, Wallin BG. Two sites for modulation of human sympathetic activity by arterial baroreceptors? J Physiol 2001;531:861–9.PubMedCrossRefGoogle Scholar
  13. Koch Eb. Die reflektorische Selbststeuerung des Kreislaufes. Dresden: Theodor Steinkopff Verlag; 1931.Google Scholar
  14. Köster GT. A Ueber den Nervus depressor als Reflexnerv der Aorta. Pflügers Archiv ges. Physiologie 1903;93:24–38.CrossRefGoogle Scholar
  15. Morris JL, Nilsson S. The circulatory system. In: Nilsson S, Holmgren S, editors. Comparative physiology and evolution of the autonomic nervous system. Chur, Switzerland: Harwood academic publishers. 1994, 193–246.Google Scholar
  16. Muratori, G. Histological observations on the structure of the carotid sinus in man and mammals. In: Kezdi P, editor. Baroreceptors and hypertension. Proceedings of an international symposium held at Dayton, Ohio, 16–17 November 1965. Oxford: Pergamon press; 1967. pp. 253–65.Google Scholar
  17. Penaz, J. Photoelectric measurement of blood pressure, volume and flow in the finger. 10th international conference on medical and biological engineering––1973––Dresden. p.104.Google Scholar
  18. Robbe HW, Mulder LJ, Ruddel H, Langewitz WA, Veldman JB, Mulder G. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension 1987;10:538–43.PubMedGoogle Scholar
  19. Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ Res 1969;24:109–21.PubMedGoogle Scholar
  20. Stein RB, Gossen ER, Jones KE. Neuronal variability: noise or part of the signal? Nat Rev Neurosci 2005;6:389–97.PubMedCrossRefGoogle Scholar
  21. Sundin L, Nilsson S. Branchial innervation. J Exp Zool 2002;293:232–48.PubMedCrossRefGoogle Scholar
  22. Tateishi Y, Oda S, Nakamura M, Watanabe K, Kuwaki T, Moriguchi T, Hirasawa H. Depressed heart rate variability is associated with high Il-6 blood level and decline in the blood pressure in septic patients. Shock 2007 Jun 28; [Epub ahead of print].Google Scholar
  23. Taylor EW, Jordan D, Coote JH. Central control of the cardiovascular and respiratory systems and their interactions in vertebrates. Physiol Rev 1999;79:855–916.PubMedGoogle Scholar
  24. Taylor JA, Eckberg DL. Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation 1996;93:1527–32.PubMedGoogle Scholar
  25. Topolski R, Inhoff AW. Loss of vision during the retinal stabilization of letters. Psychol Res 1995;58:155–62.PubMedCrossRefGoogle Scholar
  26. Van Lieshout JJ. Cardiovascular reflexes in orthostatic disorders, Thesis, University of Amsterdam, 1989.Google Scholar
  27. Wallin BG, Fagius J. Peripheral sympathetic neural activity in conscious humans. [Review]. Annu Rev Physiol 1988;50:565–76.PubMedCrossRefGoogle Scholar
  28. Wesseling KH, Settels JJ. Baromodulation explains short-term blood pressure variability. In: Orlebeke JF, Mulder G, van Doornen LJP, editors. Psychophysiology of cardiovascular control. New York: Plenum Press. 1985, 69–97.Google Scholar
  29. Wesseling KH, Settels JJ, van der Hoeven GM, Nijboer JA, Butijn MW, Dorlas JC. Effects of peripheral vasoconstriction on the measurement of blood pressure in a finger. Cardiovasc Res 1985;19:139–45.PubMedGoogle Scholar
  30. Westerhof BE, Gisolf J, Karemaker JM, Wesseling KH, Secher NH, Van Lieshout JJ. Time course analysis of baroreflex sensitivity during postural stress. Am J Physiol Heart Circ Physiol 2006;291:H2864–74.PubMedCrossRefGoogle Scholar
  31. Westerhof BE, Gisolf J, Stok WJ, Wesseling KH, Karemaker JM. Time-domain cross-correlation baroreflex sensitivity: performance on the EUROBAVAR data set. J Hypertens 2004;22:1371–80.PubMedCrossRefGoogle Scholar
  32. Winchell RJ, Hoyt DB. Analysis of heart-rate variability: a noninvasive predictor of death and poor outcome in patients with severe head injury. J Trauma 1997;43:927–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Physiology, Systems Physiology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Delft university of TechnologyDelftThe Netherlands

Personalised recommendations