Skip to main content

Advertisement

Log in

AST-120, an Adsorbent of Uremic Toxins, Improves the Pathophysiology of Heart Failure in Conscious Dogs

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Several lines of evidence suggest that renal dysfunction is associated with cardiovascular toxicity through the action of uremic toxins. The levels of those uremic toxins can be reportedly reduced by the spherical carbon adsorbent AST-120. Because heart failure (HF) causes renal dysfunction by low cardiac output and renal edema, the removal of uremic toxins could be cardioprotective.

Method

To determine whether blood levels of the uremic toxin indoxyl sulfate (IS) increase in HF and whether AST-120 can reduce those levels and improve HF. We induced HF in 12 beagle dogs by 6 weeks of rapid right ventricular pacing at 230 beats per min. We treated six dogs with a 1-g/kg/day oral dosage of AST-120 for 14 days from week 4 after the start of rapid ventricular pacing. The other six dogs did not receive any treatment (control group).

Results

In the untreated dogs, IS levels increased as cardiac function deteriorated. In contrast, plasma IS levels in the treated dogs decreased to baseline levels, with both left ventricular fractional shortening and pulmonary capillary wedge pressure also improving when compared with untreated dogs. Finally, AST-120 treatment was shown to reduce both myocardial apoptosis and fibrosis along with decreases in extracellular signal-regulated kinase phosphorylation, the Bax/Bcl-2 ratio, and TGF-β1 expression and increases in AKT phosphorylation.

Conclusions

IS levels are increased in HF. AST-120 treatment reduces the levels of IS and improves the pathophysiology of HF in a canine model. AST-120 could be a novel candidate for the treatment of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  Google Scholar 

  2. Gerstein HC, Mann JF, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286:421–6.

    Article  CAS  Google Scholar 

  3. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WHW, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62:485–95.

    Article  PubMed  Google Scholar 

  4. Yisireyili M, Saito S, Abudureyimu S, Adelibieke Y, Ng HY, Nishijima F, et al. Indoxyl sulfate-induced activation of (pro)renin receptor promotes cell proliferation and tissue factor expression in vascular smooth muscle cells. PLoS One. 2014;9:e109268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu MC, Shi M, Cho HJ, Adams-Huet B, Paek J, Hill K, et al. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. J Am Soc Nephrol. 2015;26:1290–302.

    Article  CAS  PubMed  Google Scholar 

  6. Adijiang A, Niwa T. An oral sorbent, AST-120, increases Klotho expression and inhibits cell senescence in the kidney of uremic rats. Am J Nephrol. 2010;31:160–4.

    Article  CAS  PubMed  Google Scholar 

  7. Chiang CK, Tanaka T, Inagi R, Fujita T, Nangaku M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Investig. 2011;91:1564–71.

    Article  CAS  PubMed  Google Scholar 

  8. Fujii H, Nishijima F, Goto S, Sugano M, Yamato H, Kitazawa R, et al. Oral charcoal adsorbent (AST-120) prevents progression of cardiac damage in chronic kidney disease through suppression of oxidative stress. Nephrol Dial Transplant. 2009;24:2089–95.

    Article  CAS  Google Scholar 

  9. Kato A, Odamaki M, Hishida A. Association between blood indoxyl sulfate and carbonyl stress marker in hemodialysis patients. Clin Nephrol. 2003;60:161–7.

    Article  CAS  PubMed  Google Scholar 

  10. Chade AR, Lerman A, Lerman LO. Kidney in early atherosclerosis. Hypertension. 2005;45:1042–9.

    Article  CAS  PubMed  Google Scholar 

  11. Lekawanvijit S, Adrahtas A, Kelly DJ, Kompa AR, Wang BH, Krum H. Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur Heart J. 2010;31:1771–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sasaki H, Asanuma H, Fujita M, Takahama H, Wakeno M, Ito S, et al. Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circulation. 2009;119:2568–77.

    Article  CAS  PubMed  Google Scholar 

  13. Heusch G, Neumann T. Calcium responsiveness in canine pacing-induced heart failure. J Mol Cell Cardiol. 1998;30:1605–13.

    Article  CAS  PubMed  Google Scholar 

  14. Neumann T, Vollmer A, Schaffner T, Hess OM, Heusch G. Diastolic dysfunction and collagen structure in canine pacing-induced heart failure. J Mol Cell Cardiol. 1999;31:179–92.

    Article  CAS  PubMed  Google Scholar 

  15. Komamura K, Shannon RP, Pasipoularides A, Ihara T, Lader AS, Patrick TA, et al. Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure. J Clin Invest. 1992;89:1825–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wakeno M, Minamino T, Seguchi O, Okazaki H, Tsukamoto O, Okada KI, et al. Long-term stimulation of adenosine A2b receptors begun after myocardial infarction prevents cardiac remodeling in rats. Circulation. 2006;114:1923–32.

    Article  CAS  PubMed  Google Scholar 

  17. Okada K, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S, et al. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation. 2004;110:705–12.

    Article  PubMed  Google Scholar 

  18. Tsukamoto O, Minamino T, Okada K, Shintani Y, Takashima S, Kato H, et al. Depression of proteasome activities during the progression of cardiac dysfunction in pressure-overloaded heart of mice. Biochem Biophys Res Commun. 2006;340:1125–33.

    Article  CAS  PubMed  Google Scholar 

  19. Kikuchi K, Itoh Y, Tateoka R, Ezawa A, Murakami K, Niwa T. Metabolomic search for uremic toxins as indicators of the effect of an oral sorbent AST-120 by liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:2997–3002.

    Article  CAS  PubMed  Google Scholar 

  20. Snedecor GW, Cochran WG. Statistical methods. 6th ed. Ames: Iowa State University Press; 1972. p. 258–98.

    Google Scholar 

  21. Yang K, Xu X, Nie L, Xiao T, Guan X, He T, et al. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway. Toxicol Lett. 2015;234:110–9.

    Article  CAS  PubMed  Google Scholar 

  22. Perreault CL, Shannon RP, Komamura K, Vatner SF, Morgan JP. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure. J Clin Invest. 1992;89:932–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haidara MA, Assiri AS, Yassin HZ, Ammar HI, Obradovic MM, Isenovic ER. Heart failure models: traditional and novel therapy. Curr Vasc Pharmacol. 2015;13:658–69.

    Article  CAS  PubMed  Google Scholar 

  24. Niwa T, Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med. 1994;124:96–104.

    CAS  PubMed  Google Scholar 

  25. Nakai K, Fujii H, Kono K, Goto S, Fukagawa M, Nishi S. Effects of AST-120 on left ventricular mass in predialysis patients. Am J Nephrol. 2011;33:218–23.

    Article  PubMed  Google Scholar 

  26. Catalucci D, Condorelli G. Effects of Akt on cardiac myocytes: location counts. Circ Res. 2006;99:339–41.

    Article  CAS  PubMed  Google Scholar 

  27. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9:59–71.

    Article  CAS  PubMed  Google Scholar 

  28. Singla DK. Akt-mTOR pathway inhibits apoptosis and fibrosis in doxorubicin-induced cardiotoxicity following embryonic stem cell transplantation. Cell Transplant. 2015;24:1031–42.

    Article  PubMed  Google Scholar 

  29. Kapur NK. Transforming growth factor-beta: governing the transition from inflammation to fibrosis in heart failure with preserved left ventricular function. Circ Heart Fail. 2011;4:5–7.

    Article  PubMed  Google Scholar 

  30. Lekawanvijit S, Kumfu S, Wang BH, Manabe M, Nishijima F, Kelly DJ, et al. The uremic toxin adsorbent AST-120 abrogates cardiorenal injury following myocardial infarction. PLoS One. 2013;8:e83687.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shimizu H, Saito S, Higashiyama Y, Nishijima F, Niwa T. CREB, NF-kappaB, and NADPH oxidase coordinately upregulate indoxyl sulfate-induced angiotensinogen expression in proximal tubular cells. Am J Physiol Cell Physiol. 2013;304:C685–92.

    Article  CAS  PubMed  Google Scholar 

  32. Shimizu H, Yisireyili M, Higashiyama Y, Nishijima F, Niwa T. Indoxyl sulfate upregulates renal expression of ICAM-1 via production of ROS and activation of NF-kappaB and p53 in proximal tubular cells. Life Sci. 2013;92:143–8.

    Article  CAS  PubMed  Google Scholar 

  33. Prunier F, Pfister O, Hadri L, Liang L, del Monte F, Liao R, et al. Delayed erythropoietin therapy reduces post-MI cardiac remodeling only at a dose that mobilizes endothelial progenitor cells. Am J Physiol Heart Circ Physiol. 2007;292:H522–9.

    Article  CAS  PubMed  Google Scholar 

  34. Yu M, Kim YJ, Kang DH. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin J Am Soc Nephrol. 2011;6:30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanada S, Kitakaze M, Node K, Takashima S, Ogai A, Asanuma H, et al. Differential subcellular actions of ACE inhibitors and AT(1) receptor antagonists on cardiac remodeling induced by chronic inhibition of NO synthesis in rats. Hypertension. 2001;38:404–11.

    Article  CAS  PubMed  Google Scholar 

  36. Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, et al. Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol. 2012;59:1979–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dou L, Jourde-Chiche N, Faure V, et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost. 2007;5:1302–8.

    Article  CAS  PubMed  Google Scholar 

  38. Hirata A, Minamino T, Asanuma H, Fujita M, Wakeno M, Myoishi M, et al. Erythropoietin enhances neovascularization of ischemic myocardium and improves left ventricular dysfunction after myocardial infarction in dogs. J Am Coll Cardiol. 2006;48:176–84.

    Article  CAS  PubMed  Google Scholar 

  39. Sun CY, Chang SC, Wu MS. Suppression of klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int. 2012;81:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121:4393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Imazu M, Takahama H, Asanuma H, Funada A, Sugano Y, Ohara T, et al. Pathophysiological impact of serum fibroblast growth factor 23 in patients with nonischemic cardiac disease and early chronic kidney disease. Am J Physiol Heart Circ Physiol. 2014;307:H1504–11.

    Article  CAS  PubMed  Google Scholar 

  42. Shimazu S, Hirashiki A, Okumura T, Yamada T, Okamoto R, Shinoda N, et al. Association between indoxyl sulfate and cardiac dysfunction and prognosis in patients with dilated cardiomyopathy. Circ J. 2013;77:390–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Yuki Hamada for their technical assistance. We also thank the collaborative work with Adsorptive Medicine Technology Center at KUREHA Corporation.

Sources of Funding

This work was supported by grants-in-aid from the Ministry of Health, Labor, and Welfare, Japan; grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan; grants-in-aid from Japan Agency for Medical Research and Development, AMED; and grants from the Japan Heart Foundation and Grants from the Japan Cardiovascular Research Foundation for M. Kitakaze. This work is also supported by grants-in-aid of the collaborative research with Kureha Corporation and Mitsubishi Tanabe Pharma Corporation for M. Kitakaze.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Kitakaze.

Ethics declarations

All procedures complied with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (the 8th Edition, NRC 2011) and were approved by the National Cerebral and Cardiovascular Center Committee for Laboratory Animal Use.

Conflict of Interest

T. Morita reports grants from LSI Medience, AMNOS Company, UNITIKA, and TED Pharmaceutical Co. M. Asakura reports grants from the government during the conduct of the study, personal fees and non-financial support from Pfizer, and personal fees from Boehringer-Ingerheim, Mitsubishi-Tanabe, Kowa, and Takeda. M. Kitakaze reports grants from the Japanese government;grants from Japan Heart Foundation; grants from Japan Cardiovascular Research Foundation; grants and personal fees from Takeda, Asteras, Sanofi, Pfizer, Novartis, Boehringer-Ingerheim, Mitsubishi-Tanabe, Kyowa-Hakko-Kirin, Abott, and Otsuka; personal fees from Daiichi-Sankyo, Ono, Bayer, from Kowa, Dainihon-Sumitomo, Sawai, MSD, Calpis, Shionogi, AstraZeneca, Asahikasei, Novo Nordisk, Fuji-film RI, and Japan Medical Data; and grants from Nihon Kohden.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Supplementary Figure 1.

Western Blot Analysis of Canine Hearts at 6 weeks. Top panels: representative Western blots for p-AKT, AKT, p-ERK, ERK, TGF-β1, GAPDH, Bcl-2, and Bax in control, sham, and AST-120 groups (n = 2). Bottom panels: Densitometric analysis of the individual immunoblots (n = 2). (PNG 894 kb)

High Resolution Image

(TIF 2143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asanuma, H., Chung, H., Ito, S. et al. AST-120, an Adsorbent of Uremic Toxins, Improves the Pathophysiology of Heart Failure in Conscious Dogs. Cardiovasc Drugs Ther 33, 277–286 (2019). https://doi.org/10.1007/s10557-019-06875-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-019-06875-z

Keywords

Navigation