Advertisement

Inhibition of Phosphoglycerate Mutase 5 Reduces Necroptosis in Rat Hearts Following Ischemia/Reperfusion Through Suppression of Dynamin-Related Protein 1

  • Lang She
  • Hua Tu
  • Yin-Zhuang Zhang
  • Li-Jing Tang
  • Nian-Sheng Li
  • Qi-Lin Ma
  • Bin Liu
  • Qingjie Li
  • Xiu-Ju LuoEmail author
  • Jun PengEmail author
ORIGINAL ARTICLE
  • 18 Downloads

Abstract

Purpose

Necroptosis is an important form of cell death following myocardial ischemia/reperfusion (I/R) and phosphoglycerate mutase 5 (PGAM5) functions as the convergent point for multiple necrosis pathways. This study aims to investigate whether inhibition of PGAM5 could reduce I/R-induced myocardial necroptosis and the underlying mechanisms.

Methods

The SD rat hearts (or H9c2 cells) were subjected to 1-h ischemia (or 10-h hypoxia) plus 3-h reperfusion (or 4-h reoxygenation) to establish the I/R (or H/R) injury model. The myocardial injury was assessed by the methods of biochemistry, H&E (hematoxylin and eosin), and PI/DAPI (propidium iodide/4′,6-diamidino-2-phenylindole) staining, respectively. Drug interventions or gene knockdown was used to verify the role of PGAM5 in I/R (or H/R)-induced myocardial necroptosis and possible mechanisms.

Results

The I/R-treated heart showed the injuries (increase in infarct size and creatine kinase release), upregulation of PGAM5, dynamin-related protein 1 (Drp1), p-Drp1-S616, and necroptosis-relevant proteins (RIPK1/RIPK3, receptor-interacting protein kinase 1/3; MLKL, mixed lineage kinase domain-like); these phenomena were attenuated by inhibition of PGAM5 or RIPK1. In H9c2 cells, H/R treatment elevated the levels of PGAM5, RIPK1, RIPK3, MLKL, Drp1, and p-Drp1-S616 and induced mitochondrial dysfunctions (elevation in mitochondrial membrane potential and ROS level) and cellular necrosis (increase in LDH release and the ratio of PI+/DAPI+ cells); these effects were blocked by inhibition or knockdown of PGAM5.

Conclusions

Inhibition of PGAM5 can reduce necroptosis in I/R-treated rat hearts through suppression of Drp1; there is a positive feedback between RIPK1 and PGAM5, and PGAM5 might serve as a novel therapeutic target for prevention of myocardial I/R injury.

Keywords

Ischemia/reperfusion Necroptosis Phosphoglycolic acid Phosphoglycerate mutase 5 (PGAM5) Dynamin-related protein 1(DRP1) 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (No. 81872873 to Jun Peng; No. 81573430 to Xiu-Ju Luo; No. 81703516 to Bin Liu).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

10557_2018_6848_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1144 kb)

References

  1. 1.
    He X, Li S, Liu B, Susperreguy S, Formoso K, Yao J, et al. Major contribution of the 3/6/7 class of TRPC channels to myocardial ischemia/reperfusion and cellular hypoxia/reoxygenation injuries. Proc Natl Acad Sci U S A. 2017;114(23):E4582–e91.CrossRefGoogle Scholar
  2. 2.
    Harisseh R, Pillot B, Gharib A, Augeul L, Gallo-Bona N, Ferrera R, et al. Unacylated ghrelin analog prevents myocardial reperfusion injury independently of permeability transition pore. Basic Res Cardiol. 2017;112(1):4.CrossRefGoogle Scholar
  3. 3.
    Yang C, Liu X, Yang F, Zhang W, Chen Z, Yan D, et al. Mitochondrial phosphatase PGAM5 regulates Keap1-mediated Bcl-xL degradation and controls cardiomyocyte apoptosis driven by myocardial ischemia/reperfusion injury. In vitro cellular & developmental biology. Animal. 2017;53(3):248–57.Google Scholar
  4. 4.
    Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nature reviews. Mol Cell Biol. 2003;4(7):552–65.Google Scholar
  5. 5.
    Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.CrossRefGoogle Scholar
  6. 6.
    Adameova A, Goncalvesova E, Szobi A, Dhalla NS. Necroptotic cell death in failing heart: relevance and proposed mechanisms. Heart Fail Rev. 2016;21(2):213–21.CrossRefGoogle Scholar
  7. 7.
    Fietta P. Many ways to die: passive and active cell death styles. Riv Biol. 2006;99(1):69–83.Google Scholar
  8. 8.
    Ying Y, Padanilam BJ. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell Mol Life Sci. 2016;73(11–12):2309–24.CrossRefGoogle Scholar
  9. 9.
    Tonnus W, Linkermann A. The in vivo evidence for regulated necrosis. Immunol Rev. 2017;277(1):128–49.CrossRefGoogle Scholar
  10. 10.
    Ashkenazi A, Salvesen G. Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol. 2014;30:337–56.CrossRefGoogle Scholar
  11. 11.
    Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature reviews. Mol Cell Biol. 2014;15(2):135–47.Google Scholar
  12. 12.
    Conrad M, Angeli JP, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nature reviews. Drug Discov. 2016;15(5):348–66.CrossRefGoogle Scholar
  13. 13.
    Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 2017;24(7):1184–95.CrossRefGoogle Scholar
  14. 14.
    Linkermann A, Brasen JH, Darding M, Jin MK, Sanz AB, Heller JO, et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2013;110(29):12024–9.CrossRefGoogle Scholar
  15. 15.
    Hussain M, Zimmermann V, van Wijk SJL, Fulda S. Mouse lung fibroblasts are highly susceptible to necroptosis in a reactive oxygen species-dependent manner. Biochem Pharmacol. 2018;153:242–7.CrossRefGoogle Scholar
  16. 16.
    Schreiber A, Rousselle A, Becker JU, von Massenhausen A, Linkermann A, Kettritz R. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc Natl Acad Sci U S A. 2017;114(45):E9618–e25.CrossRefGoogle Scholar
  17. 17.
    Qin D, Wang X, Li Y, Yang L, Wang R, Peng J, et al. MicroRNA-223-5p and -3p cooperatively suppress necroptosis in ischemic/reperfused hearts. J Biol Chem. 2016;291(38):20247–59.CrossRefGoogle Scholar
  18. 18.
    Wang K, Liu F, Liu CY, An T, Zhang J, Zhou LY, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ. 2016;23(8):1394–405.CrossRefGoogle Scholar
  19. 19.
    Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA, et al. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 2012;107(4):270.CrossRefGoogle Scholar
  20. 20.
    Wang JX, Zhang XJ, Li Q, Wang K, Wang Y, Jiao JQ, et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res. 2015;117(4):352–63.CrossRefGoogle Scholar
  21. 21.
    Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell. 2012;148(1–2):228–43.CrossRefGoogle Scholar
  22. 22.
    Chaikuad A, Filippakopoulos P, Marcsisin SR, Picaud S, Schroder M, Sekine S, et al. Structures of PGAM5 provide insight into active site plasticity and multimeric assembly. Structure (London, England: 1993). 2017;25(7):1089–99.e3.CrossRefGoogle Scholar
  23. 23.
    He GW, Gunther C, Kremer AE, Thonn V, Amann K, Poremba C, et al. PGAM5-mediated programmed necrosis of hepatocytes drives acute liver injury. Gut. 2017;66(4):716–23.CrossRefGoogle Scholar
  24. 24.
    Zhang YS, He L, Liu B, Li NS, Luo XJ, Hu CP, et al. A novel pathway of NADPH oxidase/vascular peroxidase 1 in mediating oxidative injury following ischemia-reperfusion. Basic Res Cardiol. 2012;107(3):266.CrossRefGoogle Scholar
  25. 25.
    Chen S, Lv X, Hu B, Shao Z, Wang B, Ma K, et al. RIPK1/RIPK3/MLKL-mediated necroptosis contributes to compression-induced rat nucleus pulposus cells death. Apoptosis. 2017;22(5):626–38.CrossRefGoogle Scholar
  26. 26.
    Shen C, Wang C, Han S, Wang Z, Dong Z, Zhao X, et al. Aldehyde dehydrogenase 2 deficiency negates chronic low-to-moderate alcohol consumption-induced cardioprotection possibly via ROS-dependent apoptosis and RIP1/RIP3/MLKL-mediated necroptosis. Biochim Biophys Acta. 2017;1863(8):1912–8.CrossRefGoogle Scholar
  27. 27.
    Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHadaway JB, et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 2012;3:e437.CrossRefGoogle Scholar
  28. 28.
    Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M, et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature. 2011;477(7364):330–4.CrossRefGoogle Scholar
  29. 29.
    Vandenabeele P, Grootjans S, Callewaert N, Takahashi N. Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models. Cell Death Differ. 2013;20(2):185–7.CrossRefGoogle Scholar
  30. 30.
    Degterev A, Maki JL, Yuan J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ. 2013;20(2):366.CrossRefGoogle Scholar
  31. 31.
    Kang YJ, Bang BR, Han KH, Hong L, Shim EJ, Ma J, et al. Regulation of NKT cell-mediated immune responses to tumours and liver inflammation by mitochondrial PGAM5-Drp1 signalling. Nat Commun. 2015;6:8371.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology, Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
  2. 2.Department of Cardiovascular Medicine, Xiangya HospitalCentral South UniversityChangshaChina
  3. 3.Department of Laboratory Medicine, Xiangya Third HospitalCentral South UniversityChangshaChina
  4. 4.Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
  5. 5.Department of Internal MedicineThe University of Texas Medical Branch at GalvestonGalvestonUSA

Personalised recommendations