Advertisement

Cardiovascular Drugs and Therapy

, Volume 30, Issue 1, pp 101–108 | Cite as

Future Directions to Establish Lipoprotein(a) as a Treatment for Atherosclerotic Cardiovascular Disease

  • Evan A. Stein
  • Frederick Raal
REVIEW ARTICLE

Abstract

In both epidemiologic and genetic studies, increased levels of Lp(a) have been associated with increased risk for cardiovascular diseases as well as aortic stenosis. However, until recently, it has been difficult to lower levels of Lp(a). Diet and lifestyle have little effect on plasma levels of Lp(a) which are mainly genetically determined. Emerging therapeutic agents which have recently become available, or which are undergoing clinical trials, can significantly lower Lp(a) levels. Studies with these agents will hopefully be able to provide more direct information whether reductions in Lp(a) will reduce CVD events independently of reduction in LDL-cholesterol levels.

Keywords

Lipoprotein(a) PCSK9 inhibitors Niacin Statins CETP inhibitors 

Notes

Compliance with Ethical Standards

Disclosures

Dr. Stein has received consulting fees from Amgen, Regeneron, Sanofi, Genentech/Roche, CymaBay, Gemphire, Catabasis, CVS/Caremark and BMS.

Dr. Raal has received reimbursement for conducting clinical trials from Amgen and Sanofi; modest speaker fees from AstraZeneca, Pfizer, and Merck; honoraria from AstraZeneca, Pfizer, Merck, Amgen, and Sanofi; and consultant/advisory board fees from AstraZeneca, Pfizer, and Merck.

References

  1. 1.
    Boerwinkle E, Leffert C, Lin J, Lackner C, Chiesa G, Hobbs HH. Apolipoprotein (a) gene accounts for greater than 90 % of the variation in plasma lipoprotein (a) concentrations. J Clin Invest. 1992;90:52–60.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rader DJ, Cain W, Ikewaki K, et al. The inverse association of plasma lipoprotein(a) concentrations with apolipoprotein(a) isoform size is not due to differences in Lp(a) catabolism but to differences in production rate. J Clin Invest. 1994;93:2758–63.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Virani SS, Brautbar A, Davis BC, et al. Associations between lipoprotein(a) levels and cardiovascular outcomes in black and white subjects: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2012;125:241–49.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Heinrich J, Sandkamp M, Kokott R. Relationship of lipoprotein(a) to variables of coagulation and fibrinolysis in a healthy population. Clin Chem. 1991;37:1950–4.PubMedGoogle Scholar
  5. 5.
    Hoover-Plow J, Haung M. Lipoprotein(a) metabolism: potential sites for therapeutic targets. Metabolism. 2013;62:479–91.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Howard BV, Roussouw JE. Estrogens and cardiovascular disease risk revisited: the Women’s Health Initiative. Curr Opin Lipidol. 2013;24:493–99.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schlant RC, Forman S, Stamler J, Canner PL. The natural history of coronary heart disease: prognostic factors after recovery from myocardial infarction in 2789 men. the 5-year findings of the coronary drug project. Circulation. 1982;66(2):401–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Ledue TB, Neveux LM, Palomaki GE, Ritchie RF, Craig WY. The relationship between serum levels of lipoprotein (a) and proteins associated with acute phase response. Clin Chim Acta. 1993;223:73–82.CrossRefPubMedGoogle Scholar
  9. 9.
    Maeda S, Abe A, Seishima M, Makino K, Noma A, Kawade M. Transient changes of serum lipoprotein(a) as an acute phase protein. Atherosclerosis. 1989;78:145–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Mbewu AD, Durrington PN, Bulleid S, et al. The immediate effect of streptokinase on serum lipoprotein (a) concentration and the effect of myocardial infarction on serum lipoprotein (a), apolipoprotein A1 and B, lipids and C-reactive protein. Atherosclerosis. 1993;103:65–71.CrossRefPubMedGoogle Scholar
  11. 11.
    Gidding SS, Stone NJ, Bookstein LC, Laskarzewski PM, Stein EA. Month-to-month variability of lipids, lipoproteins, and apolipoproteins and the impact of acute infection in adolescents. J Pediatr. 1998;133:242–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Mooser V, Berger MM, Tappy L, Cayeux C, Markovina SM, Darioli R, et al. Major reduction in plasma Lp(a) levels during sepsis and burns. Arterioscler Thromb Vasc Biol. 2000;20:1137–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Noma A, Abe A, Maeda S. Lp(a): an acute-phase reactant? Chem Phys Lipids. 1994;67/68:411–17.CrossRefGoogle Scholar
  14. 14.
    De Bruin T, van Barlingen H, van Linde-Sibenius TM, et al. Lipoprotein(a) and apolipoprotein B plasma concentrations in hypothyroid, euthyroid and hyperthyroid subjects. J Clin Endocrinol Metab. 1993;76:121–26.PubMedGoogle Scholar
  15. 15.
    Landerson PW, Kristensen JD, Ridgeway EC, et al. Use of the thyroid hormone analogue eprotirome in statin treated dyslipidemia. N Engl J Med. 2010;362:906–16.CrossRefGoogle Scholar
  16. 16.
    Sjouke B, Langslet G, Ceska R, et al. Eprotirome in patients with familial hypercholesterolaemia (the AKKA trial): a randomised, double-blind, placebo controlled phase 3 study. Lancet Diabetes Endocrinol. 2014;2:455–63.CrossRefPubMedGoogle Scholar
  17. 17.
    Krempler F, Kostner GM, Roscher A, et al. Studies on the role of specific cell surface receptors in the removal of lipoprotein(a) in man. J Clin Invest. 1983;71:1431–41.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hofer G, Steyrer E, Kostner GM, Hermetter A. LDL-mediated interaction of Lp(a) with HepG2 cells: a novel fluorescence microscopy approach. J Lipid Res. 1997;38:2411–21.PubMedGoogle Scholar
  19. 19.
    Hafner S, Orchard T, Stein E, Schmidt D, LaBelle P. Effect of simvastatin on Lp(a) concentrations. Clin Cardiol. 1995;18:261–5.CrossRefGoogle Scholar
  20. 20.
    Illingworth DR, Stein EA, Mitchel YB, Dujovne CA, Frost PH, Knopp RH, et al. Comparative effects of lovastatin and niacin in primary hypercholesterolemia: a prospective trial. Arch Intern Med. 1994;154:1586–95.CrossRefPubMedGoogle Scholar
  21. 21.
    Hunninghake DB, Stein EA, Mellies MJ. Effects of one year of treatment with pravastatin, an HMG-CoA reductase inhibitor, on lipoprotein a. J Clin Pharmacol. 1993;33(6):574–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Fieseler HG, Armstrong VW, Wieland E, Thiery J, Schutz E, Walli AK, et al. Serum Lp(a) concentrations are unaffected by treatment with the HMG-CoA reductase inhibitor Pravastatin: results of a 2-year investigation. Clin Chim Acta. 1991;204(1–3):291–300.CrossRefPubMedGoogle Scholar
  23. 23.
    Gonbert S, Malinsky S, Sposito AC, Laouenan H, Doucet C, Chapman MJ, et al. Atorvastatin lowers lipoprotein(a) but not apolipoprotein(a) fragment levels in hypercholesterolemic subjects at high cardiovascular risk. Atherosclerosis. 2002;164:305–11.CrossRefPubMedGoogle Scholar
  24. 24.
    van Wissen S, Smilde TJ, Trip MD, de Boo T, Kastelein JJP, Stalenhoef AFH. Long term statin treatment reduces lipoprotein(a) concentrations in heterozygous familial hypercholesterolaemia. Heart. 2003;89:893–6.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Khera AV, Everett BM, Caulfield MP, Hantash FM, Wohlgemuth J, Ridker PM, et al. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER Trial (Justification for the use of statins in prevention: an Intervention Trial Evaluating Rosuvastatin). Circulation. 2014;129:635–42.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Berg K, Dahlen G, Christopherson B, et al. Lp(a) lipoprotein level predicts survival and major coronary events in the Scandinavian Simvastatin Survival Study. Clin Genet. 1997;52:254–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Sudhop T, Lutjohann D, Kodal A, et al. Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation. 2002;106:1943–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Knopp RH, Gitter H, Truitt T. Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J. 2003;23:729–41.CrossRefGoogle Scholar
  29. 29.
    Nozue T, Michishati I, Mizuguchi I. Effects of ezetimibe on remnant-like particle cholesterol, lipoprotein(a) and oxidized low-density lipoprotein in patients with dyslipidaemia. J Atheroscler Thromb. 2010;17(1):37–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Gagne C, Gaudet D, Bruckert E, et al. Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation. 2002;105:2469–75.CrossRefPubMedGoogle Scholar
  31. 31.
    Moutzouri E, Liberopoulos E, Mikhailidis DP, et al. Comparison of the effects of simvastatin vs. rosuvastatin vs. simvastatin/ezetimibe on parameters of insulin resistance. Int J Clin Pract. 2011;65:1141–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Chennamsetty I, Claudel T, Kostner KM, et al. Farsenoid X receptor represses hepatic human apo(a) gene expression. J Clin Invest. 2011;121:3724–34.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gurakar K, Hoeg JM, Kostner G, Papadopolous NM. Brewer HBJr, levels of lipoprotein (a) Lp(a) decline with neomycin and niacin treatment. Atherosclerosis. 1985;57:293–301.CrossRefPubMedGoogle Scholar
  34. 34.
    Carlson LA, Hamsten A, Asplund A. Pronounced lowering of levels of lipoprotein (a) Lp(a) in hyperlipidemic subjects treated with nicotinic acid. J Intern Med. 1989;226:271–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Stein EA, Davidson MH, Dujovne CA, Hunninghake DB, et al. Efficacy and tolerability of low dose simvastatin and niacin, alone and in combination, in patients with combined hyperlipidemia: a prospective trial. J Cardiovasc Pharmacol Ther. 1996;1:107–16.PubMedGoogle Scholar
  36. 36.
    Grundy SM, Vega GL, McGovern ME, Tulloch BR, Kendall DM, Fitz-Patrick D, et al. Sheehan JP; Diabetes Multicenter Research Group. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial. Arch Intern Med. 2002;162(14):1568–76.CrossRefPubMedGoogle Scholar
  37. 37.
    Capuzzi DM, Guyton JR, Morgan JM, Goldberg AC, Kreisberg RA, Brusco OA. Brody. Efficacy and safety of an extended-release niacin (Niaspan): a long-term study. Am J Cardiol. 1998;82(12A):74U–81U.CrossRefPubMedGoogle Scholar
  38. 38.
    Goldberg AC. Clinical trial experience with extended-release niacin (Niaspan): dose-escalation study. Am J Cardiol. 1998;82(12A):35U–8U.CrossRefPubMedGoogle Scholar
  39. 39.
    Sposito AC, Mansur AP, Maranhão RC, Rodrigues-Sobrinho CRM, Coelho OR, Ramires JAF. Etofibrate but not controlled-release niacin decreases LDL cholesterol and lipoprotein (a) in type IIb dyslipidemic subjects. Braz J Med Biol Res. 2001;34:177–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Shearer GC, Pottala JV, Hansen SN, Brandenburg V, Harris WS. Effects of prescription niacin and omega-3 fatty acids on lipids and vascular function in metabolic syndrome: a randomized controlled trial[S]. J Lipid Res. 2012;53:2429–35.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Visser ME, Witztum JL, Stroes ES, Kastelein JJ. Antisense oligonucleotides for the treatment of dyslipidaemia. Eur Heart J. 2012;33:1451–58.CrossRefPubMedGoogle Scholar
  42. 42.
    Santos RD, Raal FJ, Catapano A, et al. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials. Arterioscler Thromb Vasc Biol. 2015;35:689–99.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Santos RD, Duell PB, East C, et al. Long-term efficacy and safety of mipomersen in patients with familial hypercholesterolemia: 2-year interim results of an open-label extension. Eur Heart J. 2015;36:566–75.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of lower LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:998–1006.CrossRefPubMedGoogle Scholar
  45. 45.
    Samaha FF, McKenney J, Bloedon LT, Sasiela WJ, Rader DJ. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2008;5:497–505.CrossRefPubMedGoogle Scholar
  46. 46.
    Cuchel M, Meagher EA, du Toit TH, Blom DJ, Marais AD, Hegele RA, et al. Phase 3 HoFH Lomitapide Study Investigators. efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381:40–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Thompson GR, Barbir M, Davies D, Dobral P, Gesinde M, Livingston M, et al. Efficacy criteria and cholesterol targets for LDL apheresis. Atherosclerosis. 2010;208:317–21.CrossRefPubMedGoogle Scholar
  48. 48.
    Gordon BR, Kelsey SF, Bilheimer DW, Brown DC, Dau PC, Gotto AM, et al. For the Liposorber Study Group, treatment of refractory familial hypercholesterolemia by low-density lipoprotein apheresis using an automated dextran sulfate cellulose absorption system. Am J Cardiol. 1992;70:1010–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Leebmann J, Roeseler E, Julius U, Heigl F, et al. Lipoprotein apheresis in patients with maximally tolerated lipid-lowering therapy, lipoprotein(a)-hyperlipoproteinemia, and progressive cardiovascular disease: prospective observational multicenter study. Circulation. 2013;128:2567–76.CrossRefPubMedGoogle Scholar
  50. 50.
    Cannon CP, Shah S, Dansky HM, Davidson M, Brinton EA, Gotto AM, et al. For the DEFINE Investigators Safety of anacetrapib in patients with, or at high risk for coronary heart disease. N Engl J Med. 2010;363:2406–15.CrossRefPubMedGoogle Scholar
  51. 51.
    Hovingh GK, Kastelein JJP, van Deventer SJH, Round P, Ford J, Saleheen D, et al. Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet. 2015.Google Scholar
  52. 52.
    Nicholls SJ, Ruotolo G, Brewer BH, Wang MD, Liu L, Willey MB, et al. Evacetrapib alone or in combination with statins lowers lipoprotein(a) and total and small LDL particle concentrations in mildly hypercholesterolemic patients. J Clin Lipidol. 2015. doi: 10.1016/j.jacl.2015.11.014.
  53. 53.
    HPS3/TIMI55 – REVEAL trial of Anacetrapib in high-risk vascular patients recruits the target of 30,000 participantshttps://www.ctsu.ox.ac.uk/research/mega-trials/hps3-reveal [accessed January 10, 2016].
  54. 54.
    Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.CrossRefPubMedGoogle Scholar
  55. 55.
    Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.CrossRefPubMedGoogle Scholar
  56. 56.
    Lilly to discontinue development of evacetrapib for high-risk atherosclerotic cardiovascular disease. https://investor.lilly.com/releasedetail.cfm?ReleaseID=936130 [accessed January 12, 2016].
  57. 57.
    Stein EA, Mellis S, Yancopoulos GD, Stahl N, Logan D, Smith WB, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366:1108–18.CrossRefPubMedGoogle Scholar
  58. 58.
    Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Langslet G, Bays H, et al. Reduction in lipoprotein (a) with the PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of over 1300 patients in 4 phase 2 trials. J Am Coll Cardiol. 2014;63(13):1278–88.CrossRefPubMedGoogle Scholar
  59. 59.
    Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.CrossRefPubMedGoogle Scholar
  60. 60.
    Kastelein JJ, Robinson JG, Farnier M, Krempf M, Langslet G, Lorenzato C, et al. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia not adequately controlled with current lipid-lowering therapy: design and rationale of the ODYSSEY FH studies. Cardiovasc Drugs Ther. 2014;28(3):281–9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Farnier M, Jones P, Severance R, Averna M, Steinhagen-Thiessen E, Colhoun HM, et al. Donahue S Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular risk patients: The ODYSSEY OPTIONS II randomized trial. Atherosclerosis. 2016;244:138–46.CrossRefPubMedGoogle Scholar
  62. 62.
    McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand A-C, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59:2344–53.CrossRefPubMedGoogle Scholar
  63. 63.
    Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. New Engl J Med. 2015;372:1500–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Graham MJ, Viney N, Crooke R, Tsimikas S. Antisense inhibition of apolipoprotein(a) to lower plasma lipoprotein(a) levels in humans. J Lipid Res. 2015 Nov 4.Google Scholar
  65. 65.
    Tsimikas S, Viney NJ, Hughes SG, et al. Antisense therapy 674 targeting apolipoprotein(a): a randomised, double-blind, placebo- 675 controlled phase 1 study. Lancet. 2015;386:1472–83.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Metabolic and Atherosclerosis Research CenterCincinnatiUSA
  2. 2.Carbohydrate & Lipid Metabolism Research Unit, Faculty of Health SciencesUniversity of WitwatersrandJohannesburgSouth Africa

Personalised recommendations