Cardiovascular Drugs and Therapy

, Volume 29, Issue 4, pp 319–327 | Cite as

Gender-Related Differences in Atherosclerosis

  • Pankaj Mathur
  • Bohuslav Ostadal
  • Francesco Romeo
  • Jawahar L. Mehta


Atherosclerotic cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. Considerable research has been done over the last several decades to understand the pathophysiology of atherosclerosis. It is widely believed that estrogen is responsible for the protection of women from CVD in the premenopausal age group. However, hormone replacement therapy has failed to decrease CVD events in clinical studies which points to the complexity of the relationship between vascular biology and estrogen hormones. Interestingly, preponderance of vascular and connective tissue disorders in women also points to an inherent role of hormones and tissue factors in maintenance of vascular endothelial function. The differential effect of GPER, lipoprotein A, TLRs, leucocyte-platelet aggregate markers in men and women also suggests inherent gender-related differences in the pathophysiology of atherosclerosis. A better understanding of the pathophysiology is likely to open ways to improve evidence-based treatment of CVD in women.


Atherosclerosis Gender 


  1. 1.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):399–410.CrossRefPubMedGoogle Scholar
  2. 2.
    Duff GL, McMillan GC. Pathology of atherosclerosis. Am J Med. 1951;11(1):92–108.CrossRefPubMedGoogle Scholar
  3. 3.
    Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.CrossRefPubMedGoogle Scholar
  4. 4.
    Steinberg D. Research related to underlying mechanisms in atherosclerosis. Circulation. 1979;60(7):1559–65.CrossRefPubMedGoogle Scholar
  5. 5.
    Parthasarathy S, Quinn MT, Steinberg D. Is oxidized low density lipoprotein involved in the recruitment and retention of monocyte/macrophages in the artery wall during the initiation of atherosclerosis? Basic Life Sci. 1988;49:375–80.PubMedGoogle Scholar
  6. 6.
    Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III27–32.PubMedGoogle Scholar
  7. 7.
    Duvall WL. Cardiovascular disease in women. Mt Sinay J Med. 2003;70:293–305.Google Scholar
  8. 8.
    Fejfar Z. Prevention against ischaemic heart disease: a critical review. In: Oliver MF, editor. Modern trends in cardiology – 3. London: Butterworths; 1975. p. 465–95.Google Scholar
  9. 9.
    Ostadal B, Ostadal P. Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. BJP. 2014;171:541–54.CrossRefGoogle Scholar
  10. 10.
    Ostadal B, Netuka I, Maly J, Besik J, Ostadalova I. Gender differences in cardiac ischemic injury and protection-experimental aspects. Exp Biol Med (Maywood). 2009;234:1011–9.CrossRefGoogle Scholar
  11. 11.
    Davis KB, Chaitman B, Ryan T, Bittner V, Kennedy JW. Comparison of 15-year survival for men and women after initial medical or surgical treatment for coronary artery disease: a CASS Registry study. J Am Coll Cardiol. 1995;25:1000–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Njolstad I, Arnesen E, Lund-Larsen PD. Smoking, serum lipids, blood pressure, and sex differences in myocardial infarction. A 12-year follow-up of the Finnmark study. Circulation. 1996;93:450–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Stokes J, Kannel WB, Wolf PA, Cupples LA, D’Agostino RB. The relative importance of selected risk factors for various manifestations of cardiovascular disease among men and women from 35 to 64 years old: 30 years of follow-up in the Framingham Study. Circulation. 1987;75:V65–73.PubMedGoogle Scholar
  14. 14.
    Kardys I, Vliegenthart R, Oudkerk M, Hofman A, Witteman JC. The female advantage in cardiovascular disease: do vascular beds contribute equally? Am J Epidemiol. 2007;166(4):403–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93:1354–63.CrossRefPubMedGoogle Scholar
  16. 16.
    Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation. 1998;97:2110–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Yahagi K, Davis HR, Arbustini E, Virmani R. Sex differences in coronary artery disease: pathological observations. Atherosclerosis. 2015;239(1):260–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Ferrante G, Nakano M, Prati F, et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation. 2010;122:2505–13.CrossRefPubMedGoogle Scholar
  19. 19.
    Kolodgie FD, Burke AP, Farb A, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22:1642–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Johnson BD, Shaw LJ, Buchthal SD, Bairey Merz CN, Kim HW, Scott KN, et al. Prognosis in women with myocardial ischemia in the absence of obstructive coronary disease: results from the National Institutes of Health-National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation. 2004;109(24):2993–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Johnson BD, Shaw LJ, Pepine CJ, Reis SE, Kelsey SF, Sopko G, et al. Persistent chest pain predicts cardiovascular events in women without obstructive coronary artery disease: results from the NIH-NHLBI-sponsored Women’s Ischaemia Syndrome Evaluation (WISE) study. Eur Heart J. 2006;27(12):1408–15.CrossRefPubMedGoogle Scholar
  22. 22.
    Buchthal SD, den Hollander JA, Merz CN, Rogers WJ, Pepine CJ, Reichek N, et al. Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. N Engl J Med. 2000;342(12):829–35.CrossRefPubMedGoogle Scholar
  23. 23.
    Han SH, Bae JH, Holmes Jr DR, Lennon RJ, Eeckhout E, Barsness GW, et al. Sex differences in atheroma burden and endothelial function in patients with early coronary atherosclerosis. Eur Heart J. 2008;29(11):1359–69.CrossRefPubMedGoogle Scholar
  24. 24.
    Kern MJ, Bach RG, Mechem CJ, Caracciolo EA, Aguirre FV, Miller LW, et al. Variations in normal coronary vasodilatory reserve stratified by artery, gender, heart transplantation and coronary artery disease. J Am Coll Cardiol. 1996;28:1154–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Reynolds HR, Srichai MB, Iqbal SN, Slater JN, Mancini GB, Feit F, et al. Mechanisms of myocardial infarction in women without angiographically obstructive coronary artery disease. Circulation. 2011;124(13):1414–25.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Iqbal SN, Feit F, Mancini GB, Wood D, Patel R, Pena-Sing I, et al. Characteristics of plaque disruption by intravascular ultrasound in women presenting with myocardial infarction without obstructive coronary artery disease. Am Heart J. 2014;167(5):715–22.CrossRefPubMedGoogle Scholar
  27. 27.
    Sangiorgi G, Roversi S, Biondi Zoccai G, Modena MG, Servadei F, Ippoliti A, et al. Sex-related differences in carotid plaque features and inflammation. J Vasc Surg. 2013;57(2):338–44.CrossRefPubMedGoogle Scholar
  28. 28.
    Gaubitz M. Epidemiology of connective tissue disorders. Rheumatology (Oxford). 2006;45 Suppl 3:iii3–4.Google Scholar
  29. 29.
    Sun H, Mohri M, Shimokawa H, Usui M, Urakami L, Takeshita A. Coronary microvascular spasm causes myocardial ischemia in patients with vasospastic angina. J Am Coll Cardiol. 2002;39(5):847–51.CrossRefPubMedGoogle Scholar
  30. 30.
    Mohri M, Koyanagi M, Egashira K, Tagawa H, Ichiki T, Shimokawa H, et al. Angina pectoris caused by coronary microvascular spasm. Lancet. 1998;351(9110):1165–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Reis SE, Holubkov R, Conrad Smith AJ, Kelsey SF, Sharaf BL, Reichek N, et al. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: results from the NHLBI WISE study. Am Heart J. 2001;141(5):735–41.CrossRefPubMedGoogle Scholar
  32. 32.
    Harder DR, Coulson PB. Estrogen receptors and effects of estrogen on membrane electrical properties of coronary vascular smooth muscle. J Cell Physiol. 1979;100:375–82.CrossRefPubMedGoogle Scholar
  33. 33.
    Sudhir K, Chou TM, Mullen WL, Hausmann D, Collins P, Yock PG, et al. Mechanisms of estrogen-induced vasodilation: in vivo studies in canine coronary conductance and resistance arteries. J Am Coll Cardiol. 1995;26(3):807–14.CrossRefPubMedGoogle Scholar
  34. 34.
    Wilson TA, Nicolosi RJ, Lawton CW, Babiak J. Gender differences in response to a hypercholesterolemic diet in hamsters: effects on plasma lipoprotein cholesterol concentrations and early aortic atherosclerosis. Atherosclerosis. 1999;146(1):83–91.CrossRefPubMedGoogle Scholar
  35. 35.
    Hayashi T, Fukuto JM, Ignarro LJ, Chaudhuri G. Gender differences in atherosclerosis: possible role of nitric oxide. J Cardiovasc Pharmacol. 1995;26(5):792–802.CrossRefPubMedGoogle Scholar
  36. 36.
    Huang A, Kaley G. Gender-specific regulation of cardiovascular function: estrogen as key player. Microcirculation. 2004;11(1):9–38.CrossRefPubMedGoogle Scholar
  37. 37.
    Wagner AH, Schroeter MR, Hecker M. 17beta-e stradiol inhibition of NADPH oxidase expression in human endothelial cells. FASEB J. 2001;15(12):2121–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Haas E, Bhattacharya I, Brailoiu E, Damjanović M, Brailoiu GC, Gao X, et al. Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ Res. 2009;104(3):288–91.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Meyer MR, Fredette NC, Howard TA, Hu C, Ramesh C, Daniel C, et al. G protein-coupled estrogen receptor protects from atherosclerosis. Sci Rep. 2014;4:7564.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Huang A, Koller A. Endothelin and prostaglandin H2 enhance arteriolar myogenic tone in hypertension. Hypertension. 1997;30:1210–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Huang A, Sun D, Koller A, Kaley G. Gender difference in myogenic tone of rat arterioles is due to estrogen-induced, enhanced release of NO. Am J Physiol. 1997;272:H1804–9.PubMedGoogle Scholar
  42. 42.
    Knowlton AA, Lee AR. Estrogen and the cardiovascular system. Pharmacol Ther. 2012;135:54–70.CrossRefPubMedGoogle Scholar
  43. 43.
    Ng MK, Quinn CM, McCrohon JA, Nakhla S, Jessup W, Handelsman DJ, et al. Androgens up-regulate atherosclerosis-related genes in macrophages from males but not females: molecular insights into gender differences in atherosclerosis. J Am Coll Cardiol. 2003;42(7):1306–13.CrossRefPubMedGoogle Scholar
  44. 44.
    McCrohon JA, Death AK, Nakhla N, et al. Androgen receptor expression is greater in macrophages from male than from female donors. A sex difference with implications for atherogenesis. Circulation. 2000;101(3):224–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Ling S, Dai A, Williams MR, Myles K, et al. Testosterone (T) enhances apoptosis-related damage in human vascular endothelial cells. Endocrinology. 2002;143(3):1119–25.CrossRefPubMedGoogle Scholar
  46. 46.
    Hulley S, Grandy D, Bush T, Furberk C, Herrington D, Riggs B, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. JAMA. 1998;280:605–12.CrossRefPubMedGoogle Scholar
  47. 47.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg CH, Hutchison F, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized control trial. JAMA. 2002;288:321–33.CrossRefPubMedGoogle Scholar
  48. 48.
    Nuedling S, Karas RH, Mendelsohn ME, Katzenellenbogen JA, Katzenellenbogen BS, Meyer R, et al. Activation of estrogen receptor beta is a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes. FEBS Lett. 2001;502(3):103–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Ghanam K, Lavagna C, Burgaud JL, Javellaud J, Ea-Kim L, Oudart N. Involvement of cyclooxygenase 2 in the protective effect of 17beta-estradiol on hypercholesterolemic rabbit aorta. Biochem Biophys Res Commun. 2000;275:696–703.CrossRefPubMedGoogle Scholar
  50. 50.
    Santos RL, Marin EB, Goncalves WL, Bissoli NS, Abreu GR, Moyses MR. Sex differences in the coronary vasodilatation induced by 17 β-oestradiol in the isolated perfused heart from spontaneously hypertensive rats. Acta Physiol (Oxf). 2010;200:203–10.CrossRefGoogle Scholar
  51. 51.
    Murphy E, Steenbergen C. Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res. 2007;75:478–86.CrossRefPubMedGoogle Scholar
  52. 52.
    Villablanca AC, Tenwolde A, Lee M, Huck M, Mumenthaler S, Rutledge JC. 17beta-estradiol prevents early-stage atherosclerosis in estrogen receptor-alpha deficient female mice. J Cardiovasc Transl Res. 2009;2(3):289–99.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Takada Y, Kato C, Kondo S, Korenaga R, Ando J. Cloning of cDNAs encoding G protein-coupled receptor expressed in human endothelial cells exposed to fluid shear stress. Biochem Biophys Res Commun. 1997;240:737–41.CrossRefPubMedGoogle Scholar
  54. 54.
    Sack MN, Rader DJ, Cannon RO. Oestrogen and inhibition of oxidation of low-density lipoproteins in postmenopausal women. Lancet. 1994;343:269–70.CrossRefPubMedGoogle Scholar
  55. 55.
    Mikkola TS, Clarkson TB. Estrogen replacement therapy, atherosclerosis, and vascular function. Cardiovasc Res. 2002;53:605–19.CrossRefPubMedGoogle Scholar
  56. 56.
    Piro M, Bona RD, Abbate A, Biasucci IM, Crea F. Sex-related differences in myocardial remodeling. J Am Coll Cardiol. 2010;55:1057–65.CrossRefPubMedGoogle Scholar
  57. 57.
    Selvin E, Feinleib M, Zhang L, et al. Androgens and diabetes in men: results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care. 2007;30(2):234–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Hak AE, Witteman JC, de Jong FH, Geerlings MI, Hofman A, Pols HA. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam study. J Clin Endocrinol Metab. 2002;87(8):3632–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Kaushik M, Sontineni SP, Hunter C. Cardiovascular disease and androgens: a review. Int J Cardiol. 2010;142(1):8–14.CrossRefPubMedGoogle Scholar
  60. 60.
    Jensen-Urstad K, Johansson J. Gender difference in age-related changes in vascular function. J Intern Med. 2001;250(1):29–36.CrossRefPubMedGoogle Scholar
  61. 61.
    Anuurad E, Boffa MB, Koschinsky ML, Berglund L. Lipoprotein(a): a unique risk factor for cardiovascular disease. Clin Lab Med. 2006;26(4):751–72.CrossRefPubMedGoogle Scholar
  62. 62.
    Qasim AN, Martin SS, Mehta NN, Wolfe ML, Park J, Schwartz S, et al. Lipoprotein(a) is strongly associated with coronary artery calcification in type-2 diabetic women. Int J Cardiol. 2011;150(1):17–21.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Gremmel T, Kopp CW, Eichelberger B, Koppensteiner R, Panzer S. Sex differences of leukocyte-platelet interactions and on-treatment platelet reactivity in patients with atherosclerosis. Atherosclerosis. 2014;237(2):692–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Koupenova M, Mick E, Mikhalev E, Benjamin EJ, Tanriverdi K, Freedman JE. Sex differences in platelet toll-like receptors and their association with cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2015;35(4):1030–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Edfeldt K, Bennet AM, Eriksson P, Frostegård J, et al. Association of hypo-responsive toll- like receptor 4 variants with risk of myocardial infarction. Eur Heart J. 2004;25:1447–53.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pankaj Mathur
    • 1
  • Bohuslav Ostadal
    • 2
  • Francesco Romeo
    • 3
  • Jawahar L. Mehta
    • 1
  1. 1.Cardiovascular MedicineUniversity of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare SystemLittle RockUSA
  2. 2.Institute of Physiology, Czech Academy of SciencesPragueCzech Republic
  3. 3.University of Rome “Tor Vergata”RomeItaly

Personalised recommendations