Cardiovascular Drugs and Therapy

, Volume 28, Issue 2, pp 125–135 | Cite as

AT1 and Aldosterone Receptors Blockade Prevents the Chronic Effect of Nandrolone on the Exercise-Induced Cardioprotection in Perfused rat Heart Subjected to Ischemia and Reperfusion

  • Silvio Rodrigues Marques-Neto
  • Emanuelle Baptista Ferraz
  • Deivid Carvalho Rodrigues
  • Brian Njaine
  • Edson Rondinelli
  • Antônio Carlos Campos de Carvalho
  • Jose Hamilton Matheus Nascimento
ORIGINAL ARTICLE

Abstract

Purpose

Myocardial tolerance to ischaemia/reperfusion (I/R) injury is improved by exercise training, but this cardioprotection is impaired by the chronic use of anabolic androgenic steroids (AAS). The present study evaluated whether blockade of angiotensin II receptor (AT1-R) with losartan and aldosterone receptor (mineralocorticoid receptor, MR) with spironolactone could prevent the deleterious effect of AAS on the exercise-induced cardioprotection.

Methods and Results

Male Wistar rats were exercised and treated with either vehicle, nandrolone decanoate (10 mg/kg/week i.m.) or the same dose of nandrolone plus losartan or spironolactone (20 mg/kg/day orally) for 8 weeks. Langendorff-perfused hearts were subjected to I/R and evaluated for the postischaemic recovery of left ventricle (LV) function and infarct size. mRNA and protein expression of angiotensin II type 1 receptor (AT1-R), mineralocorticoid receptor (MR), and KATP channels were determined by reverse-transcriptase polymerase chain reaction and Western blotting. Postischaemic recovery of LV function was better and infarct size was smaller in the exercised rat hearts than in the sedentary rat hearts. Nandrolone impaired the exercise-induced cardioprotection, but this effect was prevented by losartan (AT1-R antagonist) and spironolactone (MR antagonist) treatments. Myocardial AT1-R and MR expression levels were increased, and the expression of the KATP channel subunits SUR2a and Kir6.1 was decreased and Kir6.2 increased in the nandrolone-treated rat hearts. The nandrolone-induced changes of AT1-R, MR, and KATP subunits expression was normalized by the losartan and spironolactone treatments.

Conclusion

The chronic nandrolone treatment impairs the exercise-induced cardioprotection against ischaemia/reperfusion injury by activating the cardiac renin-angiotensin-aldosterone system and downregulating KATP channel expression.

Keywords

Myocardial ischaemia-reperfusion Exercise-induced cardioprotection Anabolic steroid Nandrolone Renin-angiotensin-aldosterone system ATP-dependent potassium channels 

Notes

Source of Fundings

This work was supported by the FAPERJ–Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (grant E-26/110.342/2012). JHMN is a research fellow from CNPq. SRMN received a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Conflict of Interest

None.

References

  1. 1.
    Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart Disease and Stroke Statistics–2008 Update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25–e146.PubMedCrossRefGoogle Scholar
  2. 2.
    World Health Organization. Cardiovascular diseases (CVDs). Fact sheet No. 317, 2011.Google Scholar
  3. 3.
    Shephard RJ, Balady GJ. Exercise as cardiovascular therapy. Circulation. 1999;99:963–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Myers J. Cardiology patient pages. Exercise and cardiovascular health. Circulation. 2003;107:e2–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39:1423–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116:1094–105.PubMedCrossRefGoogle Scholar
  7. 7.
    Leung FP, Yung LM, Laher I, Yao X, Chen ZY, Huang Y. Exercise, vascular wall and cardiovascular diseases: an update (part 1). Sports Med. 2008;38:1009–24.PubMedCrossRefGoogle Scholar
  8. 8.
    McElroy CL, Gissen SA, Fishbein MC. Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation. 1978;57:958–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Bowles DK, Farrar RP, Starnes JW. Exercise training improves cardiac function after ischemia in the isolated, working rat heart. Am J Physiol Heart Circ Physiol. 1992;263:H804–9.Google Scholar
  10. 10.
    Yamashita N, Baxter GF, Yellon DM. Exercise directly enhances myocardial tolerance to ischemia-reperfusion injury in the rat through a protein kinase C mediated mechanism. Heart. 2001;85:331–6.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training–molecular mechanisms. Circulation. 2010;122:1221–38.PubMedCrossRefGoogle Scholar
  12. 12.
    Frasier CR, Moore RL, Brown DA. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. J Appl Physiol. 2011;111:905–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Brown DA, Chicco AJ, Jew KN, Johnson MS, Lynch JM, Watson PA, et al. Cardioprotection afforded by chronic exercise is mediated by sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol. 2005;569:913–24.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Brown DA, Lynch JM, Armstrong CJ, Caruso NM, Ehlers LB, Johnson MS, et al. Susceptibility of the heart to ischaemia-reperfusion injury and exercise-induced cardioprotection are sex-dependent in the rat. J Physiol. 2005;564:619–30.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Chicco AJ, Johnson MS, Armstrong CJ, Lynch JM, Gardner RT, Fasen GS, et al. Sex-specific and exercise-acquired cardioprotection is abolished by sarcolemmal KATP channel blockade in the rat heart. Am J Physiol Heart Circ Physiol. 2007;292:H2432–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Quindry JC, Schreiber L, Hosick P, Wrieden J, Irwin JM, Hoyt E. Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts. Am J Physiol Heart Circ Physiol. 2010;299:H175–83.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34:513–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Sjӧqvist F, Garle M, Rane A. Use of doping agents, particularly anabolic steroids, in sports and society. Lancet. 2008;371:1872–82.CrossRefGoogle Scholar
  19. 19.
    Sullivan ML, Martinez CM, Gennis P, Gallagher EJ. The cardiac toxicity of anabolic steroids. Prog Cardiovasc Dis. 1998;41:1–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Di Paolo M, Agozzino M, Toni C, Luciani AB, Molendini L, Scaglione M, et al. Sudden anabolic steroid abuse-related death in athletes. Int J Cardiol. 2007;114:114–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Fineschi V, Baroldi G, Monciotti F, Reattelli LP, Turillazzi E. Anabolic steroid abuse and cardiac sudden death: a pathologic study. Arch Pathol Lab Med. 2001;125:253–5.PubMedGoogle Scholar
  22. 22.
    Urhausen A, Albers T, Kindermann W. Are the cardiac effects of anabolic steroid abuse in strength athletes reversible? Heart. 2004;90:496–501.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Du Toit EF, Rossouw E, Van Rooyen J, Lochner A. Proposed mechanisms for the anabolic steroid-induced increase in myocardial susceptibility to ischemia/reperfusion injury. Cardiovasc J South Afr. 2005;16:21–8.Google Scholar
  24. 24.
    Chaves EA, Pereira-Junior PP, Fortunato RS, Masuda MO, Carvalho ACC, Carvalho DP, et al. Nandrolone decanoate impairs exercise-induced cardioprotection: role of antioxidant enzymes. J Steroid Biochem Mol Biol. 2006;99:223–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Rocha FL, Carmo EC, Roque FR, Hashimoto NY, Rossoni LV, Frimm C, et al. Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. Am J Physiol Heart Circ Physiol. 2007;293:H3575–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Do Carmo EC, Fernandes T, Koike D, Da Silva Jr ND, Mattos KC, Rosa KT, et al. Anabolic steroid associated to physical training induces deleterious cardiac effects. Med Sci Sports Exerc. 2011;43:1836–48.PubMedCrossRefGoogle Scholar
  27. 27.
    Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, Schiebinger RJ. Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation. 1998;98:256–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Iwai N, Shimoike H, Kinoshita M. Cardiac rennin-angiotensin system in the hypertrophied heart. Circulation. 1995;92:2690–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Barauna VG, Magalhaes FC, Krieger JE, Oliveira EM. AT1 receptor participates in the cardiac hypertrophy induced by resistance training in rats. Am J Physiol Regul Integr Comp Physiol. 2008;295:R381–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang AD, Cat AND, Soukaseum C, Escoubet B, Cherfa A, Messaoudi S, et al. Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension. 2008;52:1060–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Kalra D, Sivasubramanian N, Mann DL. Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C–dependent pathway. Circulation. 2002;105:2198–205.PubMedCrossRefGoogle Scholar
  32. 32.
    Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II. 1998;98:794–9.Google Scholar
  33. 33.
    Tavares NI, Philip-Couderc P, Baertschi AJ, Lerch R, Montessuit C. Angiotensin II and tumour necrosis factor α as mediators of ATP-dependent potassium channel remodeling in post-infarction heart failure. Cardiovasc Res. 2009;83:726–36.CrossRefGoogle Scholar
  34. 34.
    Serejo FC, Rodrigues-Junior LF, Tavares KCS, Campos de Carvalho AC, Nascimento JHM. Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning. J Cardiovasc Pharmacol. 2007;49:214–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Robert V, Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C. Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. Hypertension. 1999;33:981–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation. 2002;105:677–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Silvestre JS, Heymes C, Oubénaïssa A, Robert V, Aupetit-Faisant B, Carayon A, et al. Activation of cardiac aldosterone production in rat myocardial infarction. Circulation. 1999;99:2694–701.PubMedCrossRefGoogle Scholar
  39. 39.
    Ullian ME, Schelling JR, Linas SL. Aldosterone enhances angiotensin II receptor binding and inositol phosphate responses. Hypertension. 1992;20:67–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Mill JG, Milanez MC, Rezende MM, Gomes MGS, Leite CM. Spironolactone prevents cardiac collagen proliferation after myocardial infarction in rats. Clin Exp Pharmacol Physiol. 2003;30:739–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Chai W, Garrelds IM, Arulmani U, Schoemaker RG, Lamers JMJ, Danser AHJ. Genomic and nongenomic effects of aldosterone in the rat: why is spironolactone cardioprotective. Br J Pharmacol. 2005;145:664–71.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Sato M, Engelman RM, Otani H, Maulik N, Rousou JA, Flack III JE, et al. Myocardial protection by preconditioning of heart with losartan, na angiotensin II type 1-receptor blocker: implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation. 2000;102(Supl 3):346–51.Google Scholar
  43. 43.
    Flynn JD, Akers WS. Effects of the angiotensin II subtype 1 receptor antagonist losartan on functional recovery of isolated rat hearts undergoing global myocardial ischemia-reperfusion. Pharmacotherapy. 2003;23:1401–10.PubMedCrossRefGoogle Scholar
  44. 44.
    Tsounapi P, Saito M, Dimitriadis F, Kitatani K, Kinoshita Y, Shomori K, et al. The role of KATP channels on ischemia-reperfusion injury in the rat testis. Life Sci. 2012;90:649–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Seharaseyon J, Sasaki N, Ohler A, Sato T, Fraser H, Johns DC, et al. Evidence against functional heteromultimerization of the KATP channel subunits Kir6.1 and Kir6.2. 275. J Biol Chem. 2000;23:17561–5.CrossRefGoogle Scholar
  46. 46.
    Flagg TP, Kurata HT, Masia R, Caputa G, Magnuson MA, Lefer DJ, et al. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1. Circ Res. 2008;103:1458–65.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Morrissey A, Rosner E, Lanning J, Parachuru L, Chowdhury PD, Han S, et al. Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature. BMC Physiol. 2005;5:1.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Seharaseyon J, Ohler A, Sasaki N, Fraser H, Sato T, Johns DC, et al. Molecular composition of mitochondrial ATP-sensitive potassium channels probed by viral Kir gene transfer. J Mol Cell Cardiol. 2000;32:1923–30.PubMedCrossRefGoogle Scholar
  49. 49.
    Cuong DV, Kim N, Joo H, Youm JB, Chung J-Y, Lee Y, et al. Subunit composition of ATP-sensitive potassium channels in mitochondria of rat hearts. Mitochondrion. 2005;5:121–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Foster DB, Rucker JJ, Marbán E. Is Kir6.1 a subunit of mitoKATP? Biochem Biophys Res Commun. 2008;366:649–56.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Kubo M, Quayle JM, Standen NB. Angiotensin II inhibition of ATP-sensitive K+ currents in rat arterial smooth muscle cells through protein kinase C. J Physiol. 1997;503:480–96.CrossRefGoogle Scholar
  52. 52.
    Sampson LJ, Davies LM, Barrett-Jolley R, Standen NB, Dart C. Angiotensin II-activated protein kinase C targets caveolae to inhibit aortic ATPsensitive potassium channels. Cardiovasc Res. 2007;76:61–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Silvio Rodrigues Marques-Neto
    • 1
  • Emanuelle Baptista Ferraz
    • 1
  • Deivid Carvalho Rodrigues
    • 2
  • Brian Njaine
    • 3
  • Edson Rondinelli
    • 2
  • Antônio Carlos Campos de Carvalho
    • 3
  • Jose Hamilton Matheus Nascimento
    • 1
  1. 1.Laboratório de Eletrofisiologia Cardíaca Antonio Paes de Carvalho, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations