Cardiovascular Drugs and Therapy

, Volume 28, Issue 1, pp 33–43 | Cite as

Rosuvastatin Alleviates Diabetic Cardiomyopathy by Inhibiting NLRP3 Inflammasome and MAPK Pathways in a Type 2 Diabetes Rat Model

  • Beibei Luo
  • Bo Li
  • Wenke Wang
  • Xiangjuan Liu
  • Xiaoman Liu
  • Yanfei Xia
  • Cheng Zhang
  • Yun Zhang
  • Mingxiang Zhang
  • Fengshuang An
ORIGINAL ARTICLE

Abstract

Purpose

Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is important in inflammation of several diabetic complications. However, the potential role of NLRP3 inflammasome in the inflammatory process of diabetic cardiomyopathy (DCM) remains unclear. Although rosuvastatin (RSV) has an anti-inflammatory effect on some cardiovascular diseases, its influence on DCM is incompletely understood. We aimed to explore the effect on and underlying mechanism of RSV in DCM, and whether NLRP3 is a target for RSV.

Methods

Type 2 diabetes was induced in rat. The characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. The expression of factors was determined by real-time RT-PCR and western blot. Eight-week RSV treatment and NLRP3 gene silencing were used to investigate the effect and underlying target of RSV in DCM.

Results

Compared with controls, diabetic rats showed severe metabolic disorder, cardiac dysfunction, fibrosis, disorganized ultrastructure, and excessive activation of thioredoxin interacting/inhibiting protein (TXNIP, p < 0.05), NLRP3 inflammasome (NLRP3, p < 0.01; apoptosis-associated speck-like protein containing a caspase recruitment domain [ASC], p < 0.05; caspase-1, p < 0.01), interleukin-1β (p < 0.01) and mitogen-activated protein kinases (MAPKs, all p < 0.01). Compared with diabetes alone, RSV ameliorated the overexpression of NLRP3 inflammasome (NLRP3, p < 0.05; ASC, p < 0.05; pro-caspase-1 p < 0.05, caspase-1 p20, p < 0.01) and MAPKs (all p < 0.05), which paralleled the cardiac protection of RSV. Silencing NLRP3 ameliorated cardiac remodeling and dysfunction. The beneficial effects of RSV in vehicle-treated rats were all abrogated in NLRP3-silenced rats.

Conclusions

The beneficial effect of RSV on DCM depended on inhibited NLRP3 inflammasome, and correlated with suppression of the MAPKs.

Keywords

DCM Rosuvastatin NLRP3 inflammasome Gene silencing MAPKs 

Notes

Acknowledgments

This study was supported by the National 973 Basic Research program (2009CB521904) and the grant of Natural Science Foundation of Shandong Province (Y2007C074).

Supplementary material

10557_2013_6498_Fig9_ESM.jpg (169 kb)
Supplementary Fig. 1

Rosuvastatin (RSV) alleviated diabetes mellitus (DM)-induced left-ventricular dysfunction. Evaluation of cardiac function parameters; (a) LVEF; (b) FS; (c) E/A; (d) E′/A′. Data are mean ± SEM. n = 6–8 per group. *p < 0.05, **p < 0.01 vs. control; ##p < 0.01 vs. HF; p < 0.05 vs. DM. (JPEG 168 kb)

10557_2013_6498_MOESM1_ESM.tif (5.7 mb)
High Resolution Image (TIFF 5793 kb)
10557_2013_6498_Fig10_ESM.jpg (191 kb)
Supplementary Fig. 2

RSV attenuated pathological changes in the heart of DM rats. (a) Heart weight to body weight; (b) Fibrosis area to total area; (c-d) mRNA expression of collagen I and III and (e) ratio of collagen I to collagen III. Data are mean ± SEM. n = 6–8 per group. *p < 0.05, **p < 0.01 vs. control; #p < 0.05, ##p < 0.01 vs. HF; p < 0.05, ††p < 0.01 vs. DM; bp < 0.05, bbp < 0.01 vs. DM + RSV 10 mg/kg. (JPEG 190 kb)

10557_2013_6498_MOESM2_ESM.tif (1.2 mb)
High Resolution Image (TIFF 1272 kb)
10557_2013_6498_Fig11_ESM.jpg (211 kb)
Supplementary Fig. 3

RSV suppressed the protein levels of TXNIP, NLRP3 inflammasome and IL-1β in DM rats. Quantification of western blot results in Fig. 4. Data are mean ± SEM. n = 7–9 per group. *p < 0.05, **p < 0.01 vs. control; #p < 0.05, ##p < 0.01 vs. HF; p < 0.05, ††p < 0.01 vs. DM; ap < 0.05, aap < 0.01 vs. HF + RSV 10 mg/kg; bbp < 0.01 vs. DM + RSV 10 mg/kg. (JPEG 211 kb)

10557_2013_6498_MOESM3_ESM.tif (5.7 mb)
High Resolution Image (TIFF 5792 kb)
10557_2013_6498_Fig12_ESM.jpg (118 kb)
Supplementary Fig. 4

Transfection of NLRP3-miRNA was effective in myocardial tissue. Bright green points (white arrow) indicate GFP with lentivirus-NLRP3-miRNA or vehicle transfection (scale bar: 50 μm). n = 8–10 per group. (JPEG 118 kb)

10557_2013_6498_MOESM4_ESM.tif (14.2 mb)
High Resolution Image (TIFF 14520 kb)
10557_2013_6498_Fig13_ESM.jpg (156 kb)
Supplementary Fig. 5

RSV improved NLRP3-dependent cardiac dysfunction in DM. Evaluation of LVEF (a), FS (b), E/A (c), E′/A′ (d). Data are mean ± SEM. n = 8–10 per group. *p < 0.05, **p < 0.01 vs. vehicle + control; p < 0.05 vs. vehicle + DM; cp < 0.05 vs. vehicle + DM + RSV 15 mg/kg. (JPEG 156 kb)

10557_2013_6498_MOESM5_ESM.tif (5.7 mb)
High Resolution Image (TIFF 5794 kb)
10557_2013_6498_Fig14_ESM.jpg (262 kb)
Supplementary Fig. 6

RSV improved NLRP3-dependent cardiac disorder in diabetes. (a) Ratio of heart weight to body weight; (b) fibrosis area to total area ratio; (c-d) mRNA expression of collagen I and III, (e) and ratio of collagen I to collagen III. Data are mean ± SEM. n = 6–8 per group. *p < 0.05, **p < 0.01 vs. vehicle + control; p < 0.05, ††p < 0.01 vs. vehicle + DM; cp < 0.05, ccp < 0.01 vs. vehicle + DM + RSV 15 mg/kg. (JPEG 262 kb)

10557_2013_6498_MOESM6_ESM.tif (1.5 mb)
High Resolution Image (TIFF 1562 kb)

References

  1. 1.
    Falcao-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. 2012;17(3):325–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010;11(1):31–9.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Wen HL, Liang ZS, Zhang R, Yang K. Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovasc Diabetol. 2013;12:50.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rajesh M, Batkai S, Kechrid M, Mukhopadhyay P, Lee WS, Horvath B, et al. Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. Diabetes. 2012;61(3):716–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Guleria RS, Singh AB, Nizamutdinova IT, Souslova T, Mohammad AA, Kendall Jr JA, et al. Activation of retinoid receptor-mediated signaling ameliorates diabetes-induced cardiac dysfunction in Zucker diabetic rats. J Mol Cell Cardiol. 2013;57:106–18.PubMedCrossRefGoogle Scholar
  6. 6.
    Lamkanfi M, Kanneganti TD. Nlrp3: an immune sensor of cellular stress and infection. Int J Biochem Cell Biol. 2010;42(6):792–5.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Franchi L, Munoz-Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012;13(4):325–32.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Devi TS, Lee I, Huttemann M, Kumar A, Nantwi KD, Singh LP. TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Exp Diabetes Res. 2012;2012:438238.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Chen K, Zhang J, Zhang W, Yang J, Li K, He Y. ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol. 2013;45(5):932–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Lerner AG, Upton JP, Praveen PV, Ghosh R, Nakagawa Y, Igbaria A, et al. IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 2012;16(2):250–64.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen J, Cha-Molstad H, Szabo A, Shalev A. Diabetes induces and calcium channel blockers prevent cardiac expression of proapoptotic thioredoxin-interacting protein. Am J Physiol Endocrinol Metab. 2009;296(5):E1133–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Van Linthout S, Riad A, Dhayat N, Spillmann F, Du J, Dhayat S, et al. Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia. 2007;50(9):1977–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Gomez-Garre D, Gonzalez-Rubio ML, Munoz-Pacheco P, Caro-Vadillo A, Aragoncillo P, Fernandez-Cruz A. Rosuvastatin added to standard heart failure therapy improves cardiac remodelling in heart failure rats with preserved ejection fraction. Eur J Heart Fail. 2010;12(9):903–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Sharma H, Pathan RA, Kumar V, Javed S, Bhandari U. Anti-apoptotic potential of rosuvastatin pretreatment in murine model of cardiomyopathy. Int J Cardiol. 2011;150(2):193–200.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang WB, Du QJ, Li H, Sun AJ, Qiu ZH, Wu CN, et al. The therapeutic effect of rosuvastatin on cardiac remodelling from hypertrophy to fibrosis during the end-stage hypertension in rats. J Cell Mol Med. 2012;16(9):2227–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Zaitone SA, Abo-Gresha NM. Rosuvastatin promotes angiogenesis and reverses isoproterenol-induced acute myocardial infarction in rats: role of iNOS and VEGF. Eur J Pharmacol. 2012;691(1–3):134–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu X, Li B, Wang W, Zhang C, Zhang M, Zhang Y, et al. Effects of HMG-CoA reductase inhibitor on experimental autoimmune myocarditis. Cardiovasc Drugs Ther. 2012;26(2):121–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Qiang G, Zhang L, Yang X, Xuan Q, Shi L, Zhang H, et al. Effect of valsartan on the pathological progression of hepatic fibrosis in rats with type 2 diabetes. Eur J Pharmacol. 2012;685(1–3):156–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Ti Y, Xie GL, Wang ZH, Bi XL, Ding WY, Wang J, et al. TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes. 2011;60(11):2963–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Cao S, Li B, Yi X, Chang B, Zhu B, Lian Z, et al. Effects of exercise on AMPK signaling and downstream components to PI3K in rat with type 2 diabetes. PLoS One. 2012;7(12):e51709.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Maeda H, Nagai H, Takemura G, Shintani-Ishida K, Komatsu M, Ogura S, et al. Intermittent-hypoxia induced autophagy attenuates contractile dysfunction and myocardial injury in rat heart. Biochim Biophys Acta. 2013;1832(8):1159–66.PubMedCrossRefGoogle Scholar
  24. 24.
    Luo B, Wang F, Li B, Dong Z, Liu X, Zhang C, et al. Association of nucleotide-binding oligomerization domain-like receptor 3 inflammasome and adverse clinical outcomes in patients with idiopathic dilated cardiomyopathy. Clin Chem Lab Med. 2013;51(7):1521–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Li B, Dong Z, Liu H, Xia YF, Liu XM, Luo BB, et al. Serum amyloid A stimulates lipoprotein-associated phospholipase A2 expression in vitro and in vivo. Atherosclerosis. 2013;228(2):370–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu JW, Liu D, Cui KZ, Xu Y, Li YB, Sun YM, et al. Recent advances in understanding the biochemical and molecular mechanism of diabetic cardiomyopathy. Biochem Biophys Res Commun. 2012;427(3):441–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Moberly SP, Mather KJ, Berwick ZC, Owen MK, Goodwill AG, Casalini ED, et al. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. Basic Res Cardiol. 2013;108(4):365.PubMedCrossRefGoogle Scholar
  28. 28.
    Bugger H, Riehle C, Jaishy B, Wende AR, Tuinei J, Chen D, et al. Genetic loss of insulin receptors worsens cardiac efficiency in diabetes. J Mol Cell Cardiol. 2012;52(5):1019–26.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Bell DS. Diabetes: a cardiac condition manifesting as hyperglycemia. Endocr Pract. 2008;14(7):924–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38(6):1154–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Grant RW, Dixit VD. Mechanisms of disease: inflammasome activation and the development of type 2 diabetes. Front Immunol. 2013;4:50.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Sun S, Xia S, Ji Y, Kersten S, Qi L. The ATP-P2X7 signaling axis is dispensable for obesity-associated inflammasome activation in adipose tissue. Diabetes. 2012;61(6):1471–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang W, Wang C, Ding XQ, Pan Y, Gu TT, Wang MX, et al. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. Br J Pharmacol. 2013;169(6):1352–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Hao C, Xie Y, Peng M, Ma L, Zhou Y, Zhang Y et al. Inhibition of connective tissue growth factor suppresses hepatic stellate cell activation in vitro and prevents liver fibrosis in vivo. Clin Exp Med. 2013; in pressGoogle Scholar
  35. 35.
    Cao J, Sodhi K, Inoue K, Quilley J, Rezzani R, Rodella L, et al. Lentiviral-human heme oxygenase targeting endothelium improved vascular function in angiotensin II animal model of hypertension. Hum Gene Ther. 2011;22(3):271–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Schmitt F, Remy S, Dariel A, Flageul M, Pichard V, Boni S, et al. Lentiviral vectors that express UGT1A1 in liver and contain miR-142 target sequences normalize hyperbilirubinemia in Gunn rats. Gastroenterology. 2010;139(3):999–1007.PubMedCrossRefGoogle Scholar
  37. 37.
    Baraka A, Mikhail M, Guemei A, El Ghotny S. Effect of targeting mitogen-activated protein kinase on cardiac remodeling in rats. J Cardiovasc Pharmacol Ther. 2009;14(4):339–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Tian XY, Wong WT, Xu A, Chen ZY, Lu Y, Liu LM, et al. Rosuvastatin improves endothelial function in db/db mice: role of angiotensin II type 1 receptors and oxidative stress. Br J Pharmacol. 2011;164(2b):598–606.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Beibei Luo
    • 1
  • Bo Li
    • 1
  • Wenke Wang
    • 1
  • Xiangjuan Liu
    • 1
  • Xiaoman Liu
    • 1
  • Yanfei Xia
    • 1
  • Cheng Zhang
    • 1
  • Yun Zhang
    • 1
  • Mingxiang Zhang
    • 1
  • Fengshuang An
    • 1
  1. 1.The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of HealthShandong University Qilu HospitalJinanPeople’s Republic of China

Personalised recommendations