Cardiovascular Drugs and Therapy

, Volume 27, Issue 3, pp 211–219

Nitric Oxide-Donating Atorvastatin Attenuates Neutrophil Recruitment During Vascular Inflammation Independent of Changes in Plasma Cholesterol

  • Roberta Baetta
  • Agnese Granata
  • Daniela Miglietta
  • Francesca Oliva
  • Lorenzo Arnaboldi
  • Alessandra Bonomo
  • Nicola Ferri
  • Ennio Ongini
  • Stefano Bellosta
  • Alberto Corsini



Polymorphonuclear neutrophils, the first leukocytes to infiltrate the inflamed tissue, can make important contributions to vascular inflammatory processes driving the development of atherosclerosis. We herein investigated the effects of atorvastatin and NCX 6560 (a nitric oxide (NO)-donating atorvastatin derivative that has completed a successful phase 1b study) on neutrophilic inflammation in carotid arteries of normocholesterolemic rabbits subjected to perivascular collar placement.


Atorvastatin or NCX 6560 were administered orally (5 mg/kg/day or equimolar dose) to New Zealand White rabbits for 6 days, followed by collar implantation 1 h after the last dose. Twenty-four hours later carotids were harvested for neutrophil quantification by immunostaining.


Treatment with NCX 6560 was associated with a lower neutrophil infiltration (−39.5 %), while atorvastatin did not affect neutrophil content. The result was independent of effects on plasma cholesterol or differences in atorvastatin bioavailability, which suggests an important role of NO-related mechanisms in mediating this effect. Consistent with these in vivo findings, in vitro studies showed that NCX 6560, as compared to atorvastatin, had greater inhibitory activity on processes involved in neutrophil recruitment, such as migration in response to IL-8 and IL-8 release by endothelial cells and by neutrophils themselves. Pretreatment with NCX 6560, but not with atorvastatin, reduced the ability of neutrophil supernatants to promote monocyte chemotaxis, a well-known pro-inflammatory activity of neutrophils.


Experimental data suggest a potential role of NO-releasing statins in the control of the vascular inflammatory process mediated by polymorphonuclear neutrophils.


Atherosclerosis Inflammation Neutrophil (polymorphonuclear leukocyte [PMN]) Leukocytes Nitric oxide Statins NO-statins NCX-6560 

Supplementary material

10557_2013_6445_MOESM1_ESM.docx (107 kb)
ESM 1(DOCX 106 kb)


  1. 1.
    World Health Organization (WHO). Cardiovascular diseases (CVDs). Fact sheet N.°317, September 2011.
  2. 2.
    Allender S, Scarborough P, Peto V, et al. European cardiovascular disease statistics 2008 ed. EH Network; 2008Google Scholar
  3. 3.
    Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17:1410–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Tedgui A. Focus on inflammation. Arterioscler Thromb Vasc Biol. 2011;31:958–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Charo IF, Taub R. Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat Rev Drug Discov. 2011;10:365–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Zernecke A, Bot I, Djalali-Talab Y, et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res. 2008;102:209–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Drechsler M, Megens RT, van Zandvoort M, Weber C, Soehnlein O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation. 2010;122:1837–45.PubMedCrossRefGoogle Scholar
  9. 9.
    Baetta R, Corsini A. Role of polymorphonuclear neutrophils in atherosclerosis: Current state and future perspectives. Atherosclerosis. 2010;210:1–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Murphy AJ, Woollard KJ, Suhartoyo A, et al. Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation. Arterioscler Thromb Vasc Biol. 2011;31:1333–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Nicholls SJ, Dusting GJ, Cutri B, et al. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation. 2005;111:1543–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Puranik R, Bao S, Nobecourt E, et al. Low dose apolipoprotein A-I rescues carotid arteries from inflammation in vivo. Atherosclerosis. 2008;196:240–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Wu BJ, Yan L, Charlton F, et al. Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Arterioscler Thromb Vasc Biol. 2010;30:968–75.PubMedCrossRefGoogle Scholar
  14. 14.
    Murad F. Shattuck Lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med. 2006;355:2003–11.PubMedCrossRefGoogle Scholar
  15. 15.
    Pepine CJ. The impact of nitric oxide in cardiovascular medicine: untapped potential utility. Am J Med. 2009;122:S10–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Maskrey BH, Megson IL, Whitfield PD, Rossi AG. Mechanisms of resolution of inflammation: a focus on cardiovascular disease. Arterioscler Thromb Vasc Biol. 2011;31:1001–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Bolla M, Almirante N, Benedini F. Therapeutic potential of nitrate esters of commonly used drugs. Curr Top Med Chem. 2005;5:707–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Ongini E, Impagnatiello F, Bonazzi A, et al. Nitric oxide (NO)-releasing statin derivatives, a class of drugs showing enhanced antiproliferative and antiinflammatory properties. Proc Natl Acad Sci U S A. 2004;101:8497–502.PubMedCrossRefGoogle Scholar
  19. 19.
    Rossiello MR, Momi S, Caracchini R, et al. A novel nitric oxide-releasing statin derivative exerts an antiplatelet/antithrombotic activity and inhibits tissue factor expression. J Thromb Haemost. 2005;3:2554–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Momi S, Impagnatiello F, Guzzetta M, et al. NCX 6560, a nitric oxide-releasing derivative of atorvastatin, inhibits cholesterol biosynthesis and shows anti-inflammatory and anti-thrombotic properties. Eur J Pharmacol. 2007;570:115–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Emanueli C, Monopoli A, Kraenkel N, et al. Nitropravastatin stimulates reparative neovascularisation and improves recovery from limb Ischaemia in type-1 diabetic mice. Br J Pharmacol. 2007;150:873–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Dever G, Spickett CM, Kennedy S, et al. The nitric oxide-donating pravastatin derivative, NCX 6550 [(1S-[1alpha(betaS*, deltaS*), 2alpha, 6alpha, 8beta-(R*), 8a alpha]]-1,2,6,7,8,8a-Hexahydro-beta, delta, 6-trihydroxy-2-methyl-8-(2-methyl-1-oxobutoxy)-1-naphtalene-heptanoic acid 4-(nitrooxy)butyl ester)], reduces splenocyte adhesion and reactive oxygen species generation in normal and atherosclerotic mice. J Pharmacol Exp Ther. 2007;320:419–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Amoruso A, Bardelli C, Fresu LG, et al. The nitric oxide-donating pravastatin, NCX 6550, inhibits cytokine release and NF-kappaB activation while enhancing PPARgamma expression in human monocyte/macrophages. Pharmacol Res. 2010;62:391–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Mangialardi G, Monopoli A, Ongini E, et al. Nitric oxide-donating statin improves multiple functions of circulating angiogenic cells. Br J Pharmacol. 2011;164:570–83.PubMedGoogle Scholar
  25. 25.
    Momi S, Monopoli A, Alberti PF, et al. Nitric oxide enhances the anti-inflammatory and anti-atherogenic activity of atorvastatin in a mouse model of accelerated atherosclerosis. Cardiovasc Res. 2012;94:428–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Djian JP, Maucci R, Guilmin L, Ferreira T, Pfister P. NCX 6560, a Novel Nitric Oxyde Donating Atorvastatin With a Promising Safety and Efficacy Profile: A Randomised. Double Blind Placebo and Active Control Study. Circulation. 2010;122:A14267.Google Scholar
  27. 27.
    Donetti E, Baetta R, Comparato C, et al. Polymorphonuclear leukocyte-myocyte interaction: an early event in collar-induced rabbit carotid intimal thickening. Exp Cell Res. 2002;274:197–206.PubMedCrossRefGoogle Scholar
  28. 28.
    Baetta R, Camera M, Comparato C, et al. Fluvastatin reduces tissue factor expression and macrophage accumulation in carotid lesions of cholesterol-fed rabbits in the absence of lipid lowering. Arterioscler Thromb Vasc Biol. 2002;22:692–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52:2745–56.PubMedCrossRefGoogle Scholar
  30. 30.
    Arnaboldi L, Baetta R, Ferri N, et al. Inhibition of smooth muscle cell migration and proliferation by statins. Immunology, Endocrine and Metabolic Agents - Medicinal Chemistry. 2008;8:122–40.Google Scholar
  31. 31.
    Lea AP, McTavish D. Atorvastatin. A review of its pharmacology and therapeutic potential in the management of hyperlipidaemias. Drugs. 1997;53:828–47.PubMedCrossRefGoogle Scholar
  32. 32.
    Stern RH, Yang BB, Hounslow NJ, et al. Pharmacodynamics and pharmacokinetic-pharmacodynamic relationships of atorvastatin, an HMG-CoA reductase inhibitor. J Clin Pharmacol. 2000;40:616–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Bevilacqua MP. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol. 1993;11:767–804.PubMedCrossRefGoogle Scholar
  34. 34.
    Kasama T, Strieter RM, Standiford TJ, Burdick MD, Kunkel SL. Expression and regulation of human neutrophil-derived macrophage inflammatory protein 1 alpha. J Exp Med. 1993;178:63–72.PubMedCrossRefGoogle Scholar
  35. 35.
    Soehnlein O, Zernecke A, Eriksson EE, et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood. 2008;112:1461–71.PubMedCrossRefGoogle Scholar
  36. 36.
    Pruefer D, Scalia R, Lefer AM. Simvastatin inhibits leukocyte-endothelial cell interactions and protects against inflammatory processes in normocholesterolemic rats. Arterioscler Thromb Vasc Biol. 1999;19:2894–900.PubMedCrossRefGoogle Scholar
  37. 37.
    Pruefer D, Makowski J, Schnell M, et al. Simvastatin inhibits inflammatory properties of Staphylococcus aureus alpha-toxin. Circulation. 2002;106:2104–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Scalia R, Gooszen ME, Jones SP, et al. Simvastatin exerts both anti-inflammatory and cardioprotective effects in apolipoprotein E-deficient mice. Circulation. 2001;103:2598–603.PubMedCrossRefGoogle Scholar
  39. 39.
    Nakamura K, Sasaki T, Cheng XW, et al. Statin prevents plaque disruption in apoE-knockout mouse model through pleiotropic effect on acute inflammation. Atherosclerosis. 2009;206:355–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Stenmark KR, Yeager ME, El Kasmi KC, et al. The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol. 2013; vol. 75. epub 12/12/2012Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Roberta Baetta
    • 1
    • 3
    • 4
  • Agnese Granata
    • 1
  • Daniela Miglietta
    • 2
  • Francesca Oliva
    • 2
  • Lorenzo Arnaboldi
    • 1
  • Alessandra Bonomo
    • 1
  • Nicola Ferri
    • 1
  • Ennio Ongini
    • 2
  • Stefano Bellosta
    • 1
  • Alberto Corsini
    • 1
  1. 1.Dipartimento di Scienze Farmacologiche e BiomolecolariUniversity of MilanMilanItaly
  2. 2.Nicox Research InstituteBressoItaly
  3. 3.Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanItaly
  4. 4.Laboratorio di Biologia Cellulare e Biochimica dell’AterotrombosiCentro Cardiologico MonzinoMilanItaly

Personalised recommendations