Cardiovascular Drugs and Therapy

, Volume 25, Issue 4, pp 349–362

Mesenchymal Stem Cells for Cardiovascular Regeneration

Review Article

Abstract

Despite recent studies suggesting that the heart has instrinsic mechanisms of self-regeneration following myocardial infarction, it cannot regenerate itself to an optimal level. Mesenchymal stem cells (MSCs) are currently being investigated for regeneration of mesenchyme-derived tissues, such as bone, cartilage and tendon. In vitro evidence suggests that MSCs can also differentiate into cardiomyogenic and vasculogenic lineages, offering another cell source for cardiovascular regeneration. In vivo, MSCs may contribute to the re-growth and protection of vasculature and cardiomyocytes, mediated by paracrine actions, and/or persist within the myocardium in a differentiated state; although proof of cardiomyocytic phenotype and functional integration remains elusive. Herein, we review the evidence of MSCs as a cell source for cardiovascular regeneration, as well as their limitations that may prevent them from being effectively used in the clinic.

Key words

Cardiovascular Regeneration Cell Therapy Mesenchymal Stem Cell Neovascularization 

References

  1. 1.
    Leor J, Prentice H, Sartorelli V, Quinones MJ, Patterson M, Kedes LK, et al. Gene transfer and cell transplant: an experimental approach to repair a ‘broken heart’. Cardiovasc Res. 1997;35:431–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Mayer NJ, Rubin SA. Molecular and cellular prospects for repair, augmentation, and replacement of the failing heart. Am Heart J. 1997;134:577–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Eng J Med. 2001;344:1750–7.CrossRefGoogle Scholar
  4. 4.
    Kajstura J, Urbanek K, Perl S, Hosoda T, Zheng H, Ogorek B, et al. Cardiomyogenesis in the adult human heart. Circ Res. 2010;107:305–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Eng J Med. 2007;357:1121–35.CrossRefGoogle Scholar
  6. 6.
    Frangogiannis NG. The immune system and cardiac repair. Pharmacol Res. 2008;58:88–111.PubMedCrossRefGoogle Scholar
  7. 7.
    Apstein CS, Lorell BH. The physiological basis of left ventricular diastolic dysfunction. J Card Surg. 1988;3:475–85.PubMedCrossRefGoogle Scholar
  8. 8.
    Sun Y. Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res. 2009;81:482–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Yoder MC, Ingram DA. The definition of EPCs and other bone marrow cells contributing to neoangiogenesis and tumor growth: is there common ground for understanding the roles of numerous marrow-derived cells in the neoangiogenic process? Biochimi Biophys Acta. 2009;1796:50–4.Google Scholar
  10. 10.
    Yoder MC, Ingram DA. Endothelial progenitor cell: ongoing controversy for defining these cells and their role in neoangiogenesis in the murine system. Curr Opin Hematol. 2009;16:269–73.PubMedCrossRefGoogle Scholar
  11. 11.
    Zaruba MM, Franz WM. Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy. Expert Opin Biol Ther. 2010;10:321–35.PubMedCrossRefGoogle Scholar
  12. 12.
    Sellke FW, Laham R, Suuronen EJ, Ruel M. Angiogenesis for the treatment of inoperable coronary disease: the future. Semin Cardiothorac Vasc Anesth. 2006;10:184–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362:697–703.PubMedCrossRefGoogle Scholar
  14. 14.
    Ma J, Ge J, Zhang S, Sun A, Shen J, Chen L, et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol. 2005;100:217–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103:1204–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Fuchs S, Satler LF, Kornowski R, Okubagzi P, Weisz G, Baffour R, et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol. 2003;41:1721–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107:2294–302.PubMedCrossRefGoogle Scholar
  18. 18.
    Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet. 2003;361:47–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428:664–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428:668–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS Lett. 2002;530:239–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, et al. Human cardiac stem cells. Proc Natl Acad Sci U S A. 2007;104:14068–73.PubMedCrossRefGoogle Scholar
  25. 25.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102.PubMedCrossRefGoogle Scholar
  26. 26.
    Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation. 2010;121:293–305.PubMedCrossRefGoogle Scholar
  27. 27.
    Hosoda T, D’Amario D, Cabral-Da-Silva MC, Zheng H, Padin-Iruegas ME, Ogorek B, et al. Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci U S A. 2009;106:17169–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Reffelmann T, Konemann S, Kloner RA. Promise of blood- and bone marrow-derived stem cell transplantation for functional cardiac repair: putting it in perspective with existing therapy. J Am Coll Cardiol. 2009;53:305–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Boudoulas KD, Hatzopoulos AK. Cardiac repair and regeneration: the Rubik’s cube of cell therapy for heart disease. Disease models & mechanisms. 2009;2:344–58.CrossRefGoogle Scholar
  30. 30.
    Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med. 2001;226:507–20.Google Scholar
  32. 32.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61:364–70.PubMedCrossRefGoogle Scholar
  33. 33.
    Vogel W, Grunebach F, Messam CA, Kanz L, Brugger W, Buhring HJ. Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. Haematologica. 2003;88:126–33.PubMedGoogle Scholar
  34. 34.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164:247–56.PubMedCrossRefGoogle Scholar
  35. 35.
    Alhadlaq A, Mao JJ. Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev. 2004;13:436–48.PubMedCrossRefGoogle Scholar
  36. 36.
    Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;9:9–20.CrossRefGoogle Scholar
  37. 37.
    Zhu H, Guo ZK, Jiang XX, Li H, Wang XY, Yao HY, et al. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc. 2010;5:550–60.PubMedCrossRefGoogle Scholar
  38. 38.
    Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992;13:69–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem. 2003;89:1235–49.PubMedCrossRefGoogle Scholar
  41. 41.
    Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A. 2000;97:3213–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells. 2002;20:530–41.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith JR, Pochampally R, Perry A, Hsu SC, Prockop DJ. Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells. 2004;22:823–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Zimmet JM, Hare JM. Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res Cardiol. 2005;100:471–81.PubMedCrossRefGoogle Scholar
  45. 45.
    Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm. 2005 26;2:8.Google Scholar
  46. 46.
    Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med. 2007;262:509–25.PubMedCrossRefGoogle Scholar
  47. 47.
    Dazzi F, Marelli-Berg FM. Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells. Eur J Immunol. 2008;38:1479–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75:389–97.PubMedCrossRefGoogle Scholar
  50. 50.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57:11–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30:42–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Fukuda K. Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cells. Congenit Anom. 2002;42:1–9.CrossRefGoogle Scholar
  54. 54.
    Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103:697–705.PubMedCrossRefGoogle Scholar
  55. 55.
    Tomita S, Nakatani T, Fukuhara S, Morisaki T, Yutani C, Kitamura S. Bone marrow stromal cells contract synchronously with cardiomyocytes in a coculture system. Jpn J Thorac Cardiovasc Surg. 2002;50:321–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Hakuno D, Fukuda K, Makino S, Konishi F, Tomita Y, Manabe T, et al. Bone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors. Circulation. 2002;105:380–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Liu Y, Song J, Liu W, Wan Y, Chen X, Hu C. Growth and differentiation of rat bone marrow stromal cells: does 5-azacytidine trigger their cardiomyogenic differentiation? Cardiovas Res. 2003;58:460–8.CrossRefGoogle Scholar
  58. 58.
    Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008;95:137–48.PubMedCrossRefGoogle Scholar
  59. 59.
    Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell. 2001;105:829–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979;17:771–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Bel A, Messas E, Agbulut O, Richard P, Samuel JL, Bruneval P, et al. Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation. 2003;108:II247–52.PubMedCrossRefGoogle Scholar
  62. 62.
    Rosca AM, Burlacu A. The effect of 5-azacytidine: Evidence for alteration of the multipotent ability of mesenchymal stem cells. Stem Cells Dev. 2011;Mar 9:[e-pub ahead of print].Google Scholar
  63. 63.
    Shim WS, Jiang S, Wong P, Tan J, Chua YL, Tan YS, et al. Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun. 2004;324:481–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22:377–84.PubMedCrossRefGoogle Scholar
  65. 65.
    Liu JW, Dunoyer-Geindre S, Serre-Beinier V, Mai G, Lambert JF, Fish RJ, et al. Characterization of endothelial-like cells derived from human mesenchymal stem cells. J Thromb Haemost. 2007;5:826–34.PubMedCrossRefGoogle Scholar
  66. 66.
    Lozito TP, Kuo CK, Taboas JM, Tuan RS. Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. J Cell Biochem. 2009;107:714–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Lozito TP, Taboas JM, Kuo CK, Tuan RS. Mesenchymal stem cell modification of endothelial matrix regulates their vascular differentiation. J Cell Biochem. 2009;107:706–13.PubMedCrossRefGoogle Scholar
  68. 68.
    Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res. 2008;103:194–202.PubMedCrossRefGoogle Scholar
  69. 69.
    da Silva Meirelles L, Sand TT, Harman RJ, Lennon DP, Caplan AI. MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A. 2009;15:221–9.PubMedCrossRefGoogle Scholar
  70. 70.
    da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26:2287–99.PubMedCrossRefGoogle Scholar
  71. 71.
    Sorrell JM, Baber MA, Caplan AI. Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A. 2009;15:1751–61.PubMedCrossRefGoogle Scholar
  72. 72.
    Ghajar CM, Kachgal S, Kniazeva E, Mori H, Costes SV, George SC, et al. Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp Cell Res. 2010;316:813–25.PubMedCrossRefGoogle Scholar
  73. 73.
    Sadat S, Gehmert S, Song YH, Yen Y, Bai X, Gaiser S, et al. The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun. 2007;363:674–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Liu K, Chi L, Guo L, Liu X, Luo C, Zhang S, et al. The interactions between brain microvascular endothelial cells and mesenchymal stem cells under hypoxic conditions. Microvasc Res. 2008;75:59–67.PubMedCrossRefGoogle Scholar
  75. 75.
    Trkov S, Eng G, Di Liddo R, Parnigotto PP, Vunjak-Novakovic G. Micropatterned three-dimensional hydrogel system to study human endothelial-mesenchymal stem cell interactions. J Tissue Eng Regen Med. 2010;4:205–15.PubMedCrossRefGoogle Scholar
  76. 76.
    Xu J, Liu X, Chen J, Zacharek A, Cui X, Savant-Bhonsale S, et al. Cell-cell interaction promotes rat marrow stromal cell differentiation into endothelial cell via activation of TACE/TNF-alpha signaling. Cell Transplant. 2010;19:43–53.PubMedCrossRefGoogle Scholar
  77. 77.
    Segers VF, Van Riet I, Andries LJ, Lemmens K, Demolder MJ, De Becker AJ, et al. Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. Am J Physiol. 2006;290:H1370–7.Google Scholar
  78. 78.
    Garzoni LR, Rossi MI, de Barros AP, Guarani V, Keramidas M, Balottin LB, et al. Dissecting coronary angiogenesis: 3D co-culture of cardiomyocytes with endothelial or mesenchymal cells. Exp Cell Res. 2009;315:3406–18.PubMedCrossRefGoogle Scholar
  79. 79.
    He XQ, Chen MS, Li SH, Liu SM, Zhong Y, McDonald Kinkaid HY, et al. Co-culture with cardiomyocytes enhanced the myogenic conversion of mesenchymal stromal cells in a dose-dependent manner. Mol Cell Biochem. 2010;339:89–98.PubMedCrossRefGoogle Scholar
  80. 80.
    Yoon J, Shim WJ, Ro YM, Lim DS. Transdifferentiation of mesenchymal stem cells into cardiomyocytes by direct cell-to-cell contact with neonatal cardiomyocyte but not adult cardiomyocytes. Ann Hematol. 2005;84:715–21.PubMedCrossRefGoogle Scholar
  81. 81.
    Gallo MP, Ramella R, Alloatti G, Penna C, Pagliaro P, Marcantoni A, et al. Limited plasticity of mesenchymal stem cells cocultured with adult cardiomyocytes. J Cell Biochem. 2007;100:86–99.PubMedCrossRefGoogle Scholar
  82. 82.
    Li X, Yu X, Lin Q, Deng C, Shan Z, Yang M, et al. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol. 2007;42:295–303.PubMedCrossRefGoogle Scholar
  83. 83.
    Rose RA, Jiang H, Wang X, Helke S, Tsoporis JN, Gong N, et al. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells. 2008;26:2884–92.PubMedCrossRefGoogle Scholar
  84. 84.
    Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006;12:459–65.PubMedCrossRefGoogle Scholar
  85. 85.
    Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther. 2006;14:840–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Fazel S, Chen L, Weisel RD, Angoulvant D, Seneviratne C, Fazel A, et al. Cell transplantation preserves cardiac function after infarction by infarct stabilization: augmentation by stem cell factor. J Thorac Cardiovasc Surg. 2005;130:1310.PubMedCrossRefGoogle Scholar
  87. 87.
    Dai W, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation. 2005;112:214–23.PubMedCrossRefGoogle Scholar
  88. 88.
    Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A. 2005;102:11474–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107:913–22.PubMedCrossRefGoogle Scholar
  90. 90.
    Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005;111:150–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Li Q, Turdi S, Thomas DP, Zhou T, Ren J. Intra-myocardial delivery of mesenchymal stem cells ameliorates left ventricular and cardiomyocyte contractile dysfunction following myocardial infarction. Tox Lett. 2010;195:119–26.CrossRefGoogle Scholar
  92. 92.
    Zhou Y, Wang S, Yu Z, Hoyt Jr RF, Sachdev V, Vincent P, et al. Direct injection of autologous mesenchymal stromal cells improves myocardial function. Biochem Biophys Res Commun. 2009;390:902–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Tang J, Xie Q, Pan G, Wang J, Wang M. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg. 2006;30:353–61.PubMedCrossRefGoogle Scholar
  94. 94.
    Kudo M, Wang Y, Wani MA, Xu M, Ayub A, Ashraf M. Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart. J Mol Cell Cardiol. 2003;35:1113–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002;73:1919–25.PubMedCrossRefGoogle Scholar
  96. 96.
    Zeng L, Hu Q, Wang X, Mansoor A, Lee J, Feygin J, et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation. 2007;115:1866–75.PubMedCrossRefGoogle Scholar
  97. 97.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105:93–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Sakai T, Li RK, Weisel RD, Mickle DA, Kim EJ, Tomita S, et al. Autologous heart cell transplantation improves cardiac function after myocardial injury. Ann Thorac Surg. 1999;68:2074–80.PubMedCrossRefGoogle Scholar
  99. 99.
    Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol. 2011;50:280–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Nakanishi C, Yamagishi M, Yamahara K, Hagino I, Mori H, Sawa Y, et al. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun. 2008;374:11–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Angoulvant D, Ivanes F, Ferrera R, Matthews PG, Nataf S, Ovize M. Mesenchymal stem cell conditioned media attenuates in vitro and ex vivo myocardial reperfusion injury. J Heart Lung Transplant. 2011;30:95–102.PubMedCrossRefGoogle Scholar
  102. 102.
    Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20:661–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Shabbir A, Zisa D, Suzuki G, Lee T. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol. 2009;296:H1888–97.Google Scholar
  104. 104.
    Zhang M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB, et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007;21:3197–207.PubMedCrossRefGoogle Scholar
  105. 105.
    Li L, Zhang S, Zhang Y, Yu B, Xu Y, Guan Z. Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep. 2009;36:725–31.PubMedCrossRefGoogle Scholar
  106. 106.
    Wang JS, Shum-Tim D, Chedrawy E, Chiu RC. The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg. 2001;122:699–705.PubMedCrossRefGoogle Scholar
  107. 107.
    Cselenyak A, Pankotai E, Horvath EM, Kiss L, Lacza Z. Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol. 2010;11:29.PubMedCrossRefGoogle Scholar
  108. 108.
    Li Z, Guo J, Chang Q, Zhang A. Paracrine role for mesenchymal stem cells in acute myocardial infarction. Biol Pharm Bull. 2009;32:1343–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Angoulvant D, Ivanes F, Ferrera R, Matthews PG, Nataf S, Ovize M. Mesenchymal stem cell conditioned media attenuates in vitro and ex vivo myocardial reperfusion injury. J Heart Lung Transplant. 2011;30:95–102.PubMedCrossRefGoogle Scholar
  110. 110.
    Nguyen BK, Maltais S, Perrault LP, Tanguay JF, Tardif JC, Stevens LM, et al. Improved function and myocardial repair of infarcted heart by intracoronary injection of mesenchymal stem cell-derived growth factors. J Cardiovasc Transl Res. 2010;3:547–58.PubMedCrossRefGoogle Scholar
  111. 111.
    Lu G, Haider HK, Jiang S, Ashraf M. Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation. 2009;119:2587–96.PubMedCrossRefGoogle Scholar
  112. 112.
    Khan M, Akhtar S, Mohsin S, NK S, Riazuddin S. Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev. 2011;20:67–75.PubMedCrossRefGoogle Scholar
  113. 113.
    Hahn JY, Cho HJ, Kang HJ, Kim TS, Kim MH, Chung JH, et al. Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J Am Coll Cardiol. 2008;51:933–43.PubMedCrossRefGoogle Scholar
  114. 114.
    Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res. 2008;77:134–42.PubMedCrossRefGoogle Scholar
  115. 115.
    Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9:1195–201.PubMedCrossRefGoogle Scholar
  116. 116.
    Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh KR, et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2005;25:1168–73.PubMedCrossRefGoogle Scholar
  117. 117.
    Yang J, Zhou W, Zheng W, Ma Y, Lin L, Tang T, et al. Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology. 2007;107:17–29.PubMedCrossRefGoogle Scholar
  118. 118.
    Gao F, He T, Wang H, Yu S, Yi D, Liu W, et al. A promising strategy for the treatment of ischemic heart disease: Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol. 2007;23:891–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, et al. Spontaneous human adult stem cell transformation. Cancer Res. 2005;65:3035–9.PubMedGoogle Scholar
  120. 120.
    Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 2007;25:371–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood. 2007;110:1362–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Wolf D, Reinhard A, Seckinger A, Gross L, Katus HA, Hansen A. Regenerative capacity of intravenous autologous, allogeneic and human mesenchymal stem cells in the infarcted pig myocardium-complicated by myocardial tumor formation. Scand Cardiovasc J. 2009;43:39–45.PubMedCrossRefGoogle Scholar
  123. 123.
    Penicka M, Widimsky P, Kobylka P, Kozak T, Lang O. Images in cardiovascular medicine. Early tissue distribution of bone marrow mononuclear cells after transcoronary transplantation in a patient with acute myocardial infarction. Circulation. 2005;112:e63–5.PubMedCrossRefGoogle Scholar
  124. 124.
    Muller-Ehmsen J, Krausgrill B, Burst V, Schenk K, Neisen UC, Fries JW, et al. Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol. 2006;41:876–84.PubMedCrossRefGoogle Scholar
  125. 125.
    Zhang Y, Thorn S, DaSilva JN, Lamoureux M, DeKemp RA, Beanlands RS, et al. Collagen-based matrices improve the delivery of transplanted circulating progenitor cells: development and demonstration by ex vivo radionuclide cell labeling and in vivo tracking with positron-emission tomography. Circ Cardiovasc Imaging. 2008;1:197–204.PubMedCrossRefGoogle Scholar
  126. 126.
    Silva EA, Kim ES, Kong HJ, Mooney DJ. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci U S A. 2008;105:14347–52.PubMedCrossRefGoogle Scholar
  127. 127.
    Suuronen EJ, Veinot JP, Wong S, Kapila V, Price J, Griffith M, et al. Tissue-engineered injectable collagen-based matrices for improved cell delivery and vascularization of ischemic tissue using CD133+ progenitors expanded from the peripheral blood. Circulation. 2006;114:I138–44.PubMedCrossRefGoogle Scholar
  128. 128.
    Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation. 2006;113:1832–41.PubMedCrossRefGoogle Scholar
  129. 129.
    Chen M, Fan ZC, Liu XJ, Deng JL, Zhang L, Rao L, et al. Effects of autologous stem cell transplantation on ventricular electrophysiology in doxorubicin-induced heart failure. Cell Biol Int. 2006;30:576–82.PubMedCrossRefGoogle Scholar
  130. 130.
    Price MJ, Chou CC, Frantzen M, Miyamoto T, Kar S, Lee S, et al. Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol. 2006;111:231–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Mills WR, Mal N, Kiedrowski MJ, Unger R, Forudi F, Popovic ZB, et al. Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol. 2007;42:304–14.PubMedCrossRefGoogle Scholar
  132. 132.
    Krause K, Schneider C, Lange C, Kokturk B, Boczor S, Geidel S, et al. Endocardial electrogram analysis after intramyocardial injection of mesenchymal stem cells in the chronic ischemic myocardium. Pacing Clin Electrophysiol. 2009;32:1319–28.PubMedCrossRefGoogle Scholar
  133. 133.
    Viswanathan C, Davidson Y, Cooper K, Tipnis S, Pujari G, Kurian VM. Tansplantation of autologous bone marrow derived mesenchymal stem cells trans-epicardially in patients undergoing coronary bypass surgery. Indian Heart J. 2010;62:43–8.PubMedGoogle Scholar
  134. 134.
    Wang D, Jin Y, Ding C, Zhang F, Chen M, Yang B, et al. Intracoronary delivery of mesenchymal stem cells reduces proarrhythmogenic risks in swine with myocardial infarction. Ir J Med Sci. 2011;180:379–85.PubMedCrossRefGoogle Scholar
  135. 135.
    Hu X, Wang J, Chen J, Luo R, He A, Xie X, et al. Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. Eur J Cardiothorac Surg. 2007;31:438–43.PubMedCrossRefGoogle Scholar
  136. 136.
    Swijnenburg RJ, Govaert JA, van der Bogt KE, Pearl JI, Huang M, Stein W, et al. Timing of bone marrow cell delivery has minimal effects on cell viability and cardiac recovery after myocardial infarction. Circ Cardiovasc Imaging. 2010;3:77–85.PubMedCrossRefGoogle Scholar
  137. 137.
    Copland IB, Galipeau J. Death and inflammation following somatic cell transplantation. Semin Immunopathol. 2011;May 1:[e-pub ahead of print].Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Drew Kuraitis
    • 1
    • 2
  • Marc Ruel
    • 1
    • 2
  • Erik J. Suuronen
    • 1
    • 2
  1. 1.Division of Cardiac SurgeryUniversity of Ottawa Heart InstituteOttawaCanada
  2. 2.Department of Cellular & Molecular MedicineUniversity of OttawaOttawaCanada

Personalised recommendations