Cardiovascular Drugs and Therapy

, Volume 25, Issue 3, pp 251–258 | Cite as

Polymorphisms of the Beta Adrenergic Receptor Predict Left Ventricular Remodeling Following Acute Myocardial Infarction

  • Rhondalyn C. McLean
  • Glenn A. Hirsch
  • Lewis C. Becker
  • Laura Kasch-Semenza
  • Gary Gerstenblith
  • Steven P. Schulman
Article

Abstract

Purpose

Prior studies demonstrate an association between specific beta-adrenergic receptor (β-AR) polymorphisms and clinical outcomes in patients with chronic heart failure and following acute coronary syndromes. The underlying mechanism may be due to differences in left ventricular remodeling. This study was undertaken to explore the relationship between LV remodeling after myocardial infarction and polymorphisms in the cardiac β1-AR and β2-AR genes.

Methods

After first ST-segment elevation myocardial infarction (STEMI), 122 patients on chronic β1 receptor antagonist therapy underwent baseline and 6-month LV volume evaluation. We assessed the relationships between changes in LV volumes and the polymorphisms in β1-AR, β1-Arg389Gly and β1-Ser49Gly, and in β2-AR, β2-Gly16Arg and β2-Gln27Glu.

Results

We found that patients homozygous for the β2-Glu27 variant were 5.2 times more likely to be in the group with the highest end systolic volume (ESV) progression (OR 5.2, 95%CI 1.4–19.0). They were also more likely to have the largest progression of end diastolic volume (EDV) and decrease in LV ejection fraction (LVEF). For those with baseline LV dysfunction, being homozygous for Arg at amino acid position 389 in β1-AR was associated with decreases in ESV (−46 mL, CI −3.1, -88) and EDV (−40 mL, CI −1.1, −79) and an increase in LVEF (11%, CI 0.3, 22).

Conclusion

We found that polymorphisms of the β1-AR and β2-AR genes are associated with differential LV remodeling in patients treated with a β1 receptor antagonist following STEMI.

Key words

Beta-Receptor Polymorphism Ventricular Remodeling Beta-Blocker theraphy 

Notes

Funding

Funding for this project was partially supported by the National Heart, Lung, and Blood Institute grant HL70059 and the PJ Schaefer Memorial Heart Research Grant.

References

  1. 1.
    Udelson JE, Konstam MA. Relation between left ventricular remodeling and clinical outcomes in heart failure patients with left ventricular systolic dysfunction. J Card Fail. 2002;8:S465–71.PubMedCrossRefGoogle Scholar
  2. 2.
    The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999;353:9–13Google Scholar
  3. 3.
    Effect of metoprolol CR/XL in chronic heart failure. Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353:2001–7.CrossRefGoogle Scholar
  4. 4.
    Bristow MR, Gilbert EM, Abraham WT, Adams KF, Fowler MB, Hershberger RE, et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation. 1996;94:2807–16.PubMedGoogle Scholar
  5. 5.
    Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic heart disease. Australia/New Zealand Heart Failure Research Collaborative Group. Lancet 1997;349:375–380.Google Scholar
  7. 7.
    Konstam MA, Rousseau MF, Kronenberg MW, Udelson JE, Melin J, Stewart D, et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators. Circulation. 1992;86:431–8.PubMedGoogle Scholar
  8. 8.
    Evans WE, McLeod HL. Pharmacogenomics–drug disposition, drug targets, and side effects. N Engl J Med. 2003;348:538–49.PubMedCrossRefGoogle Scholar
  9. 9.
    Forleo C, Resta N, Sorrentino S, Guida P, Manghisi A, De Luca V, et al. Association of beta-adrenergic receptor polymorphisms and progression to heart failure in patients with idiopathic dilated cardiomyopathy. Am J Med. 2004;117:451–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Green SA, Turki J, Innis M, Liggett SB. Amino-terminal polymorphisms of the human beta 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry. 1994;33:9414–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Lanfear DE, Jones PG, Marsh S, Cresci S, McLeod HL, Spertus JA. Beta2-adrenergic receptor genotype and survival among patients receiving beta-blocker therapy after an acute coronary syndrome. JAMA. 2005;294:1526–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Mason DA, Moore JD, Green SA, Liggett SB. A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem. 1999;274:12670–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Mialet Perez J, Rathz DA, Petrashevskaya NN, Hahn HS, Wagoner LE, Schwartz A, et al. Beta 1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med. 2003;9:1300–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Sotoodehnia N, Siscovick DS, Vatta M, Psaty BM, Tracy RP, Towbin JA, et al. Heckbert SR Beta2-adrenergic receptor genetic variants and risk of sudden cardiac death. Circulation. 2006;113:1842–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Tesson F, Charron P, Peuchmaurd M, Nicaud V, Cambien F, Tiret L, et al. Characterization of a unique genetic variant in the beta1-adrenoceptor gene and evaluation of its role in idiopathic dilated cardiomyopathy. CARDIGENE Group. J Mol Cell Cardiol. 1999;31:1025–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Schulman SP, Becker LC, Kass DA, Champion HC, Terrin ML, Forman S, et al. L-arginine therapy in acute myocardial infarction: the Vascular Interaction With Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. Jama. 2006;295:58–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Mark DB, Nelson CL, Califf RM, Harrell Jr FE, Lee KL, Jones RH, et al. Continuing evolution of therapy for coronary artery disease. Initial results from the era of coronary angioplasty. Circulation. 1994;89:2015–25.PubMedGoogle Scholar
  18. 18.
    Links JM, Becker LC, Shindledecker JG, Guzman P, Burow RD, Nickoloff EL, et al. Measurement of absolute left ventricular volume from gated blood pool studies. Circulation. 1982;65:82–91.PubMedGoogle Scholar
  19. 19.
    Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68:978–89.PubMedCrossRefGoogle Scholar
  20. 20.
    Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317:1098.PubMedGoogle Scholar
  21. 21.
    Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res. 1986;59:297–309.PubMedGoogle Scholar
  22. 22.
    Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest. 2003;111:617–25.PubMedGoogle Scholar
  23. 23.
    Bisognano JD, Weinberger HD, Bohlmeyer TJ, Pende A, Raynolds MV, Sastravaha A, et al. Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol. 2000;32:817–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Ahmet I, Krawczyk M, Heller P, Moon C, Lakatta EG, Talan MI. Beneficial effects of chronic pharmacological manipulation of beta-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation. 2004;110:1083–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, et al. Subtype-specific alpha1- and beta-adrenoceptor signaling in the heart. Trends Pharmacol Sci. 2006;27:330–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaye DM, Smirk B, Williams C, Jennings G, Esler M, Holst D. Beta-adrenoceptor genotype influences the response to carvedilol in patients with congestive heart failure. Pharmacogenetics. 2003;13:379–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Heckbert SR, Hindorff LA, Edwards KL, Psaty BM, Lumley T, Siscovick DS, et al. Beta2-adrenergic receptor polymorphisms and risk of incident cardiovascular events in the elderly. Circulation. 2003;107:2021–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Barbato E, Berger A, Delrue L, Van Durme F, Manoharan G, Boussy T, et al. GLU-27 variant of beta2-adrenergic receptor polymorphisms is an independent risk factor for coronary atherosclerotic disease. Atherosclerosis. 2007;194:e80–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Eaton LW, Bulkley BH. Expansion of acute myocardial infarction: its relationship to infarct morphology in a canine model. Circ Res. 1981;49:80–8.PubMedGoogle Scholar
  30. 30.
    Korup E, Dalsgaard D, Nyvad O, Jensen TM, Toft E, Berning J. Comparison of degrees of left ventricular dilation within three hours and up to six days after onset of first acute myocardial infarction. Am J Cardiol. 1997;80:449–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Liggett SB, Mialet-Perez J, Thaneemit-Chen S, Weber SA, Greene SM, Hodne D, et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci USA. 2006;103:11288–93.PubMedCrossRefGoogle Scholar
  32. 32.
    Akhter SA, D’Souza KM, Petrashevskaya NN, Mialet-Perez J, Liggett SB. Myocardial beta1-adrenergic receptor polymorphisms affect functional recovery after ischemic injury. Am J Physiol Heart Circ Physiol. 2006;290:H1427–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Terra SG, Pauly DF, Lee CR, Patterson JH, Adams KF, Schofield RS, et al. beta-Adrenergic receptor polymorphisms and responses during titration of metoprolol controlled release/extended release in heart failure. Clin Pharmacol Ther. 2005;77:127–37.PubMedCrossRefGoogle Scholar
  34. 34.
    Sehnert AJ, Daniels SE, Elashoff M, Wingrove JA, Burrow CR, Horne B, et al. Lack of association between adrenergic receptor genotypes and survival in heart failure patients treated with carvedilol or metoprolol. J Am Coll Cardiol. 2008;52:644–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Metra M, Covolo L, Pezzali N, Zaca V, Bugatti S, Lombardi C, et al. Role of beta-adrenergic receptor gene polymorphisms in the long-term effects of beta-blockade with carvedilol in patients with chronic heart failure. Cardiovasc Drugs Ther. 2010;24:49–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rhondalyn C. McLean
    • 1
    • 4
  • Glenn A. Hirsch
    • 1
    • 2
  • Lewis C. Becker
    • 1
  • Laura Kasch-Semenza
    • 3
  • Gary Gerstenblith
    • 1
  • Steven P. Schulman
    • 1
  1. 1.Division of Cardiology, Department of MedicineThe Johns Hopkins Medical InstitutionsBaltimoreUSA
  2. 2.Department of EpidemiologyThe Johns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  3. 3.The Johns Hopkins School of MedicineThe McKusick-Nathans Institute of Genetic MedicineBaltimoreUSA
  4. 4.The Johns Hopkins HospitalBaltimoreUSA

Personalised recommendations