Cardiovascular Drugs and Therapy

, Volume 24, Issue 4, pp 299–303 | Cite as

Regeneration of the Endothelium in Vascular Injury

Article

Abstract

The endothelium mediates relaxations (dilatations) of the underlying vascular smooth muscle cells. The endothelium-dependent relaxations are due to the release of non-prostanoid vasodilator substances. The best characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO). The endothelial cells also release substances (endothelium-derived hyperpolarizing factor, EDHF) that cause hyperpolarization of the cell membrane of the underlying vascular smooth muscle. The release of EDRF from the endothelium can be mediated by both pertussis toxin-sensitive Gi (alpha2-adrenergic activation, serotonin, thrombin) and insensitive Gq (adenosine diphosphate, bradykinin) coupling proteins. The ability of the endothelial cell to release relaxing factors can be upregulated by impregnation with estrogens, exercise and antioxidants, and down-regulated by oxidative stress and increased presence of oxidized LDL. Following injury or apoptotic death, the endothelium regenerates. However, in regenerated endothelial cells, there is an early selective loss of the pertussis-toxin sensitive mechanisms of EDRF-release. Functional studies suggest that abnormal handling of LDL because of increased oxidative stress play a key role in this selective loss. Genomic analysis demonstrates the emergence of fatty acid binding protein-A (A-FBP) and metalloproteinase-7 (MMP7) in regenerated endothelial cells. The reduced release of NO resulting from the endothelial dysfunction in regenerated areas creates a locus minoris resistentiae which favors the occurrence of vasospasm and thrombosis as well as the initiation of atherosclerosis.

Key words

NO G-proteins oxLDL Regenerated endothelium 

References

  1. 1.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J. 1989;3:2007–17.PubMedGoogle Scholar
  3. 3.
    Moncada S. Nitric oxide in the vasculature: physiology and pathophysiology. Ann NY Acad Sci. 1997;811:60–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Vanhoutte PM. How we learned to say NO. Arterioscler Thromb. 2009;29:1156–60.CrossRefGoogle Scholar
  5. 5.
    Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM. EDHF: bringing the concepts together. Trends Pharmacol Sci. 2002;23:374–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Félétou M, Vanhoutte PM. EDHF: where are we now? Arteriosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol. 2006;26:1215–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Félétou M, Vanhoutte PM. Endothelium-dependent hyperpolarizations: past beliefs and present facts. Ann Med. 2007;39:495–516.CrossRefPubMedGoogle Scholar
  8. 8.
    Vanhoutte PM, Félétou M, Taddei S. Endothelium-dependent contractions in hypertension. B J Pharmacol. 2005;144:449–58.CrossRefGoogle Scholar
  9. 9.
    Vanhoutte PM, Tang EHC. Endothelium-dependent contractions: when a good guy turns bad! J Physiol. 2008;586:5295–304.CrossRefPubMedGoogle Scholar
  10. 10.
    Vanhoutte PM. Endothelial dysfunction and atherosclerosis. Eur Heart J. 1997;18:E19–29.CrossRefPubMedGoogle Scholar
  11. 11.
    Félétou M, Vanhoutte PM. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol. 2006;291:H985–H1002.CrossRefPubMedGoogle Scholar
  12. 12.
    Vanhoutte PM. Endothelial dysfunction: the first step toward coronary arteriosclerosis. Circ J. 2009;73:595–601.CrossRefPubMedGoogle Scholar
  13. 13.
    Vanhoutte PM, Tang E, Félétou M, Shimokawa H. Endothelial dysfunction and vascular disease. Acta Physiol. 2009;196:193–222.CrossRefGoogle Scholar
  14. 14.
    Flavahan NA, Shimokawa H, Vanhoutte PM. Pertussis toxin inhibits endothelium-dependent relaxations to certain agonists in porcine coronary arteries. J Physiol. 1989;408:549–60.PubMedGoogle Scholar
  15. 15.
    Shimokawa H, Lam JY, Chesebro T, Bowie JH, Walter EJ, Vanhoutte PM. Effects of dietary supplementation with cod-liver oil on endothelium-dependent responses in porcine coronary arteries. Circulation. 1987;76:898–905.PubMedGoogle Scholar
  16. 16.
    Shimokawa H, Vanhoutte PM. Dietary omega-3 fatty acids and endothelium-dependent relaxations in porcine coronary arteries. Am J Physiol. 1989;256:H968–73.PubMedGoogle Scholar
  17. 17.
    Shimokawa H, Kim P, Vanhoutte PM. Endothelium-dependent relaxation to aggregating platelets in isolated basilar arteries of control and hypercholesterolemic pigs. Circ Res. 1988;63:604–12.PubMedGoogle Scholar
  18. 18.
    Shimokawa H, Vanhoutte PM. Dietary cod-liver oil improves endothelium-dependent responses in hypercholesterolemic and atherosclerotic porcine coronary arteries. Circulation. 1988;78:1421–30.PubMedGoogle Scholar
  19. 19.
    Shimokawa H, Vanhoutte PM. Hypercholesterolemia causes generalized impairment of endothelium-dependent relaxation to aggregating platelets in porcine arteries. J Am Coll Cardiol. 1989;13:1402–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Shimokawa H, Aarhus AA, Vanhoutte PM. Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res. 1987;61:256–70.PubMedGoogle Scholar
  21. 21.
    Shimokawa H, Vanhoutte PM. Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and in atherosclerosis. Circ Res. 1989;64:900–14.PubMedGoogle Scholar
  22. 22.
    Shimokawa H, Flavahan NA, Vanhoutte PM. Natural Course of the impairment of endothelium-dependent relaxations after balloon endothelium-removal in porcine coronary arteries. Circ Res. 1989;65:740–53.PubMedGoogle Scholar
  23. 23.
    Shimokawa H, Flavahan NA, Shepherd JT, Vanhoutte PM. Endothelium-dependent inhibition of ergonovine-induced contraction is impaired in porcine coronary arteries with regenerated endothelium. Circulation. 1989;80:643–50.PubMedGoogle Scholar
  24. 24.
    Shimokawa H, Flavahan NA, Vanhoutte PM. Loss of endothelial pertussis toxin-sensitive G-protein function in atherosclerotic porcine coronary arteries. Circulation. 1991;83:652–60.PubMedGoogle Scholar
  25. 25.
    Park S-J, Lee JL, Vanhoutte PM. Endothelin-1 releases endothelium-derived endoperoxides and thromboxane A2 in porcine coronay arteries with regenerated endothelium. Acta Pharmacol Sin. 1999;20:872–8.Google Scholar
  26. 26.
    Thollon C, Fournet-Bourguignon MP, Saboureau D, Lesage L, Reure H, Vanhoutte PM, et al. Consequences of reduced production of NO on vascular reactivity of porcine coronary arteries after angioplasty: importance of EDHF. Br J Pharmacol. 2002;136:1153–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Perrault LP, Bidouard JP, Janiak P, Villeneuve N, Bruneval P, Vilaine JP, et al. Time course of coronary endothelial dysfunction in acute untreated rejection after heterotopic heart transplantation. J Heart Lung Transplant. 1997;16:643–57.PubMedGoogle Scholar
  28. 28.
    Perrault LP, Bidouard JP, Janiak P, Villeneuve N, Bruneval P, Vilaine JP, et al. Impairment of G-protein-mediated signal transduction in the porcine coronary endothelium during rejection after heart transplantation. Cardiovasc Res. 1999;43:457–70.CrossRefPubMedGoogle Scholar
  29. 29.
    El-Hamamsy I, Stevens LM, Vanhoutte PM, Perrault LP. Denudation of the coronary endothelium at implantation increases endothelial dysfunction and intimal hyperplasia after heart transplantation. J Heart Lung Transplant. 2005;24:251–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Borg-Capra C, Fournet-Bourguignon MP, Janiak P, Villeneuve N, Bidouard JP, Vilaine JP, et al. Morphological heterogeneity with normal expression but altered function of G proteins in cultured regenerated porcine coronary endothelial cells. Br J Pharmacol. 1997;122:999–1008.CrossRefPubMedGoogle Scholar
  31. 31.
    Fournet-Bourguignon MP, Castedo-Delrieu M, Bidouard JP, Leonce S, Saboureau D, Delescluse I, et al. Phenotopic and functional changes in regenerated porcine coronary endothelial cells. Increased uptake of modified LDL and reduced production of NO. Circ Res. 2000;86:854–61.PubMedGoogle Scholar
  32. 32.
    Vanhoutte PM, Fournet-Bourguignon MP, Vilaine JP. Dysfonction de la voie du monoxide d’azote au cours de la régénération de l’endothélium coronarien. Académie Nationale de Médecine. 2002;186:1525–41.Google Scholar
  33. 33.
    Kennedy S, Fournet-Bourguignon M-P, Breugnot C, Castedo-Delrieu M, Lesage L, Reure H, et al. Cells derived from regenerated endothelium of the porcine coronary artery contain more oxidized forms of Apolipoprotein-B-100 without a modification in the uptake of oxidized LDL. J Vasc Res. 2003;40:389–98.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee MYK, Tse HF, Siu CW, Zhu SG, Man RYK, Vanhoutte PM. Genomic changes in regenerated porcine coronary arterial endothelial cells. Arterioscl Throm Vas. 2007;27:2443–9.CrossRefGoogle Scholar
  35. 35.
    Goswami S, Angkawekwinai P, Shan M, Greenlee KJ, Barranco WT, Polikepahad S, et al. Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma. Nat Immunol. 2009;10:496–503.CrossRefPubMedGoogle Scholar
  36. 36.
    Furuhashi M, Tuncman G, Görgün CZ, Makowski L, Atsumi G, Vaillancourt E, et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature. 2007;447:959–65.CrossRefPubMedGoogle Scholar
  37. 37.
    Furuhashi M, Fucho R, Görgün CZ, Tuncman G, Cao H, Hotamisligil GS. Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J Clin Invest. 2008;118:2640–50.PubMedGoogle Scholar
  38. 38.
    Lee MYK, Wang Y, Vanhoutte P. Senescence of cultured porcine coronary arterial endothelial cells is associated with accelerated oxidative stress and activation of NFκB. J Vasc Res. 2010;47:287–98.CrossRefPubMedGoogle Scholar
  39. 39.
    Ross R. Atherosclerosis — an inflammatory disease. N Engl J Med. 1999;340:115–26.CrossRefPubMedGoogle Scholar
  40. 40.
    Aikawa M, Libby P. The vulnerable atherosclerotic plaque pathogenesis and therapeutic approach. Cardiovasc Path. 2004;13:125–38.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineUniversity of Hong KongHong KongPeople’s Republic of China
  2. 2.Department of BIN Fusion TechnologyChonbuk National UniversityJeonjuSouth Korea

Personalised recommendations