Statin Use is Associated with a Significant Reduction in Cholesterol Content of Erythrocyte Membranes. A Novel Pleiotropic Effect?

  • Dimitrios N. Tziakas
  • Georgios K. Chalikias
  • Dimitrios Stakos
  • Ioannis K. Tentes
  • Adina Thomaidi
  • Sofia Chatzikyriakou
  • Konstantina Mitrousi
  • Alexandros X. Kortsaris
  • Juan Carlos Kaski
  • Harisios Boudoulas
  • Stavros Konstantinides



High cholesterol content of erythrocyte membranes (CEM) levels is present in patients with acute coronary syndromes (ACS). Intraplaque hemorrhage and erythrocyte lysis contribute to the deposition of cholesterol on the atherosclerotic plaque and to plaque rupture. With the present study we assessed the effect of statin therapy on CEM levels, a novel marker of coronary artery disease (CAD) instability during a 1-year follow-up in CAD patients.


212 consecutive eligible (158 men, 62 ± 10 years) patients undergoing diagnostic coronary angiography for the assessment of angina pectoris were assessed. The study population comprised of 84 chronic stable angina (CSA) patients and 128 ACS patients. All study participants were commenced on statin treatment in equipotent doses and were followed for up to 1 year (at  − 1,  − 3,  − 6 and  − 12 months).


Repeated measurements analysis of variance after appropriate adjustment showed a significant decrease (p < 0.001) in CEM content during follow up. CEM levels were decreasing at each time point (1 month : 100 ug/mg 95%CI 94.3–105.6, 3 months : 78.1 ug/mg 95%CI 73.2–83, 6 months : 67.2 ug/mg 95%CI 63.1–71.2, 1 year : 45.3 ug/mg 95%CI 42.2–48.3) compared to admission (112.1 ug/mg 95% CI 105.9–118.3) and to all previous measurements.


The present study showed, that use of statins is associated with a reduction in CEM, an emerging marker of clinical instability and plaque vulnerability in CAD patients. The pleiotropic effects of statins at the cell membrane level represent a promising novel direction for research in CAD.

Key words

Erythrocyte membranes Cholesterol content Statins Coronary artery disease 


  1. 1.
    Herrmann J, Lerman A. Atherosclerosis in the back yard. J Am Coll Cardiol. 2007;49:2102–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Kolodgie FD, Burke AP, Nakazawa G, Cheng Q, Xu X, Virmani R. Free cholesterol in atherosclerotic plaques: where does it come from? Curr Opin Lipidol. 2007;18:500–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V. Neovascularization in human atherosclerosis. Circulation. 2006;113:2245–52.CrossRefPubMedGoogle Scholar
  4. 4.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture. Angiogenesis as a source for intraplaque hemorrhage. Atheroscler Thromb Vasc Biol. 2005;25:2054–61.CrossRefGoogle Scholar
  5. 5.
    Arbustini E, Morbini P, D’Armini AM, Repetto A, Minzioni G, Piovella F, et al. Plaque composition in plexogenic and thromboembolic pulmonary hypertension: the critical role of thrombotic material in pultaceous core formation. Heart. 2002;88:177–82.CrossRefPubMedGoogle Scholar
  6. 6.
    Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque haemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349:2316–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Yeagle PL. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985;822:267–87.PubMedGoogle Scholar
  8. 8.
    Tziakas D, Kaski JC, Chalikias GK, Romero C, Fredericks S, Tentes IK, et al. Total cholesterol content of erythrocyte membranes is increased in patients with acute coronary syndrome. J Am Coll Cardiol. 2007;49:2081–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Martinez M, Vaya A, Marti R, Gil L, Lluch I, Carmena R, et al. Erythrocyte membrane cholesterol/phospolipid changes and haemorrheological modifications in familial hypercholesterolemia treated with lovastatin. Thromb Res. 1996;83:375–88.CrossRefPubMedGoogle Scholar
  10. 10.
    Koter M, Brochel M, Chojnowska-Jezierska J, Klikczynska K, Franiak I. The effect of atorvastatin on erythrocyte membranes and serum lipids in patients with type-2 hypercholesterolemia. Eur J Clin Pharmacol. 2002;58:501–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Koter M, Franiak I, Bronchel M, Chojnowska-Jezierska J. Effects of simvastatin and pravastatin on peroxidation of erythrocyte plasma lipids in patients with type-2 hypercholesterolemia. Can J Physiol Pharmacol. 2003;81:485–92.CrossRefPubMedGoogle Scholar
  12. 12.
    Arbustini E. Total erythrocyte membrane cholesterol. An innocent new marker or an active player in acute coronary syndromes ? J Am Coll Cardiol. 2007;49:2090–2.CrossRefPubMedGoogle Scholar
  13. 13.
    Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F, et al. Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J. 2006;27:1341–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Van de Werf F, Ardissino D, Betriu A, Cokkinos DV, Falk E, Fox KA, et al. Task Force on the Management of Acute Myocardial Infarction of the European Society of Cardiology. Management of acute myocardial infarction in patients presenting with ST-segment elevation. The Task Force on the Management of Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J. 2003;24:28–66.CrossRefPubMedGoogle Scholar
  15. 15.
    Bassand JP, Hamm CW, Ardissino D, Boersma E, Budaj A, Fernández-Avilés F, et al. Task Force for Diagnosis and Treatment of Non-ST-Segment Elevation Acute Coronary Syndromes of European Society of Cardiology. Eur Heart J. 2007;28:1598–660.CrossRefPubMedGoogle Scholar
  16. 16.
    Jones PH, Davidson MH, Stein EA, Bays HE, McKenney JM, Miller E, et al. STELLAR Study Group. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am J Cardiol. 2003;92:152–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Thygesen K, Alpert JS, White HD. Universal definition of myocardial infarction: Kristian Thygesen, Joseph S. Alpert and Harvey D. White on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Eur Heart J. 2007;28:2525–38.CrossRefPubMedGoogle Scholar
  18. 18.
    Braunwald E. Unstable angina: a classification. Circulation. 1989;80:410–4.PubMedGoogle Scholar
  19. 19.
    Grundy SM, Cleeman JI, Merz NB, Brewer B Jr, Clark LT, Hunninghake DB, et al. for the Coordinating Committee of the National Cholesterol Education Program. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. Circulation. 2004;110:227–39.CrossRefPubMedGoogle Scholar
  20. 20.
    Scanlon PJ, Faxon DP, Audet AM, Scanlon PJ, Faxon DP, Audet AM, et al. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol. 1999;33:1756–824.CrossRefPubMedGoogle Scholar
  21. 21.
    Kaski JC, Chester MR, Chen L, Katritsis D. Rapid angiographic progression of coronary artery disease in patients with angina pectoris. The role of complex stenosis morphology. Circulation. 1995;92:2058–65.PubMedGoogle Scholar
  22. 22.
    Cazzola R, Rondanelli M, Russo-Volpe S, Ferrari E, Cestaro B. Decreased membrane fluidity and altered susceptibility to peroxidation and lipid composition in overweight and obese female erythrocytes. J Lipid Res. 2004;45:1846–51.CrossRefPubMedGoogle Scholar
  23. 23.
    Miwa S, Inouye M, Ohmura C, Mitsuhashi N, Onuma T, Kawamori R. Relationship between carotid atherosclerosis and erythrocyte membrane cholesterol oxidation products in type 2 diabetic patients. Diabetes Res Clin Pract. 2003;61:81–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein uitilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC. Enzymatic Determination of Total Serum Cholesterol. Clin Chem. 1974;20:470–5.PubMedGoogle Scholar
  26. 26.
    Ray KK, Cannon CP. The potential relevance of the multiple lipid-independent (pleiotropic) effects of statins in the management of acute coronary syndromes. J Am Coll Cardiol. 2005;46:1425–33.CrossRefPubMedGoogle Scholar
  27. 27.
    Calabro P, Yeh ET. The pleiotropic effects of statins. Curr Opin Cardiol. 2005;20:541–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Dietzen DJ, Page KL, Tetzloff TA, Bohrer A, Turk J. Inhibition of 3-hydroxy-3methylglutaryl coenzyme A (HMG CoA) reductase blunts factor VIIa/Tissue Factor and prothrombinase acitivities via effects on membrane phosphatidylserine. Arterioscler Thromb Vasc Biol. 2007;27:690–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Lin H-L, Xu X-S, Lu H-X, Zhang L, Li C-J, Tang M-X, et al. Pathological mechanisms and dose dependency of erythrocyte-induced vulnerability of atherosclerotic plaques. J Mol Cell Cardiol. 2007;43:272–80.CrossRefPubMedGoogle Scholar
  30. 30.
    Caliskan S, Caliskan M, Kuralay F, Onvural B. Effect of simvastatin therapy on blood and tissue ATP levels and erythrocyte membrane lipid composition. Res Exp Med. 2000;199:189–94.Google Scholar
  31. 31.
    Uyuklu M, Meiselman HJ, Baskurt OK. Effect of decreased plasma cholesterol by atorvastatin treatment on erythrocyte mechanical properties. Clin Hemorheol Microcirc. 2007;36:25–33.PubMedGoogle Scholar
  32. 32.
    Levy Y, Leibowitz R, Aviram M, Brook JG, Cogan U. Reduction of plasma cholesterol by lovastatin normalizes erythrocyte membrane fluidity in patients with severe hypercholesterolemia. Br J Clin Pharmacol. 1992;34:427–30.PubMedGoogle Scholar
  33. 33.
    Lijnen P, Celis H, Fagard R, Staessen J, Amery A. Influence of cholesterol lowering on plasma membrane lipids and cationic transport systems. J Hypertens. 1994;12:59–64.CrossRefPubMedGoogle Scholar
  34. 34.
    Pogue DH, Moravec CS, Roppelt C, Disch CH, Cressman MD, Bond M. Effect of lovastatin on cholesterol content of cardiac and red blood cell membranes in normal and cardiomyopathic hamsters. J Pharmacol Exp Ther. 1995;273:863–9.PubMedGoogle Scholar
  35. 35.
    Dwight JF, Mendes Ribeiro AC, Hendry BM. Effects of HMG-CoA reductase inhibition on erythrocyte membrane cholesterol and acyl chain composition. Clin Chim Acta. 1996;256:53–63.CrossRefPubMedGoogle Scholar
  36. 36.
    Miossec P, Zkhiri F, Paries J, David-Dufilho M, Devynck MA, Valensi PE. Effect of pravastatin on erythrocyte rheological and biochemical properties in poorly controlled type-2 diabetic patients. Diabet Med. 1999;16:424–30.CrossRefPubMedGoogle Scholar
  37. 37.
    Rabini RA, Polenta M, Staffolani R, Tocchini M, Signore R, Testa I, et al. Effect of hydroxymethylglutaryl-CoA reductase inhibitors on the functional properties of erythrocyte membranes. Exp Mol Pathol. 1993;59:51–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Lijnen P, Fagard R, Staessen J, Thijs L, Amery A. Erythrocyte membrane lipids and cationic transport systems in men. J Hypertens. 1992;10:1205–11.CrossRefPubMedGoogle Scholar
  39. 39.
    Schick BP, Schick PK. Cholesterol exchange in platelets, erythrocytes, and megakaryocytes. Biochim Biophys Acta. 1985;833:281–90.PubMedGoogle Scholar
  40. 40.
    Chabanel A, Flamm M, Sung KL, Lee MM, Schachter SL, Chien S. Influence of cholesterol content on red cell membrane viscoelasticity and fluidity. Biophys J. 1983;44:171–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Kanakaraj P, Singh M. Influence of hypercholesterolemia on morphological and rheological characteristics of erythrocytes. Atherosclerosis. 1989;76:209–18.CrossRefPubMedGoogle Scholar
  42. 42.
    London IM, Schwarz H. Erythrocyte metabolism. The metabolic behavior of the cholesterol of human erythrocytes. J Clin Invest. 1992;32:1248–52.CrossRefGoogle Scholar
  43. 43.
    Gold JC, Phillips MC. Effects of membrane lipid composition on the kinetics of cholesterol exchange between lipoproteins and different species of red blood cells. Biochim Biophys Acta. 1990;1027:85–92.CrossRefPubMedGoogle Scholar
  44. 44.
    Rothblat GH, Arbogast LY, Ray EK. Stimulation of esterified cholesterol accumulation in tissue culture cells exposed to high density lipoproteins enriched in free cholesterol. J Lipid Res. 1978;19:350–8.PubMedGoogle Scholar
  45. 45.
    d’Hollander F, Chavallier F. Movement of cholesterol in vitro in rat blood and quantitation of the exchange of free cholesterol between plasma and erythrocytes. J Lipid Res. 1972;13:733–44.Google Scholar
  46. 46.
    Gottlieb MH. Rates of cholesterol exchange between human erythrocytes and plasma lipoproteins. Biochim Biophys Acta. 1980;600:530–41.CrossRefPubMedGoogle Scholar
  47. 47.
    Quarfordt SH, Hilderman HL. Quantitation of the in vitro free cholesterol exchange of human red cells and lipoproteins. J Lipid Res. 1970;11:528–35.PubMedGoogle Scholar
  48. 48.
    Kuypers FA, Roelofsen B, Op Den Kamp JAF, Van Deenen LLM. The membrane of intact human erythrocyte tolerates only limited changes in the fatty acid composition of its phosphatidylcholine. Biochim Biophys Acta. 1984;769:337–47.CrossRefPubMedGoogle Scholar
  49. 49.
    Hagve TA, Lie O, Gronn M. The effect of dietary n-3 fatty acids on osmotic fragility and membrane fluidity of human erythrocytes. Scand J Clin Lab Invest. 1993;53(Suppl 215):75–84.CrossRefGoogle Scholar
  50. 50.
    Hui DY, Noel JG, Harmony JAK. Binding of plasma low density lipoproteins to erythrocytes. Biochim Biophys Acta. 1981;664:513–26.PubMedGoogle Scholar
  51. 51.
    Lange Y, Swaisgood MH, Ramos BV, Steck TL. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem. 1989;264:3786–93.PubMedGoogle Scholar
  52. 52.
    Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte P. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 2002;41:66–97.CrossRefPubMedGoogle Scholar
  53. 53.
    Chen H, Born E, Mathur SN, Field FJ. Cholesterol and sphingomyelin syntheses are regulated independently in cultured human intestinal cells, CaCo-2: role of membrane cholesterol and sphingomyelin content. J Lipid Res. 1993;34:2159–67.PubMedGoogle Scholar
  54. 54.
    Chen H, Born E, Mathur SN, Johlin FC Jr, Field FJ. Sphingomyelin content of intestinal cell membranes regulates cholesterol absorption. Biochem J. 1992;286:771–7.PubMedGoogle Scholar
  55. 55.
    Slotte JP, Bierman EL. Depletion of plasma —membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem J. 1988;250:653–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dimitrios N. Tziakas
    • 1
  • Georgios K. Chalikias
    • 1
  • Dimitrios Stakos
    • 1
  • Ioannis K. Tentes
    • 2
  • Adina Thomaidi
    • 1
  • Sofia Chatzikyriakou
    • 1
  • Konstantina Mitrousi
    • 1
  • Alexandros X. Kortsaris
    • 2
  • Juan Carlos Kaski
    • 3
  • Harisios Boudoulas
    • 4
  • Stavros Konstantinides
    • 1
  1. 1.University Cardiology Department, Medical SchoolDemocritus University of ThraceAlexandroupolisGreece
  2. 2.Biochemistry Department, Medical SchoolDemocritus University of ThraceAlexandroupolisGreece
  3. 3.Cardiovascular Biology Research Centre, St George’s HospitalUniversity of LondonLondonUK
  4. 4.Center for Clinical Research, Foundation of Biomedical ResearchAcademy of AthensAthensGreece

Personalised recommendations