Cardiovascular Drugs and Therapy

, Volume 23, Issue 2, pp 121–127 | Cite as

Poly (ADP-ribose) Polymerase Inhibition Improves Endothelial Dysfunction Induced by Hyperhomocysteinemia in Rats

  • Xian Yu
  • Xiang Cheng
  • Jiang-jiao Xie
  • Meng-yang Liao
  • Rui Yao
  • Yong Chen
  • Ying-jun Ding
  • Ting-ting Tang
  • Yu-hua Liao
Article

Abstract

Introduction

We investigated the possible protective effect of poly (ADP-ribose) polymerase (PARP) inhibition in preventing endothelial dysfunction induced by hyperhomocysteinemia (Hhcy).

Methods

Sprague–Dawley rats were divided into Hhcy group, Hhcy + 3-aminobenzamide(3-AB) group, control group and control + 3-AB group. A high-methionine diet was given to induce hyperhomocysteinemia. In Hhcy + 3-AB and control + 3-AB groups, rats were injected intraperitoneally with 3-AB (inhibitor of PARP). After 45 days, ultrastructural changes of aortas were observed by transmission electron microscope. Vascular reactivity of thoracic aortic rings was measured in organ chambers. PARP activity was detected. The levels of plasma total homocysteine, nitrite/nitrate, endothelin (ET)-1 and malondialdehyde were assayed.

Results

Rats in Hhcy group developed severe hyperhomocysteinemia and significant loss of endothelial function as measured by both vascular rings and levels of nitrite/nitrate and ET-1. Malondialdehyde levels increased significantly in Hhcy rats compared with control rats. 3-AB improved Ach-induced, NO-mediated vascular relaxation and stabilized the level of nitrite/nitrate and ET-1. Obvious improvement of ultrastructure can be observed in Hhcy + 3-AB group.

Conclusions

These results suggest that pharmacological inhibition of PARP prevents the development of endothelial dysfunction in rats with hyperhomocysteinemia which may represent a novel approach to improve vascular dysfunction associated with hyperhomocysteinemia.

Key words

Hyperhomocysteinemia Poly(ADP-ribose) polymerase Endothelial dysfunction 3-Aminobenzamide Oxidative stress 

Notes

Acknowledgments

This work was supported by grants from Chenguang plan of Wuhan in China (NO:[2006] 40) and National Basic Research Program of China (973 Program): 2007CB512000;2007CB512005. We thank Professor Liu Changjing in department of physiology of Tongji Medical College for his technical assistance.

References

  1. 1.
    Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998;338:1042–50.PubMedCrossRefGoogle Scholar
  2. 2.
    McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969;56:111–28.PubMedGoogle Scholar
  3. 3.
    Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Harker LA, Ross R, Slichter SJ, Scott CR. Homocysteine-induced arteriosclerosis: the role of endothelial cell injury and platelet response in its genesis. J Clin Invest. 1976;58:731–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Jagtap P, Szabó C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. 2005;4:421–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Pacher P, Szabó C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular disease: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev. 2007;25:235–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Liaudet L, Soriano FG, Szabó E, Viráq L, Mabley JG, Salzman AL, et al. Protection against hemorrhagic shock in mice genetically deficient in poly (ADP-ribose) polymerase. Proc Natl Acad Sci USA. 2000;97:10203–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Zingarelli B, Salzman AL, Szabo C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intracellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res. 1998;83:85–94.PubMedGoogle Scholar
  9. 9.
    Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabó É, Szabó C. The role of poly (ADP-ribose) polymerase in the development of cardiovascular dysfunction in diabetes mellitus. Diabetes 2002;51:514–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Li M, Chen J, Li YS, Feng YB, Zeng QT. Folic acid reduces chemokine MCP-1 release and expression in rats with hyperhomocystinemia. Cardiovasc Pathol. 2007;16:305–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Ungvari Z, Pacher P, Rischák K, Szollár L, Koller A. Dysfunction of nitric oxide mediation in isolated rat arterioles with methionine diet-induced hyperhomocysteinemia. Arterioscler Thromb Vasc Biol. 1999;19:1899–904.PubMedGoogle Scholar
  12. 12.
    Okhawa H, Ohishi N. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.CrossRefGoogle Scholar
  13. 13.
    Schulz E, Anter E, Keaney JF. Oxidative stress, antioxidants, and endothelial function. Curr Med Chem. 2004;11:1093–104.PubMedGoogle Scholar
  14. 14.
    Dayal S, Bottiglieri T, Arning E, Maeda N, Malinow MR, Sigmund CD, et al. Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine beta-synthase-deficient mice. Circ Res. 2001;88:1203–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Cohen R, Loscalzo J. Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemiam. J Clin Invest. 2000;106:483–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Tasatargil A, Dalaklioglu S, Sadan G. Poly(ADP-ribose) polymerase inhibition prevents homocsyteine-induced endothelial dysfunction in the isolated rat aorta. Pharmacology 2004;72:99–105.PubMedCrossRefGoogle Scholar
  17. 17.
    Starkebaum G, Harlan JM. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest. 1986;77:1370–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Loscalzo J. The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest. 1996;98:5–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Upchurch GR, Welch GN, Loscalzo J. Homocysteine, EDRF and endothelial function. J Nutr. 1996;126:1290S–4S.PubMedGoogle Scholar
  20. 20.
    Ungvari Z, Csiszar A, Bagi Z, Koller A. Impaired nitric oxide-mediated flow-induced coronary dilation in hyperhomocysteinemia: morphological and functional evidence for increased peroxynitrite formation. Am J Pathol. 2002;161:145–53.PubMedGoogle Scholar
  21. 21.
    Levrand S, Pacher P, Pesse B, Rolli J, Feihl F, Waeber B, et al. Homocysteine induces cell death in H9C2 cardiomyocytes through the generation of peroxynitrite. Biochem Biophys Res Commun. 2007;359:445–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.PubMedCrossRefGoogle Scholar
  23. 23.
    Draper H, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Pacher P, Liaudet L, Bai P, Virag L, Mabley JG, Hasko G, et al. Activation of poly (ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. J Pharmacol Exp Ther. 2002;300:862–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Radovits T, Seres L, Gero D, Berger I, Szabó C, Karck M, et al. Single dose treatment with PARP-inhibitor INO-1001 improves aging-associated cardiac and vascular dysfunction. Exp Gerontol. 2007;42:676–85.PubMedCrossRefGoogle Scholar
  26. 26.
    Radovits T, Lin LN, Zotkina J, Gero D, Szabó C, Karck M, et al. Poly(ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by reactive oxidant hydrogen peroxide in vitro. Eur J Pharmacol. 2007;564:158–66.PubMedCrossRefGoogle Scholar
  27. 27.
    Tangurek B, Ozer N, Sayar N, Terzi S, Yilmaz H, Dayi SU, et al. The relationship between endothelial nitric oxide synthase gene polymorphism (T-786C) and coronary artery disease in the Turkish population. Heart Vessels. 2006;21:285–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Pacher P, Mabley JG, Soriano FG, Liaudet L, Komjati K, Szabó C. Endothelial dysfunction in aging animals: the role of poly (ADP-ribose) polymerase activation. Br J Pharmacol. 2002;135:1347–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Soriano FG, Pacher P, Mabley J, Liaudet L, Szabó C. Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly (ADP-ribose) polymerase. Circ Res. 2001;89:684–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Zingarelli B, Cuzzocrea S, Zsengeller Z, Salzman AL, Szabó C. Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc Res. 1997;36:205–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Pacher P, Vaslin A, Benko R, Mabley JG, Liaudet L, Haskó G, et al. A new, potent poly(ADP-ribose) polymerase inhibitor improves cardiac and vascular dysfunction associated with advanced aging. J Pharmacol Exp Ther. 2004;311:485–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Radovits T, Lin LN, Zotkina J, Gero D, Szabo C, Karck M, et al. Poly(ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by reactive oxidant hydrogen peroxide in vitro. Eur J Pharmacol. 2007;564:158–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Bowes J, McDonald MC, Piper J, Thiemermann C. Inhibitors of poly(ADP-ribose) synthetase protect rat cardiomyocytes against oxidant stress. Cardiovasc Res. 1999;41:126–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xian Yu
    • 1
  • Xiang Cheng
    • 1
    • 2
  • Jiang-jiao Xie
    • 1
  • Meng-yang Liao
    • 1
  • Rui Yao
    • 1
  • Yong Chen
    • 1
  • Ying-jun Ding
    • 1
  • Ting-ting Tang
    • 1
  • Yu-hua Liao
    • 1
    • 2
  1. 1.Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union HospitalHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations