Advertisement

Cardiovascular Drugs and Therapy

, Volume 22, Issue 6, pp 443–452 | Cite as

Ginsenoside Rb1 Preconditioning Protects Against Myocardial Infarction After Regional Ischemia and Reperfusion by Activation of Phosphatidylinositol-3-kinase Signal Transduction

  • Zhi Wang
  • Min Li
  • Wei-kang Wu
  • Hong-mei Tan
  • Deng-feng Geng
Article

Abstract

Background

Ginsenoside Rb1, a major bioactive component of Panax ginseng, bears various beneficial effects on the cardiovascular system. This study investigated whether ginsenoside Rb1 preconditioning has protective effects on myocardial ischemia–reperfusion injury and its potential mechanism.

Methods

Rats subjected to 45 min of myocardial ischemia followed by 120 min of reperfusion were assigned to the following groups: sham-operated, ischemia–reperfusion (I/R), ginsenoside Rb1+I/R, wortmannin(a specific PI3K inhibitor)+I/R, wortmannin drug vehicle (dimethyl sulfoxide, DMSO), wortmannin+sham, ginsenoside Rb1+ wortmannin +I/R. Infarct size was assessed by triphenyltetrazolium chloride staining. Plasma creatine kinase (CK), creatine kinase isoenzyme MB (CK-MB), lactate dehydrogenase (LDH), and troponin T levels were also measured. Akt phosphorylation expression was assessed by immunoblotting.

Results

Ginsenoside Rb1 preconditioning reduced infarct size compared with that in the I/R group: 30 ± 2.6% versus 51 ± 2.7% (p < 0.01). Ginsenoside Rb1 preconditioning also markedly reduced the plasma CK, CK-MB, LDH and troponin T levels in blood. Akt phosphorylation expression increased after ginsenoside Rb1 preconditioning. These effects of ginsenoside Rb1 preconditoning were significantly inhibited by wortmannin.

Conclusion

This is the first study to demonstrate that ginsenoside Rb1 preconditioning has protective effects on myocardial ischemia and reperfusion injury, partly by mediating the activation of the PI3K pathway and phosphorylation of Akt.

Key words

Ginseng Ginsenoside Rb1 Myocardial reperfusion injury Infarct size Phosphatidylinositol-3-kinase Wortmannin Akt 

Notes

Acknowledgments

The present work was supported by research grants (the National Basic Research Program of China, 2005CB523305) to Dr. Wei-kang Wu from the National Science Council, China. We thank Dr. Wen Wang and Dr. Martha Dahlen for critical review of this manuscript.

References

  1. 1.
    Saeki K, Obi I, Ogiku N, Shigekawa M, Imagawa T, Matsumoto T. Cardioprotective effects of 9-hydroxyellipticine on ischemia and reperfusion in isolated rat heart. Jpn J Pharmacol 2002;89:21–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Wang QD, Pernow J, Sjöquist PO, Rydén L. Pharmacological possibilities for protection against myocardial reperfusion injury. Cardiovasc Res 2002;55:25–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest 1985;76:1713–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Maxwell SR, Lip GY. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol 1997;58:95–117.PubMedCrossRefGoogle Scholar
  5. 5.
    Park JL, Lucchesi BR. Mechanisms of myocardial reperfusion injury. Ann Thorac Surg 1999;68:1905–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Shibata S, Tanaka O, Shoji J, Saito H. Chemistry and pharmacology of Panax. In: Wagner H, Hikino H, Farnsworth NR, editors. Economic and medicinal plant research. Philadelphia: World Scientific; 1985. p. 217–84.Google Scholar
  7. 7.
    Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 1997;54:1–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee JH, Kim SR, Bae CS, Kim D, Hong H, Nah S. Protective effect of ginsenosides, active ingredients of Panax ginseng, on kainic acid-induced neurotoxicity in rat hippocampus. Neurosci Lett 2002;325:129–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Lim JH, Wen TC, Matsuda S, Tanaka J, Maeda N, Peng H, et al. Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci Res 1997;28:191–200.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu M, Zhang J. Effects of ginsenoside Rb1 and Rg1 on synaptosomal free calcium level, ATPase and calmodulin in rat hippocampus. Chin Med J (Engl) 1995;108:544–7.Google Scholar
  12. 12.
    Liu D, Li B, Liu Y, Attele AS, Kyle JW, Yuan CS. Voltage-dependent inhibition of brain Na(+) channels by American ginseng. Eur J Pharmacol 2001;413:47–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Jiang KY, Qian ZN. Effects of Panax notoginseng saponins on posthypoxic cell damage of neurons in vitro. Zhongguo Yao Li Xue Bao 1995;16:399–402.PubMedGoogle Scholar
  14. 14.
    Zhang YG, Liu TP. Influences of ginsenosides Rb1 and Rg1 on reversible focal brain ischemia in rats. Zhongguo Yao Li Xue Bao 1996;17:44–8.PubMedGoogle Scholar
  15. 15.
    Guan L, Li W, Liu Z. Effect of ginsenoside-Rb1 on cardiomyocyte apoptosis after ischemia and reperfusion in rats. J Huazhong Univ Sci Technolog Med Sci 2002;22:212–5.PubMedGoogle Scholar
  16. 16.
    Murphy E. Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res 2004;94:7–16.PubMedCrossRefGoogle Scholar
  17. 17.
    Yu J, Eto M, Akishita M, Kaneko A, Ouchi Y, Okabe T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: a possible involvement of androgen receptor. Biochem Biophys Res Commun 2007;353:764–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 2007;21:227–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang YG, Liu TP. Influences of ginsenosides Rb1 and Rg1 on reversible focal brain ischemia in rats. Zhongguo Yao Li Xue Bao 1996;17:44–8.PubMedGoogle Scholar
  20. 20.
    Wen TC, Yoshimura H, Matsuda S, Lim JH, Sakanaka M. Ginseng root prevents learning disability and neuronal loss in gerbils with 5-minute forebrain ischemia. Acta Neuropathol 1996;91:15–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Wolfrum S, Dendorfer A, Schutt M, Weidtmann B, Heep A, Tempel K, et al. Simvastatin acutely reduces myocardial reperfusion injury in vivo by activating the phosphatidylinositide 3-kinase/Akt pathway. J Cardiovasc Pharmacol 2004;44:348–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia–reperfusion: the roles of PI3K, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 2002;105:1497–502.PubMedCrossRefGoogle Scholar
  23. 23.
    Bullard AJ, Yellon DM. Chronic erythropoietin treatment limits infarct-size in the myocardium in vitro. Cardiovasc Drugs Ther 2005;19:333–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang B, Hata R, Zhu P, Sato K, Wen TC, Yang L. Prevention of ischemic neuronal death by intravenous infusion of a ginseng saponin, ginsenoside Rb(1), that upregulates Bcl-x(L) expression. J Cereb Blood Flow Metab 2006;26:708–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Fujita K, Hakuba N, Hata R, Morizane I, Yoshida T, Shudou M, et al. Ginsenoside Rb1 protects against damage to the spiral ganglion cells after cochlear ischemia. Neurosci Lett 2007;415:113–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhong GG, Sun CW, Li YY, Qi H, Zhao CY, Jiang Y, et al. Calcium channel blockade and anti-free-radical actions of panaxadiol saponins Rb1, Rb2, Rb3, Rc, and Rd. Zhongguo Yao Li Xue Bao 1995;16:255–60.PubMedGoogle Scholar
  27. 27.
    Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 2005;41:861–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Fu W, Conklin BS, Lin PH, Lumsden AB, Yao Q, Chen C. Red wine prevents homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Surg Res 2003;115:82–91.PubMedCrossRefGoogle Scholar
  29. 29.
    Spencer TA, Chai H, Fu W, Ramaswami G, Cox MW, Conklin BS, et al. Estrogen blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries(1,2). J Surg Res 2004;118:83–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Kwan CY, Zhang WB, Sim SM, Deyama T, Nishibe S. Vascular effects of Siberian ginseng (Eleutherococcus senticosus): endothelium-dependent NO- and EDHF-mediated relaxation depending on vessel size. Naunyn Schmiedebergs Arch Pharmacol 2004;369:473–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen X. Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin Exp Pharmacol Physiol 1996;23:728–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Braunwald E, Maroko PR. The reduction of infarct size—an idea whose time (for testing) has come. Circulation 1974;50:206–9.PubMedGoogle Scholar
  33. 33.
    Baker JE, Kozik D, Hsu AK, Fu X, Tweddell JS, Gross GJ. Darbepoetin alfa protects the rat heart against infarction: dose–response, phase of action, and mechanisms. J Cardiovasc Pharmacol 2007;49:337–45.PubMedCrossRefGoogle Scholar
  34. 34.
    Chiari PC, Bienengraeber MW, Pagel PS, Krolikowski JG, Kersten JR, Warltier DC. Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology 2005;102:102–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Bell RM, Yellon DM. Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3K, Akt and eNOS. J Mol Cell Cardiol 2003;35:185–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Baines CP, Wang L, Cohen MV, Downey JM. Myocardial protection by insulin is dependent on phospatidylinositol 3-kinase but not protein kinase C or KATP channels in the isolated rabbit heart. Basic Res Cardiol 1999;94:188–98.PubMedCrossRefGoogle Scholar
  37. 37.
    Mocanu MM, Bell RM, Yellon DM. PI3 kinase and not p42/p44 appears to be implicated in the protection conferred by ischemic preconditioning. J Mol Cell Cardiol 2002;34:661–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM. Serine/threonine protein kinases and apoptosis. Exp Cell Res 2000;256:34–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Matsui T, Li L, del Monte F, Fukui Y, Franke TF, Hajjar RJ, et al. Adenoviral gene transfer of activated phosphatidylinositol 3′-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 1999;100:2373–9.PubMedGoogle Scholar
  40. 40.
    Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia–reperfusion injury in mouse heart. Circulation 2000;101:660–7.PubMedGoogle Scholar
  41. 41.
    Takahama H, Minamino T, Hirata A, Ogai A, Asanuma H, Fujita M, et al. Granulocyte colony-stimulating factor mediates cardioprotection against ischemia/reperfusion injury via phosphatidylinositol-3-kinase/Akt pathway in canine hearts. Cardiovasc Drugs Ther 2006;20:159–65.PubMedCrossRefGoogle Scholar
  42. 42.
    Manickavasagam S, Ye Y, Lin Y, Perez-Polo RJ, Huang MH, Lui CY, et al. The cardioprotective effect of a statin and cilostazol combination: relationship to Akt and endothelial nitric oxide synthase activation. Cardiovasc Drugs Ther 2007;21:321–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Uchiyama T, Engelman RM, Maulik N, Das DK. Role of Akt signaling in mitochondrial survival pathway triggered by hypoxic preconditioning. Circulation 2004;109:3042–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Tong H, Chen W, Steenbergen C, Murphy E. Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res 2000;87:309–15.PubMedGoogle Scholar
  45. 45.
    Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 2004;95:230–2.PubMedCrossRefGoogle Scholar
  46. 46.
    Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res 2005;69:178–85.PubMedCrossRefGoogle Scholar
  47. 47.
    Yang XM, Philipp S, Downey JM, Cohen MV. Postconditioning’s protection is not dependent on circulatin blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol 2005;100:57–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Chiari PC, Bienengraeber MW, Pagel PS, Krolikowski JG, Kersten JR, Warltier DC. Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology 2005;102:102–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischemia–reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 2004;61:448–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Bose AK, Mocanu MM, Carr RD, Yellon DM. Glucagon like peptide-1 is protective against myocardial ischemia/reperfusion injury when given either as a preconditioning mimetic or at reperfusion in an isolated rat heart model. Cardiovasc Drugs Ther 2005;19:9–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 1998;281:2042–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Liu H, Zhang HY, Zhu X, Shao Z, Yao Z. Preconditioning blocks cardiocyte apoptosis: role of K(ATP) channels and PKC-epsilon. Am J Physiol Heart Circ Physiol 2002;282:H1380–6.PubMedGoogle Scholar
  53. 53.
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999;399:601–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Balakirev MY, Khramtsov VV, Zimmer G. Modulation of the mitochondrial permeability transition by nitric oxide. Eur J Biochem 1997;246:710–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Yuan QL, Yang CX, Xu P, et al. Neuroprotective effects of ginsenoside Rb1 on transient cerebral ischemia in rats. Brain Res 2007;1167:1–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin 2005;26:143–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Sengupta S, Toh SA, Sellers LA, et al. Modulating angiogenesis: the yin and the yang in ginseng. Circulation 2004;110:1219–25.PubMedCrossRefGoogle Scholar
  58. 58.
    Lee FC. Facts about ginseng, the elixir of life. Elizabeth: Hollyn International Corp.; 1992.Google Scholar
  59. 59.
    Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2001;70:535–602.PubMedCrossRefGoogle Scholar
  60. 60.
    Ferby I, Waga I, Kume K, Sakanaka C, Shimizu T. PAF-induced MAPK activation is inhibited by wortmannin in neutrophils and macrophages. Adv Exp Med Biol 1996;416:321–6.PubMedGoogle Scholar
  61. 61.
    Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94:1621–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zhi Wang
    • 1
    • 2
  • Min Li
    • 3
  • Wei-kang Wu
    • 2
  • Hong-mei Tan
    • 2
  • Deng-feng Geng
    • 4
  1. 1.Department of AnesthesiologyThe Second Affiliated Hospital, Sun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Pathophysiology, Institute of Integrated Traditional Chinese and Western Medicine, Zhongshan School of MedicineSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  3. 3.School of Chinese MedicineHong Kong Baptist UniversityHong KongChina
  4. 4.Department of CardiologyThe Second Affiliated Hospital, Sun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations