Cardiovascular Drugs and Therapy

, Volume 22, Issue 3, pp 215–224 | Cite as

Metformin: Effects on Micro and Macrovascular Complications in Type 2 Diabetes

Article

Abstract

Introduction

The antihyperglycaemic agent metformin is widely used in the treatment of type 2 diabetes. Data from the UK Prospective Diabetes Study and retrospective analyses of large healthcare databases concur that metformin reduces the incidence of myocardial infarction and increases survival in these patients. This apparently vasoprotective effect appears to be independent of the blood glucose-lowering efficacy.

Effects of metformin

Metformin has long been known to reduce the development of atherosclerotic lesions in animal models, and clinical studies have shown the drug to reduce surrogate measures such as carotid intima-media thickness. The anti-atherogenic effects of metformin include reductions in insulin resistance, hyperinsulinaemia and obesity. There may be modest favourable effects against dyslipidaemia, reductions in pro-inflammatory cytokines and monocyte adhesion molecules, and improved glycation status, benefiting endothelial function in the macro- and micro-vasculature. Additionally metformin exerts anti-thrombotic effects, contributing to overall reductions in athero-thrombotic risk in type 2 diabetic patients.

Key words

metformin type 2 diabetes hyperglycaemia microvascular complications macrovascular complications 

References

  1. 1.
    Bailey CJ, Campbell IW, Chan JCN, et al. Metformin. The gold standard. Chichester: Wiley; 2007. p. 288.Google Scholar
  2. 2.
    Nathan DM, Buse JB, Davidson MB, Heine RJ, et al. Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. Diabetologia. 2006;49:1711–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005;65:384–411.CrossRefGoogle Scholar
  4. 4.
    Bailey CJ. Biguanides and NIDDM. Diabetes Care. 1992;15:755–72.PubMedCrossRefGoogle Scholar
  5. 5.
    Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334:574–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Wiernsperger NF, Bailey CJ. The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms. Drugs. 1999;58:31–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.PubMedGoogle Scholar
  8. 8.
    Cusi K, DeFronzo RA. Metformin: a review of its metabolic effects. Diabetes Revs. 1998;6:89–130.Google Scholar
  9. 9.
    Howlett HCS, Bailey CJ. Risk-benefit assessment of metformin in type 2 diabetes. Drug Safety. 1999;20:489–503.PubMedCrossRefGoogle Scholar
  10. 10.
    Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis. Epidemiology, pathophysiology and management. JAMA. 2002;287:2570–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Eckel RH, G rundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.PubMedCrossRefGoogle Scholar
  12. 12.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.CrossRefGoogle Scholar
  13. 13.
    UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.CrossRefGoogle Scholar
  14. 14.
    Holman RR. Invited presentation at 18th International Diabetes Federation Congress, Paris, 2003.Google Scholar
  15. 15.
    Kao J, Tobis J, McClelland RL, et al. Relation of metformin treatment to clinical events in diabetic patients undergoing percutaneous intervention. Am J Cardiol. 2004;93:1347–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Kahn SE, Haffner SM, Heise MA, Herman WH, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Cleland JGF, Atkin SL. Thiazolidinediones, deadly sins, surrogates and elephants. Lancet. 2007;370:1103–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Evans JM, Ogston SA, Emslie-Smith MA, Morris A. Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulphonylureas and metformin. Diabetologia. 2006;49:930–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Nichols GA, Koro CE, Gullion CM, et al. The incidence of congestive heart failure associated with antidiabetic therapies. Diabetes Metab Res Rev. 2005;21:51–7.PubMedCrossRefGoogle Scholar
  21. 21.
    McAfee AT, Koro C, Landon J, et al. Coronary heart disease outcomes in patients receiving antidiabetic agents. Pharmacoepidemiol Drug Safety. 2007;16:711–25.CrossRefGoogle Scholar
  22. 22.
    Johnson JA, Majumdar SR, Simpson SH, Toth EL. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care. 2002;25:2244–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Johnson JA, Simpson SH, Toth EL, Majumbar SR. Reduced cardiovascular morbidity and mortality associated with metformin use in subjects with type 2 diabetes. Diabetic Med. 2005;22:497–502.PubMedCrossRefGoogle Scholar
  24. 24.
    Eurich DT, Majumdar SR, McAlister FA, et al. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005;28:2345–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Masudi FA, Inzucchi SE, Wang Y, et al. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation. 2005;111:583–90.CrossRefGoogle Scholar
  26. 26.
    Eurich DT, McAlister FA, Blackburn DF, et al. Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review. Br Med J. 2007;335:458–9. DOI  10.1136/bmj.39314.620174.80.CrossRefGoogle Scholar
  27. 27.
    Roberts F, Ryan GJ. The safety of metformin in heart failure. Ann Pharmacother. 2007;41:462–6.Google Scholar
  28. 28.
    Jones GC, Macklin JP, Alexander WD. Contraindications to the use of metformin. Br Med J. 2003;326:4–5.CrossRefGoogle Scholar
  29. 29.
    Inzucchi SE. Metformin and heart failure: innocent until proven guilty. Diabetes Care. 2005;28:2585–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Holstein A, Stumvoll M. Contraindications can damage your health—is metformin a case in point? Diabetologia. 2005;48:2454–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Katakami N, Yamaski Y, Hayaishi-Okano R, et al. Metformin and gliclazide rather than glibenclamide attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia. 2004;47:1906–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Matsumoto K, Sera Y, Abbe Y, et al. Metformin attenuates progression of carotid arterial wall thickness in patients with type 2 diabetes. Diabetes Res Clin Prac. 2004;64:2205–8.CrossRefGoogle Scholar
  33. 33.
    Orio F, Palomba S, Cascella T, et al. Improvement in endothelial structure and function after metformin treatment in young normal weight women with polycystic ovary syndrome: results of a 6-month study. J Clin Endocrinol Metab. 2005;90:6072–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Li L, Mamputu JC, Wiernsperger N, Renier G. Signalling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin: inhibitory effect of metformin. Diabetes. 2005;54:2227–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Sirtori CR, Franceschini G, Gianfranceschi G, et al. Metformin improves peripheral vascular in nonhyperlipidemic patients with arterial disease. J Cardiovasc Pharmacol. 1984;6:914–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Montaguti U, Cellin D, Ceredi C, Descovitch GC. Efficacy of the long-term administration of metformin in hyperlipidaemic patients. Res Clin Forums. 1979;1:95–103.Google Scholar
  37. 37.
    Wheatcroft SB, Williams IL, Shah AM, Kearney MT. Pathophysiological implications of insulin resistance on vascular endothelial function. Diabetic Med. 2003;20:255–68.PubMedCrossRefGoogle Scholar
  38. 38.
    Sjoholm A, Nystrom T. Endothelial inflammation in insulin resistance. Lancet. 2005;365:610–2.PubMedGoogle Scholar
  39. 39.
    Lyon CJ, Law RE, Hsueh WA. Adiposity, inflammation and atherogenesis. Endocrinology. 2003;144:2195–200.PubMedCrossRefGoogle Scholar
  40. 40.
    Saenz A, Fernandez-Esteban I, Mataix A et al. Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 2005, CD002966.Google Scholar
  41. 41.
    Schafers RF. Do effects on blood pressure contribute to improved clinical outcomes with metformin? Diabetes Metab. 2003;29:62–70.Google Scholar
  42. 42.
    Wulffele MG, Kooy A, de Zeeuw D, et al. The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. J Intern Med. 2004;256:1–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Lawrence JM, Reid J, Taylor GJ, et al. Favorable effects of pioglitazone and metformin compared with gliclazide on lipoprotein subfractions in overweight patients with early type 2 diabetes. Diabetes Care. 2004;27:41–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Ohira M, Miyashita Y, Ebisuno M, et al. Effect of metformin on serum lipoprotein lipase mass levels and LDL particle size in type 2 diabetes mellitus patients. Diabetes Res Clin Pract. 2007;78:34–41.PubMedCrossRefGoogle Scholar
  45. 45.
    Chu NV, Kong AP, Kim DD, et al. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care. 2002;25:542–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37:1344–50.PubMedCrossRefGoogle Scholar
  47. 47.
    De Aguiar LG, Bahia LR, Villela N, et al. Metformin improves endothelial vascular reactivity in first degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care. 2006;29:1083–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Vitale C, Mercuro G, Cornoldi F, et al. Metformin improves endothelial function in patients with metabolic syndrome. J Intern Med. 2005;258:250–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Marfella R, Acampora R, Verrazzo G, et al. Metformin improves hemodynamic and fheological responses to L-arginine in NIDDM patients. Diabetes Care. 1996;19:934–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Asagami T, Abbasi F, Stuelinger M, et al. Metformin treatment lowers asymmetric dimethylarginine concentrations in patients with type 2 diabetes. Metabolism. 2002;51:843–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Natale A, Baldeweg S, Toschi E, et al. Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes. Diabetes Care. 2004;27:1349–57.CrossRefGoogle Scholar
  52. 52.
    Kautzky-Willer A, ra A, Winzer C, et al. Insulin sensitivity during oral glucose tolerance test and its relation to parameters of glucose metabolism and endothelial function in type 2 diabetes subjects under metformin of thiazolidinedione. Diab Obesity Metab. 2006;8:561–7.CrossRefGoogle Scholar
  53. 53.
    Carantoni M, Abbasi F, Chu L, et al. Adherence of mononuclear cells to endothelium in vitro is increased in NIDDM. Diabetes Care. 1997;20:1462–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Mamputu JC, Wiernsperger N, Renier G. Metformin inhibits monocyte adhesion to endothelial cells and foam cell formation. Br J Diabetes Vasc Dis. 2003;3:302–10.Google Scholar
  55. 55.
    De Jager J, Kooy A, Lehert P. Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized placebo-controlled trial. J Intern Med. 2005;257:100–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Skrha J, Praznv M, Milgertova J, et al. Oxidative stress and endothelium influenced by metformin in type 2 diabetes mellitus. Eur J Clin Pharmacol. 2007;63:1107–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.PubMedCrossRefGoogle Scholar
  58. 58.
    Carter AM, Bennett CE, Bostock JA, Grant PJ. Metformin reduces C-reactive protein but not complement factor C3 in overweight patients with type 2 diabetes mellitus. Diabetic Med. 2005;22:1282–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Akbar DH. Effect of metformin and sulfonylurea on C-reactive protein level in well-controlled type 2 diabetics with metabolic syndrome. Endocrine. 2005;20:215–8.CrossRefGoogle Scholar
  60. 60.
    Morin-Papunen L, Rautio K, Ruokonen A, et al. Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:4649–54.PubMedCrossRefGoogle Scholar
  61. 61.
    Caballero AE, Degado A, Aguillar-Salinas CA, et al. The differential effects of metformin on markers of endothelial activation and inflammation in subjects with impaired glucose tolerance: a placebo-controlled, randomized clinical trial. J Clin Endocrinol Metab. 2004;89:3943–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Hattori Y, Suzuki K, Hattori S, et al. Metformin inhibits cytokine-induced nuclear factor kappa B activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension. 2006;47:1183–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114:597–605.PubMedCrossRefGoogle Scholar
  64. 64.
    Meifen C, Jie X, Linuo Z, et al. Nonenzymatical glycation of protein in vitro and its inhibition by aminoguanidine or metformin. Acta Acad Med Shanghai. 1998;25:35–8.Google Scholar
  65. 65.
    Beisswenger P, Howell S, Touchette A, et al. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes. 1999;48:198–202.PubMedCrossRefGoogle Scholar
  66. 66.
    Wiernsperger NF. 50 years later: is metformin a vascular drug with antidiabetic properties? Br J Diabetes Vasc Dis. 2007;7:204–10.CrossRefGoogle Scholar
  67. 67.
    Pavlovic D, Kocic R, Kocic G, et al. Effect of four-week metformin treatment on plasma and erythrocyte antioxidative defense enzymes in newly diagnosed obese patients with type 2 diabetes. Diabetes Obesity Metab. 2000;2:251–6.CrossRefGoogle Scholar
  68. 68.
    Ouslimani N, Peynet J, Bonnefont-Rousselot D, et al. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism. 2005;54:829–34.PubMedCrossRefGoogle Scholar
  69. 69.
    Mahrouf M, Ouslimani N, Peynet J, et al. Metformin reduces angiotensin-mediated intracellular production of reactive oxygen species in endothelial cells through the inhibition of protein kinase C. Biochem Pharmacol. 2006;72:176–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Onaran I, Guven GS, Ozdas SB, et al. Metformin does not prevent DNA damage in lymphocytes despite its antioxidant properties against cumene hydroperoxide-induced oxidative stress. Mutation Res. 2006;611:1–8.PubMedGoogle Scholar
  71. 71.
    Gargiulo P, Caccese D, Pignatelli P, et al. Metformin decreases platelet superoxide anion production in diabetic patients. Diabetes Metabolism Res Revs. 2002;18:156–9.CrossRefGoogle Scholar
  72. 72.
    Tessier D, Maheux P, Khalil A, Fulop T. Effects of gliclazide versus metformin on the clinical profile and lipid peroxidation markers in type 2 diabetes. Metabolism. 1999;48:897–903.PubMedCrossRefGoogle Scholar
  73. 73.
    Wiernsperger NF. Metformin: intrinsic vasculoprotective properties. Diabetes Technol Therap. 2000;2:259–72.CrossRefGoogle Scholar
  74. 74.
    Mamputu JC, Wiernsperger NF, Renier G. Antiatherogenic properties of metformin: the experimental evidence. Diabetes Metab. 2003;29:6S71–76.PubMedCrossRefGoogle Scholar
  75. 75.
    Marquie G. Effect of metformin on lipid metabolism in the rabbit aortic wall. Atherosclerosis. 1978;30:165–70.PubMedCrossRefGoogle Scholar
  76. 76.
    Marquie G. Metformin action on lipid metabolism in lesions of experimental aortic atherosclerosis of rabbits. Atherosclerosis. 1983;47:7–17.PubMedCrossRefGoogle Scholar
  77. 77.
    Chakrabarti R, Hocking ED, Fearnley GR. Fibrinolytic effect of metformin in coronary artery disease. Lancet. 1965;II:256–9.CrossRefGoogle Scholar
  78. 78.
    Hocking ED, Chakrabarti R, Evans J, Fearnley GR. Effects of biguanides and atromid on fibrinolysis. J Atheroscl Res. 1967;7:121–30.Google Scholar
  79. 79.
    Vague PH, Juhan-Vague I, Alessi MC, et al. Metformin decreases the high plasminogen activation inhibitor activity, plasma insulin and triglyceride levels in non-diabetic obese subjects. Thromb Haemostasis. 1987;57:326–8.Google Scholar
  80. 80.
    Grant PJ, Strickl;and MH, Booth NA, Prentice CRM. Metformin causes a reduction in basal and post-venous occlusion plasminogen activator inhibitor-1 in type 2 diabetic patients. Diabetic Med. 1991;8:361–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Nagi DK, Yudkin JS. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. Diabetes Care. 1993;16:621–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Grant PJ. The effect of high- and medium-dose metformin therapy on cardiovascular risk factors in patients with type II diabetes. Diabetes Care. 1996;19:64–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Grant PJ. Metformin reduces circulating factor VII concentrations in patients with type 2 diabetes mellitus. Thromb Haemostasis 1998;80:209.CrossRefGoogle Scholar
  84. 84.
    He G, Pedersen SB, Bruun JM, et al. Metformin, but not thiazolidinediones, inhibits plasminogen activator inhibitor-1 production in human adipose tissue. Horm Metab Res. 2003;35:18–23.PubMedCrossRefGoogle Scholar
  85. 85.
    Standeven KF, Ariens RAS, Whitaker P, et al. The effect of dimethyl biguanide on thrombin activity FXIII activation, fibrin polymerization and fibrin clot formation. Diabetes. 2002;51:189–97.PubMedCrossRefGoogle Scholar
  86. 86.
    Grant PJ. Beneficial effects of metformin on haemostasis and vascular function in man. Diabetes Metab. 2003;29:6S44–52.PubMedGoogle Scholar
  87. 87.
    Janka HU. Platelet and endothelial function tests during metformin treatment in diabetes mellitus. Horm Metab Res. 1985;12:120–2.Google Scholar
  88. 88.
    Gregorio F, Ambrosi F, Manfrini S. Poorly controlled elderly type 2 diabetic patients: the effects of increasing sulphonylurea dosages or adding metformin. Diabetic Med. 1999;16:1016–24.PubMedCrossRefGoogle Scholar
  89. 89.
    Weichert W, Breddin K. Antithrombotic effects of metformin in laser injured arteries. Diabetes Metab. 1988;14:540–43.Google Scholar
  90. 90.
    Massad L, Plotkine M, Allix M, Boulu RG. Antithrombic drugs in a carotid occlusion model: beneficial effect of the antidiabetic agent metformin. Diabetes Metab. 1988;14:544–48.Google Scholar
  91. 91.
    Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care. 1995;18:258–68.PubMedCrossRefGoogle Scholar
  92. 92.
    Diabetes Control and complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRefGoogle Scholar
  93. 93.
    Wiernsperger NF, Bouskela E. Microcirculation in insulin resistance and diabetes: more than just a complication. Diabetes Metab. 2003;29:6S77–87.PubMedCrossRefGoogle Scholar
  94. 94.
    Tooke JE. Microvascular function in human diabetes: a physiological perspective. Diabetes. 1995;44:721–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Stansberry KB, Shapiro SA, Hill MA, et al. Impaired peripheral vasomotion in diabetes. Diabetes Care. 1996;19:715–21.PubMedCrossRefGoogle Scholar
  96. 96.
    Sartoretto JL, Melo GA, Carvalho MH, et al. Metformin treatment restores the altered micro-vascular reactivity in neonatal streptozotocin-induced diabetic rats by increasing NOS activity, but not NOS expression. Life Sci. 2005;77:2676–89.PubMedCrossRefGoogle Scholar
  97. 97.
    Rapin JR, Lespinasse P, Yoa R. Effect of metformin on diabetic erythrocyte deformability in the presence of insulin: in vitro study on erythrocytes from diabetic patients. Diabetes Metab. 1988;14:610–12.Google Scholar
  98. 98.
    Valensi P, Behar A, Andre P, et al. The effects of metformin on the capillary permeability to albumin in women patients with cyclic edema. Angiology. 1995;46:401–8.PubMedGoogle Scholar
  99. 99.
    Jyothirmayi GN, Soni BJ, Masurekar M, et al. Effects of metformin on collagen glycation and diastolic dysfunction in diabetic myocardium. J Cardiovasc Pharmacol Therap. 1998;3:319–26.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Life and Health SciencesAston UniversityBirminghamUK

Personalised recommendations