Advertisement

Cardiovascular Drugs and Therapy

, Volume 21, Issue 1, pp 55–62 | Cite as

Genetic Variation in the B-Type Natiuretic Peptide Pathway Affects BNP Levels

  • David E. LanfearEmail author
  • Joshua M. Stolker
  • Sharon Marsh
  • Michael W. Rich
  • Howard L. McLeod
Article

Abstract

Purpose

The importance of B-type natriuretic peptide (BNP) as a diagnostic and therapeutic modality in cardiovascular disease is well known. BNP levels correlate clinical and physiologic characteristics, as well as outcomes. We sought to investigate the influence of BNP pathway genetic variation on BNP levels after adjustment for clinical/physiologic factors.

Materials and methods

DNA was extracted from 147 patients undergoing elective cardiac catheterization. Patients with elevated troponin were excluded. Detailed clinical data was collected including standard demographic, laboratory, echocardiographic and catheterization data. Genotype was determined at 19 loci in five genes relevant to the BNP pathway. Multivariable linear regression models of logBNP, adjusted for clinical variables, were used to assess the incremental influence of the genetic variants.

Results

Natriuretic peptide precursor B gene (NPPB) variants incrementally improved models of logBNP after inclusion of clinical/physiologic parameters. The NPPB −381 T > C genotype was significantly associated with logBNP in the model (p = 0.0005), with the model predicting 50% lower BNP levels in otherwise similar T/T vs. C/C subjects. The NPPB 777 G > A (3′ flanking region) genotype was of borderline significance (p = 0.0078). None of the other genotypes examined were significant (all p > 0.2).

Conclusions

Genetic variation in NPPB significantly impacts BNP levels after adjustment for clinical/physiologic factors. The full linear regression model predicted up to a 50% relative difference in BNP levels between NPPB −381 T > C genotype groups. This suggests that NPPB sequence variants affect BNP physiology, possibly via transcriptional regulation. Further studies are needed to define whether these variants impact the clinical interpretation of BNP levels.

Key words

BNP genetics natriuretic peptides left ventricular end-diastolic pressure heart failure 

Notes

Acknowledgements

All authors contributed to this research and preparation of the manuscript.The authors would like to thank Derek Van Booven for extraordinary informatics support.

References

  1. 1.
    McCullough PA, Philbin EF, Spertus JA, Kaatz S, Sandberg KR, Weaver WD. Confirmation of a heart failure epidemic: findings from the Resource Utilization Among Congestive Heart Failure (REACH) study. J Am Coll Cardiol 2002;39:60–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Heart Disease and Stroke Statistics—2005 Update. American Heart Association, 2004. (Accessed 2004, at http://www.americanheart.org/presenter.jhtml?identifier=1928.)
  3. 3.
    Jessup M, Brozena S. Heart failure. N Engl J Med 2003;348:2007–18.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen HH, Burnett JC, Jr. The natriuretic peptides in heart failure: diagnostic and therapeutic potentials. Proc Assoc Am Physicians 1999;111:406–16.PubMedGoogle Scholar
  5. 5.
    Stolker JM, Rich MW. B-type natriuretic peptide provides independent and incremental value in predicting left ventricular end-diastolic pressure in elderly patients. Am J Geriatric Cardiol 2005;14:109.Google Scholar
  6. 6.
    Stolker JM, Rich MW. The combination of B-type natriuretic peptide and C-reactive protein provides incremental value in predicting outcomes among older patients referred for cardiac catheterization. Am J Geriatric Cardiol 2005;14:109–10.Google Scholar
  7. 7.
    de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet 2003;362:316–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Drazner MH, de Lemos JA. Unexpected BNP levels in patients with advanced heart failure: a tale of caution and promise. Am Heart J 2005;149:187–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Troughton RW, Prior DL, Pereira JJ, Martin M, Fogarty H, Morehead A, et al. Plasma B-type natriuretic peptide levels in systolic heart failure: importance of left ventricular diastolic function and right ventricular systolic function. J Am Coll Cardiol 2004;43:416–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Nabel EG. Cardiovascular disease. N Engl J Med 2003;349:60–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Evans WE, McLeod HL. Pharmacogenomics-drug disposition, drug targets, and side effects. N Engl J Med 2003;348:538–49.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang TJ, Larson MG, Levy D, Benjamin EL, Corey D, Leip EP, et al. Heritability and genetic linkage of plasma natriuretic peptide levels. Circulation 2003;108:13–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Lanfear DE, Marsh S, McLeod HL. Sequence variants of natriuretic peptide receptor C are common and their frequency differs between African Americans and European Americans. J Card Fail 2004;10:S59.CrossRefGoogle Scholar
  14. 14.
    Rehemudula D, Nakayama T, Soma M, Takahashi Y, Uwabo J, Sato M, et al. Structure of the type B human natriuretic peptide receptor gene and association of a novel microsatellite polymorphism with essential hypertension. Circ Res 1999;84:605–10.PubMedGoogle Scholar
  15. 15.
    Rahmutula D, Nakayama T, Soma M, Kosuge K, Aoi N, Izumi Y, et al. Structure and polymorphisms of the human natriuretic peptide receptor C gene. Endocrine 2002;17:85–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Rahmutula D, Nakayama T, Soma M, Takahasji Y, Kunimoto M, Uwabo J, et al. Systematic screening of type B human natriuretic peptide receptor gene polymorphisms and association with essential hypertension. J Hum Hypertens 2001;15:471–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Knowles JW, Erickson LM, Guy VK, Sigel CS, Wilder JC, Maeda N. Common variations in noncoding regions of the human natriuretic peptide receptor A gene have quantitative effects. Hum Genet 2003;112:62–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Nakayama T, Soma M, Saito S, Honye J, Sato M, Aio N, et al. Missense mutation of exon 3 in the type A human natriuretic peptide receptor gene is associated with myocardial infarction. Med Sci Monit 2003;9:CR505–10.PubMedGoogle Scholar
  19. 19.
    Pitzalis MV, Sarzani R, Dessi-Fulgheri P, Lacoviello M, Forleo C, Lucarelli K, et al. Allelic variants of natriuretic peptide receptor genes are associated with family history of hypertension and cardiovascular phenotype. J Hypertens 2003;21:1491–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Nakayama T, Soma M, Takahashi Y, Rehemudula D, Kanmatsuse K, Furuya K. Functional deletion mutation of the 5’-flanking region of type A human natriuretic peptide receptor gene and its association with essential hypertension and left ventricular hypertrophy in the Japanese. Circ Res 2000;86:841–5.PubMedGoogle Scholar
  21. 21.
    Aoi N, Soma M, Nakayama T, Rahmutula D. Kosuge K, Izumi Y, et al. Variable number of tandem repeat of the 5’-flanking region of type-C human natriuretic peptide receptor gene influences blood pressure levels in obesity-associated hypertension. Hypertens Res 2004;27:711–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Lanfear DE, Marsh S, Cresci S, Shannon WD, Spertus JA, McLeod HL. Genotypes associated with myocardial infarction risk are more common in African Americans than in European Americans. J Am Coll Cardiol 2004;44:165–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Stoupakis G, Klapholz M. Natriuretic peptides: biochemistry, physiology, and therapeutic role in heart failure. Heart Dis 2003;5:215–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Freimuth RR, Stormo GD, McLeod HL. PolyMAPr: programs for polymorphism database mining, annotation, and functional analysis. Hum Mutat 2005;25:110–7.PubMedCrossRefGoogle Scholar
  25. 25.
    The International HapMap Project. Nature 2003;426:789–96.CrossRefGoogle Scholar
  26. 26.
    Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science 2002;296:2225–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Marsh S, King CR, Garsa AA, McLeod HL. Pyrosequencing of clinically relevant polymorphisms. Methods Mol Biol 2005;311:97–114.PubMedGoogle Scholar
  29. 29.
    Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002;70:425–34.PubMedCrossRefGoogle Scholar
  30. 30.
    LaPointe MC. Molecular regulation of the brain natriuretic peptide gene. Peptides 2005:944–56.CrossRefGoogle Scholar
  31. 31.
    Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 2004;32:D91–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Palmer BR, Frampton CM, Richards AM, Cameron VA, Nakayama T. Absence of a NPR-A gene functional deletion allele in a postmyocardial infarction cohort from New Zealand. Circ Res 2004;94:e86.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • David E. Lanfear
    • 1
    Email author
  • Joshua M. Stolker
    • 2
  • Sharon Marsh
    • 3
  • Michael W. Rich
    • 2
  • Howard L. McLeod
    • 4
  1. 1.Section of Advanced Heart Failure and Cardiac Transplantation, Henry Ford Heart and Vascular InstituteHenry Ford HospitalDetroitUSA
  2. 2.Department of Medicine, Cardiovascular DivisionWashington University in Saint LouisSaint LouisUSA
  3. 3.Department of MedicineWashington University in Saint LouisSaint LouisUSA
  4. 4.Institute for Pharmacogenomics and Individualized TherapyUniversity of North CarolinaChapel HillUSA

Personalised recommendations