The Effect of the Phytoestrogen Genistein on Myocardial Protection, Preconditioning and Oxidative Stress

  • Eftihia SbarouniEmail author
  • Efstathios K. Iliodromitis
  • Anastasia Zoga
  • Georgia Vlachou
  • Ioanna Andreadou
  • Dimitrios Th. Kremastinos
Basic Pharmacology – Myocardial Infarction



We have previously shown that estrogen administered in ovariectomized female rabbits significantly reduce myocardial infarct size. We now investigated whether the phytoestrogen genistein similarly protects ischemic myocardium and whether this is associated with its antioxidant properties. In addition, we examined whether genistein abolishes preconditioning, since at high doses, it inhibits tyrosine kinase.

Materials and methods

We studied five groups of New Zealand white female rabbits. Group A (n = 12) were normal controls, group B (n = 14) were ovariectomized 4 weeks prior to the experiment, group C (n = 10) were ovariectomized and treated with genistein (0.2 mg kg−1 day−1 subcutaneously) for 4 weeks before the experiment, group D (n = 12) had intact gonads and were treated with genistein (0.2 mg kg−1 day−1 subcutaneously) for 4 weeks before the experiment and group E (n = 8) were ovariectomized 4 weeks prior to the experiment and treated with a single dose of genistein (0.2 mg kg−1 day−1 subcutaneously) just prior to the experiment. All animals underwent 30 min of heart ischemia and 120 min of reperfusion, with (subgroup I) or without (subgroup II) preconditioning. Malondialdehyde (MDA) concentration just before the experiment was determined.


We found significant differences between the groups—p < 0.0001 in factorial ANOVA. The groups with preconditioning had significant smaller infarcts compared to those without—AI vs AII (10.66 ± 1.42% vs 43.22 ± 2.67%), BI vs BII (18.53 ± 2.36% vs 43.05 ± 8.37%), CI vs CII (10.17 ± 2.07% vs 44.5 ± 5.47%), DI vs DII (14.98 ± 2.36% vs 37.79 ± 3.92%) and EI vs EII (17.11 ± 3.24% vs 42.08 ± 3.42%), p < 0.0005. Ovariectomy was not associated with larger myocardial infarctions—AII vs BII, p = NS. Genistein, for 4 weeks, did not protect ischemic myocardium in either ovariectomized or non-ovariectomized animals—BII vs CII and AII vs DII, p = NS. There was no significant difference between the preconditioned animals, with intact gonads or ovariectomized (AI vs BI, p = NS), ovariectomized with or without genistein (BI vs CI, p = NS) and non-ovariectomized whether treated with genistein or not (AI vs DI, p = NS). A single dose of genistein did not offer any protection (EII vs BII, p = NS), nor did it modify the preconditioning effect (EI vs BI, p = NS). We found no significant difference in MDA plasma levels between the groups.


Genistein, at this dose, does not reduce infarct size per se nor abolishes the protection induced by preconditioning, in both ovariectomized and non-ovariectomized animals. Preconditioning offers myocardial protection in animals with intact gonads as well as estrogen deprived; bilateral ovariectomy, at least during short-term, is not associated with larger myocardial infarcts compared to control animals. In addition estrogen deprivation, during short term, as well as genistein do not modify oxidative stress.

Key words

estrogen genistein preconditioning infarction oxygen free radicals 


  1. 1.
    Adlercreutz H, Markkanen H, Watanabe S. Plasma concentrations of phytoestrogens in Japanese men. Lancet 1993;342:1209–10PubMedCrossRefGoogle Scholar
  2. 2.
    Barnes S. Evolution of the health benefits of soy isoflavones. Proc Soc Exp Biol Med 1998;217:386–92.PubMedGoogle Scholar
  3. 3.
    Anderson JW, Johnstone BM, Cook-Newell MD. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 1995;333:276–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Tikkanen MJ, Wahala K, Ojala S, Vihma V, Adlercreutz H. Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Natl Acad Sci USA 1998;95:3106–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Honore EK, Williams JK, Anthony MS, Clarkson TB. Soy isoflavones enhance coronary vascular reactivity in atherosclerotic female macaques. Fertil Steril 1997;67:148–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Anthony MS, Clarkson TB, Bullock BC, Wagner JD. Soy protein versus soy phytoestrogens in prevention of diet-induced coronary artery atherosclerosis of male cynomologus monkeys. Arterioscler Thromb Vasc Biol 1997;17:2524–31.PubMedGoogle Scholar
  7. 7.
    Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997;138:863–70.PubMedCrossRefGoogle Scholar
  8. 8.
    Deodato B, Altavilla D, Squadrito G, Campo GM, Arlotta M, Minutoli L, et al. Cardioprotection by the phytoestrogen genistein in experimental myocardial ischaemia–reperfusion injury. Br J Pharmacol 1999;128:1683–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Squadrito F, Altavilla D, Squadrito G, Saitta A, Cucinotta D, Minutoli L, et al. Genistein supplementation and estrogen replacement therapy improve endothelial dysfunction induced by ovariectomy in rats. Cardiovasc Res 2000;45:454–62.PubMedCrossRefGoogle Scholar
  10. 10.
    Squadrito F, Altavilla D, Morabito N, Crisufulli A, D’ Anna R, Corrado F, et al. The effect of the phytoestrogen genistein on plasma nitric oxide concentrations, endothelin-1 levels and endothelium dependent vasodilation in postmenopausal women. Atherosclerosis 2002;163:339–47.PubMedCrossRefGoogle Scholar
  11. 11.
    Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987;262:5592–5.PubMedGoogle Scholar
  12. 12.
    Fatehi-Hassanabad Z, Farratt JR. Genistein, an inhibitor of tyrosine kinase, prevents the antiarrhythmic effects of preconditioning. Eur J Pharmacol 1997;338:67–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Imagawa JI, Baxter GF, Yellon DM. Genistein, a tyrosine kinase inhibitor, blocks the second window of protection 48 h after ischemic preconditioning in the rabbit. J Mol Cell Cardiol 1997;29:1885–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Fryer RM, Schultz JE, Hsu AK, Gross GJ. Pretreatment with tyrosine kinase inhibitors partially attenuates ischemic preconditioning in rat hearts. Am J Physiol 1997;275:H2009–15.Google Scholar
  15. 15.
    Iliodromitis EK, Kremastinos DT, Katritsis DG, Papadopoulos C, Hearse DJ. Multiple cycles of preconditioning cause loss of protection in open-chest rabbits. J Mol Cell Cardiol 1997;29:915–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Kremastinos DT, Bofilis E, Karavolias G, Papalois A, Kaklamanis L, Iliodromitis EK. Preconditioning limits myocardial infarct size in hypercholesterolemic rabbits. Atherosclerosis 2000;150:81–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Sbarouni E, Iliodromitis E, Bofilis E, Kyriakides Z, Kremastinos D. Short-term estrogen reduces myocardial infarct size in ophorectomized female rabbits in a dose-dependent manner. Cardiovasc Drugs Ther 1998;12:457–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Sbarouni E, Iliodromitis EK, Bofilis E, Kyriakides Z, Kremastinos D. Estrogen, alone and combined with progesterone, but not raloxifene reduce myocardial infarct size. Eur J Pharmacol 2003;467:163–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Mchugh NA, Cook SM, Shairer JL, Bidgoli MM, Merrill GF. Ischemia and reperfusion induced ventricular arrythmias in dogs: effects of estrogen. Am J Physiol 1995;268:H2569–73.PubMedGoogle Scholar
  20. 20.
    Kim YD, Chen B, Beauregard J, Kouretas P, Thomas G, Farhat MY, et al. 17β-estradiol prevents dysfunction of canine coronary endothelium and myocardium and reperfusion arrhythmias after brief ischemia-reperfusion. Circulation 1996;94:2901–4.PubMedGoogle Scholar
  21. 21.
    Node K, Kitakaze M, Kosaka H, Minamino T, Funaya H, Hori M. Amelioration of ischemia- and reperfusion-induced myocardial injury by 17β-estradiol: role of nitric oxide and calcium-activated potassium channels. Circulation 1997;96:1953–63.PubMedGoogle Scholar
  22. 22.
    Squadrito F, Altavilla D, Squadrito G, Campo GM, Arlotta M, Arcoraci V, et al. 17β-oestradiol reduces cardiac leukocyte accumulation in myocardial ischaemia reperfusion injury in rat. Eur J Pharmacol 1997;335:185–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee MT, Su SF, Tsai CC, Lee YT, Tsai CH. Cardioprotective effects of 17β-estradiol produced by activation of mitochondrial ATP-sensitive K+ channels in canine hearts. J Mol Cell Cardiol 2000;2:1147–58.CrossRefGoogle Scholar
  24. 24.
    Lee TM, Su SF, Chou TF, Tsai CH. Pharmacologic preconditioning of estrogen by activation of the myocardial adenosine triphosphate-sensitive potassium channel in patients undergoing coronary angioplasty. J Am Coll Cardiol 2002;39:871–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Liew R, Stagg MA, Chan J, Collins P, MacLeod KT. Gender determines the acute actions of genistein on intracellular calcium regulation in the guinea-pig heart. Cardiovasc Res 2004;61:66–76.PubMedCrossRefGoogle Scholar
  26. 26.
    Mishra SK, Abbot SE, Choudhury Z, Cheng M, Khatab N, Maycock NJ, et al. Endothelium-dependent relaxation of rat aorta and main pulmonary artery by the phytoestrogens genistein and daidzein. Cardiovasc Res 2000;46:539–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Figtree GA, Griffiths H, Lu YQ, Webb CM, MacLeod K, Collins P. Plant-derived estrogen relax coronary arteries in vitro by a calcium antagonistic mechanism. J Am Coll Cardiol 2000;35:1977–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Walker HA, Dean TS, Sanders TAB, Jackson G, Ritter JM, Chowienczyk PJ. The phytoestrogen genistein produces acute nitric oxide-dependent dilation of human forearm vasculature with similar potency to 17β-estradiol. Circulation 2001;103:258–62.PubMedGoogle Scholar
  29. 29.
    Williams JK, Anthony MS, Herrington DM. Interactive effects of soy protein and estradiol on coronary artery reactivity in atherosclerotic, ovariectomized monkeys. Menopause 2001;8:307–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Simons LA, Konigsmark M, Simons J, Celermajer DS. Phytoestrogens do not influence lipoprotein levels or endothelial function in healthy, postmenopausal women. Am J Cardiol 2000;85:1297–301.PubMedCrossRefGoogle Scholar
  31. 31.
    Teede HJ, McGrath BP, DeSilva L, Cehun M, Fassoulakis A, Nestel PJ. Isoflavones reduce arterial stiffness: a placebo-controlled study in men and postmenopausal women. Arterioscler Thromb Vasc Biol 2003;23(6):1066–71.PubMedCrossRefGoogle Scholar
  32. 32.
    McNulty PH, Jagasia D, Whiting JM, Caulin-Glaser T. Effect of 6-wk estrogen withdrawal or replacement on myocardial ischemic tolerance in rats. Am J Physiol Heart Circ 2000;278(4):H1030–4.Google Scholar
  33. 33.
    Song X, Li G, Vaage J, Valen G. Effects of sex, gonadectomy, and oestrogen substitution on ischemic preconditioning and ischaemia–reperfusion injury in mice. Acta Physiol Scand 2003;177(4):459–66.PubMedCrossRefGoogle Scholar
  34. 34.
    Humpreys RA, Kane KA, Parrat JR. The influence of maturation and gender on the anti-arrhythmic effect of ischaemic preconditioning in rats. Basic Res Cardiol 1997;94:1–8.CrossRefGoogle Scholar
  35. 35.
    Shinmura K, Nagai M, Tamaki K, Bolli R. Gender and aging do not impair opioid-induced late preconditioning in rats. Basic Res Cardiol 2004;99:46–55.PubMedCrossRefGoogle Scholar
  36. 36.
    Turcato S, Turnbull L, Wang GY, Honbo N, Simpson PC, Karliner JS, Baker AJ. Ischemic preconditioning depends on age and gender. Basic Res Cardiol 2005;101:1–9.Google Scholar
  37. 37.
    Hernandez I, Delgado JL, Diaz, J, Quesada T, Teruel MJ, Llanos MC, Carbonell LF. 17beta-estradiol prevents oxidative stress and decreases blood pressure in ovariectomized rats. Am J Physiol Regul Integr Comp Physiol 2000;279(5):R1599–605.PubMedGoogle Scholar
  38. 38.
    Strehlow K, Rotter S, Wassmann S, Adam O, Grohé C, Laufs K, et al. Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 2003;93(2):170–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Gomez-Zubeldia MA, Hernandez R, Viguera J, Arbues JJ, Aparicio A, Millan JC. Effect of bilateral ovariectomy and ovarian steroid hormones on the antioxidant systems and plasma malondialdehyde levels in Wistar rats. Endocr Res 2000;26(1):97–107.PubMedCrossRefGoogle Scholar
  40. 40.
    Ho KP, Li L, Zhao L, Quian ZM. Genistein protects primary cortical neurons from iron-induced lipid peroxidation. Mol Cell Biochem 2003;247:219–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Erba D, Riso P, Criscuoli F, Testolin G. Malondialdehyde production in Jurkat T cells subjected to oxidative stress. Nutrition 2003;19(6):545–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Eftihia Sbarouni
    • 1
    Email author
  • Efstathios K. Iliodromitis
    • 2
  • Anastasia Zoga
    • 2
  • Georgia Vlachou
    • 2
  • Ioanna Andreadou
    • 3
  • Dimitrios Th. Kremastinos
    • 2
  1. 1.2nd Department of CardiologyOnassis Cardiac Surgery CenterAthensGreece
  2. 2.Second University Department of Cardiology, Medical School, Attikon General HospitalUniversity of AthensAthensGreece
  3. 3.Department of Pharmaceutical Chemistry, School of PharmacyUniversity of AthensAthensGreece

Personalised recommendations