Advertisement

Mathematical Model of the Process of Circuit Charging of an Adsorption Methane Storage System

  • E. M. Strizhenov
  • S. S. ChugaevEmail author
  • A. A. Zherdev
Article
  • 26 Downloads

A mathematical model of the process of circuit charging of a methane adsorption storage system that takes into account the limited rate of heat and mass transfer between the gas and the adsorbent is presented. The mathematical model is designed primarily to simulate fast processes. An approach to a solution of the model to simulate circuit charging in cases of loose adsorbent and monoblock adsorbent with included channels to reduce hydraulic losses as well as an approach that implements an experimental adsorbent storage system with distribution of flows are presented.

Key words

adsorption adsorbent methane storage adsorbed natural gas circuit charging mathematical simulation mathematical modeling heat and mass exchange processes heat and mass transfer processes 

References

  1. 1.
    K. A. Rahman, W. S. Loh, A. Chakraborty, et al., “Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage,” Applied Thermal Engr., 31, 1630–1639 (2011).CrossRefGoogle Scholar
  2. 2.
    L. Z. Zhang and L. Wang, “Effects of coupled heat and mass transfers in adsorbent on the performance of a waste heat adsorption cooling unit,” Applied Thermal Engr., 19, 195–215 (1999).CrossRefGoogle Scholar
  3. 3.
    S. Sahoo and M. Ramgopal, “Theoretical performance of an adsorbed natural gas storage system subjected to variable charge–discharge conditions,” Intern. J. Ambient Energy, 37, 372–383 (2014).CrossRefGoogle Scholar
  4. 4.
    A. P. Tsitovich, “Adsorption system with heat pipe thermal control for mobile storage of gaseous fuel,” Int. J. Thermal Sci., 120, 252–262 (2017).CrossRefGoogle Scholar
  5. 5.
    L. I. Vasil’ev [Vasiliev], L. E. Kanonchik, and A. P. Tsitovich, “Comprehensive study of a sorption-based storage vessel with thermal control for gaseous fuel,” J. Engr. Physics and Thermophysics, 89, 878–885 (2016).Google Scholar
  6. 6.
    L. I. Vasiliev, L. E. Kanonchik, D. A. Mishkinis, and M. I. Rabetsky, “Adsorbed natural gas storage and transportation vessel,” Int. J. Thermal Sci., 39, 1047–1055 (2000).CrossRefGoogle Scholar
  7. 7.
    D. Ybyraiymkul, K. C. Ng, and A. Kaltayev, “Experimental and numerical study of effect of thermal management on storage capacity of the adsorbed natural gas storage,” Appl. Thermal Engr., 125, 523–531 (2017).CrossRefGoogle Scholar
  8. 8.
    P. K. Sahoo, M. John, B. I. Newalker, et al., “Filling characteristics for an activated carbon based adsorbed natural gas storage system,” Industrial & Engineering Chemistry Research, 50, 13000–13011 (2011).CrossRefGoogle Scholar
  9. 9.
    K. H. Patil and S. Sahoo, “Charge characteristics of adsorbed natural gas storage system based on MAXSORB III,” J. Natural Gas Science and Engr., 52, 267–282 (2018).CrossRefGoogle Scholar
  10. 10.
    S. Sahoo and M. Ramgopal, “Regression equations for predicting discharge performance of adsorbed natural gas storage systems,” Appl. Thermal Engr., 86, 127–134 (2015).CrossRefGoogle Scholar
  11. 11.
    S. Sahoo and M. Ramgopal, “A simple regression equation for predicting charge characteristics of adsorbed natural gas storage systems,” Appl. Thermal Engr., 73, 1093–1100 (2014).Google Scholar
  12. 12.
    J. C. Santos, J. M. Gurgel, and I. Marcondes, “Analysis of a new methodology applied to the desorption of natural gas in activated carbon vessels,” Applied Thermal Engr., 73, 931–939 (2014).CrossRefGoogle Scholar
  13. 13.
    J. C. Santos, J. M. Gurgel, and I. Marcondes, “Numerical simulation of fast charge of natural gas on activated carbon in conjunction with variable velocity,” Appl. Thermal Engr., 90, 258–265 (2015).CrossRefGoogle Scholar
  14. 14.
    J. C. Santos, I. Marcondes, and J. M. Gurgel, “Performance analysis of a new tank configuration applied to the natural gas storage systems by adsorption,” Appl. Thermal Engr., 29, 2365–2372 (2009).CrossRefGoogle Scholar
  15. 15.
    M. J. M. Da Silva and L. A. Sphaier, “Dimensionless lumped formulation for performance assessment of adsorbed natural gas storage,” Appl. Energy, 87, 1572–1580 (2010).CrossRefGoogle Scholar
  16. 16.
    R. Basumatary, P. Dutta, M. Prasad, and K. Srinivasan, “Thermal modeling of activated carbon based adsorptive natural gas storage system,” Carbon, 43, 541–549 (2005).CrossRefGoogle Scholar
  17. 17.
    S. C. Hirata, P. Couto, L. G. Lara, and R. M. Cotta, “Modeling and hybrid simulation of slow discharge process of adsorbed methane tanks,” Int. J. Thermal Sci., 48, 1176–1183 (2009).CrossRefGoogle Scholar
  18. 18.
    E. M. Strizhenov, A. A. Zherdev, R. V. Petrochenko, et al., “A study of methane storage characteristics of compacted adsorber AU-1,” Chemical and Petroleum Engr., 52, 11–12 (2017).Google Scholar
  19. 19.
    E. M. Strizhenov, A. A. Zherdev, A. A. Fomkin, and A. A. Pribylov, “Adsorption of methane on AU-1 microporous carbon adsorbent,” Protection of Metals and Physical Chemistry of Surfaces, 48, I. 6, 614–619 (2012).CrossRefGoogle Scholar
  20. 20.
    E. M. Strizhenov, A. A. Zherdev, I. A. Smirnov, et al., “Low-temperature adsorption of methane on microporous AU-1 carbon adsorbent,” Protection of Metals and Physical Chemistry of Surfaces, 50, I. 1, 15–21 (2014).CrossRefGoogle Scholar
  21. 21.
    E. M. Strizhenov, A. A. Zherdev, A. A. Podchufarov, et al., “Capacity and thermodynamic nomograph for an adsorption methane storage system,” Chemical and Petroleum Engr., 51, 1. 11, 812–818 (2016).CrossRefGoogle Scholar
  22. 22.
    S. S. Chugaev, E. M. Strizhenov, A. A. Zherdev, et al., “Fire- and explosion-safe low-temperature filling of an adsorption natural gas storage system,” Chemical and Petroleum Engr., 52, 1. 11–12, 846–854 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. M. Strizhenov
    • 1
  • S. S. Chugaev
    • 2
    Email author
  • A. A. Zherdev
    • 2
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesBauman Moscow State Technical UniversityMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations