Advertisement

Drug repurposing towards targeting cancer stem cells in pediatric brain tumors

Abstract

In the pediatric population, brain tumors represent the most commonly diagnosed solid neoplasms and the leading cause of cancer-related deaths globally. They include low-grade gliomas (LGGs), medulloblastomas (MBs), and other embryonal, ependymal, and neuroectodermal tumors. The mainstay of treatment for most brain tumors includes surgical intervention, radiation therapy, and chemotherapy. However, resistance to conventional therapy is widespread, which contributes to the high mortality rates reported and lack of improvement in patient survival despite advancement in therapeutic research. This has been attributed to the presence of a subpopulation of cells, known as cancer stem cells (CSCs), which reside within the tumor bulk and maintain self-renewal and recurrence potential of the tumor. An emerging promising approach that enables identifying novel therapeutic strategies to target CSCs and overcome therapy resistance is drug repurposing or repositioning. This is based on using previously approved drugs with known pharmacokinetic and pharmacodynamic characteristics for indications other than their traditional ones, like cancer. In this review, we provide a synopsis of the drug repurposing methodologies that have been used in pediatric brain tumors, and we argue how this selective compilation of approaches, with a focus on CSC targeting, could elevate drug repurposing to the next level.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2

References

  1. 1.

    Pollack, I. F., & Jakacki, R. I. (2011). Childhood brain tumors: epidemiology, current management and future directions. Nature Reviews Neurology, 7(9), 495–506. https://doi.org/10.1038/nrneurol.2011.110.

  2. 2.

    Pollack, I. F. (1994). Brain tumors in children. New England Journal of Medicine, 331(22), 1500–1507. https://doi.org/10.1056/nejm199412013312207.

  3. 3.

    Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69(1), 7–34. https://doi.org/10.3322/caac.21551.

  4. 4.

    Smith, M. A., & Reaman, G. H. (2015). Remaining challenges in childhood cancer and newer targeted therapeutics. Pediatric Clinics of North America, 62(1), 301–312. https://doi.org/10.1016/j.pcl.2014.09.018.

  5. 5.

    Jones, D. T. W., Kieran, M. W., Bouffet, E., Alexandrescu, S., Bandopadhayay, P., Bornhorst, M., et al. (2018). Pediatric low-grade gliomas: next biologically driven steps. Neuro-Oncology, 20(2), 160–173. https://doi.org/10.1093/neuonc/nox141.

  6. 6.

    Aldape, K., Brindle, K. M., Chesler, L., Chopra, R., Gajjar, A., Gilbert, M. R., et al. (2019). Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 16(8), 509–520. https://doi.org/10.1038/s41571-019-0177-5.

  7. 7.

    Mackay, A., Burford, A., Carvalho, D., Izquierdo, E., Fazal-Salom, J., Taylor, K. R., et al. (2017). Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell, 32(4), 520–537.e525. https://doi.org/10.1016/j.ccell.2017.08.017.

  8. 8.

    Quail, D. F., & Joyce, J. A. (2017). The microenvironmental landscape of brain tumors. Cancer Cell, 31(3), 326–341. https://doi.org/10.1016/j.ccell.2017.02.009.

  9. 9.

    Gilbertson, R. J. (2011). Mapping cancer origins. Cell, 145(1), 25–29. https://doi.org/10.1016/j.cell.2011.03.019.

  10. 10.

    Abou-Antoun, T. J., Hale, J. S., Lathia, J. D., & Dombrowski, S. M. (2017). Brain cancer stem cells in adults and children: cell biology and therapeutic implications. Neurotherapeutics, 14(2), 372–384. https://doi.org/10.1007/s13311-017-0524-0.

  11. 11.

    Bahmad, H. F., Chamaa, F., Assi, S., Chalhoub, R. M., Abou-Antoun, T., & Abou-Kheir, W. (2019). Cancer stem cells in neuroblastoma: expanding the therapeutic frontier. Frontiers in Molecular Neuroscience, 12, 131. https://doi.org/10.3389/fnmol.2019.00131.

  12. 12.

    Bahmad, H. F., & Poppiti, R. J. (submitted). Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets. Journal of Clinical Pathology.

  13. 13.

    Lathia, J. D. (2013). Cancer stem cells: moving past the controversy. CNS Oncol, 2(6), 465–467. https://doi.org/10.2217/cns.13.42.

  14. 14.

    Nowak-Sliwinska, P., Scapozza, L., & Altaba, A. R. I. (2019). Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochimica et biophysica acta. Reviews on cancer, 1871(2), 434–454, https://doi.org/10.1016/j.bbcan.2019.04.005.

  15. 15.

    Hernandez, J. J., Pryszlak, M., Smith, L., Yanchus, C., Kurji, N., Shahani, V. M., et al. (2017). Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as Cancer therapeutics. Frontiers in Oncology, 7, 273. https://doi.org/10.3389/fonc.2017.00273.

  16. 16.

    Bhat-Nakshatri, P., Goswami, C. P., Badve, S., Sledge Jr., G. W., & Nakshatri, H. (2013). Identification of FDA-approved drugs targeting breast cancer stem cells along with biomarkers of sensitivity. Scientific Reports, 3, 2530. https://doi.org/10.1038/srep02530.

  17. 17.

    Tan, S. K., Jermakowicz, A., Mookhtiar, A. K., Nemeroff, C. B., Schürer, S. C., & Ayad, N. G. (2018). Drug repositioning in glioblastoma: a pathway perspective. [review]. Front Pharmacol, 9(218). https://doi.org/10.3389/fphar.2018.00218.

  18. 18.

    Pui, C.-H., Gajjar, A. J., Kane, J. R., Qaddoumi, I. A., & Pappo, A. S. (2011). Challenging issues in pediatric oncology. Nature Reviews Clinical Oncology, 8(9), 540–549. https://doi.org/10.1038/nrclinonc.2011.95.

  19. 19.

    National Cancer Institute. (2010). Surveillance, epidemiology and end results (pp. 1975–2007). SEER Cancer Statistics Review: Previous Version http://seer.cancer.gov/csr/.

  20. 20.

    Corsello, S. M., Bittker, J. A., Liu, Z., Gould, J., McCarren, P., Hirschman, J. E., et al. (2017). The drug repurposing hub: a next-generation drug library and information resource. Nature Medicine, 23(4), 405–408. https://doi.org/10.1038/nm.4306.

  21. 21.

    Minturn, J. E., & Fisher, M. J. (2013). Gliomas in children. Current Treatment Options in Neurology, 15(3), 316–327. https://doi.org/10.1007/s11940-013-0225-x.

  22. 22.

    Sievert, A. J., & Fisher, M. J. (2009). Pediatric low-grade gliomas. Journal of Child Neurology, 24(11), 1397–1408. https://doi.org/10.1177/0883073809342005.

  23. 23.

    El-Ayadi, M., Ansari, M., Sturm, D., Gielen, G. H., Warmuth-Metz, M., Kramm, C. M., et al. (2017). High-grade glioma in very young children: a rare and particular patient population. Oncotarget, 8(38), 64564–64578. https://doi.org/10.18632/oncotarget.18478.

  24. 24.

    Sturm, D., Pfister, S. M., & Jones, D. T. W. (2017). Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. Journal of Clinical Oncology, 35(21), 2370–2377. https://doi.org/10.1200/JCO.2017.73.0242.

  25. 25.

    Miyashita, K., Kawakami, K., Nakada, M., Mai, W., Shakoori, A., Fujisawa, H., et al. (2009). Potential therapeutic effect of glycogen synthase kinase 3beta inhibition against human glioblastoma. Clinical Cancer Research, 15(3), 887–897. https://doi.org/10.1158/1078-0432.CCR-08-0760.

  26. 26.

    Nam, J. Y., & de Groot, J. F. (2017). Treatment of glioblastoma. Journal of Oncology Practice/ American Society of Clinical Oncology, 13(10), 629–638. https://doi.org/10.1200/JOP.2017.025536.

  27. 27.

    Xu, H. S., Qin, X. L., Zong, H. L., He, X. G., & Cao, L. (2017). Cancer stem cell markers in glioblastoma—an update. European Review for Medical and Pharmacological Sciences, 21(14), 3207–3211.

  28. 28.

    Singh, S. K., Clarke, I. D., Hide, T., & Dirks, P. B. (2004). Cancer stem cells in nervous system tumors. Oncogene, 23(43), 7267–7273. https://doi.org/10.1038/sj.onc.1207946.

  29. 29.

    Abbruzzese, C., Matteoni, S., Signore, M., Cardone, L., Nath, K., Glickson, J. D., et al. (2017). Drug repurposing for the treatment of glioblastoma multiforme. Journal of Experimental & Clinical Cancer Research, 36(1), 169. https://doi.org/10.1186/s13046-017-0642-x.

  30. 30.

    Wang, Y., Meng, Y., Zhang, S., Wu, H., Yang, D., Nie, C., et al. (2018). Phenformin and metformin inhibit growth and migration of LN229 glioma cells in vitro and in vivo. Onco Targets Ther, 11, 6039–6048. https://doi.org/10.2147/OTT.S168981.

  31. 31.

    Jiang, W., Finniss, S., Cazacu, S., Xiang, C., Brodie, Z., Mikkelsen, T., et al. (2016). Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma. Oncotarget, 7(35), 56456–56470. https://doi.org/10.18632/oncotarget.10919.

  32. 32.

    Koyuturk, M., Ersoz, M., & Altiok, N. (2004). Simvastatin induces proliferation inhibition and apoptosis in C6 glioma cells via c-jun N-terminal kinase. Neuroscience Letters, 370(2–3), 212–217. https://doi.org/10.1016/j.neulet.2004.08.020.

  33. 33.

    Xiao, A., Brenneman, B., Floyd, D., Comeau, L., Spurio, K., Olmez, I., et al. (2019). Statins affect human glioblastoma and other cancers through TGF-beta inhibition. Oncotarget, 10(18), 1716–1728. https://doi.org/10.18632/oncotarget.26733.

  34. 34.

    Pinter, M., & Jain, R. K. (2017). Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Science Translational Medicine, 9(410). https://doi.org/10.1126/scitranslmed.aan5616.

  35. 35.

    Kitabayashi, T., Dong, Y., Furuta, T., Sabit, H., Jiapaer, S., Zhang, J., et al. (2019). Identification of GSK3β inhibitor kenpaullone as a temozolomide enhancer against glioblastoma. Scientific Reports, 9(1), 10049. https://doi.org/10.1038/s41598-019-46454-8.

  36. 36.

    Handley, M. V. (2015). GSK-3 inhibitors in glioblastoma therapy: mechanisms of action. BOSTON UNIVERSITY.

  37. 37.

    Nowicki, M. O., Dmitrieva, N., Stein, A. M., Cutter, J. L., Godlewski, J., Saeki, Y., et al. (2008). Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3. Neuro-Oncology, 10(5), 690–699. https://doi.org/10.1215/15228517-2008-041.

  38. 38.

    Chirasani, S. R., Leukel, P., Gottfried, E., Hochrein, J., Stadler, K., Neumann, B., et al. (2013). Diclofenac inhibits lactate formation and efficiently counteracts local immune suppression in a murine glioma model. International Journal of Cancer, 132(4), 843–853. https://doi.org/10.1002/ijc.27712.

  39. 39.

    Leidgens, V., Seliger, C., Jachnik, B., Welz, T., Leukel, P., Vollmann-Zwerenz, A., et al. (2015). Ibuprofen and diclofenac restrict migration and proliferation of human glioma cells by distinct molecular mechanisms. PLoS One, 10(10), e0140613. https://doi.org/10.1371/journal.pone.0140613.

  40. 40.

    Tuettenberg, J., Grobholz, R., Korn, T., Wenz, F., Erber, R., & Vajkoczy, P. (2005). Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of glioblastoma multiforme. Journal of Cancer Research and Clinical Oncology, 131(1), 31–40. https://doi.org/10.1007/s00432-004-0620-5.

  41. 41.

    Johannessen, T. C., Hasan-Olive, M. M., Zhu, H., Denisova, O., Grudic, A., Latif, M. A., et al. (2019). Thioridazine inhibits autophagy and sensitizes glioblastoma cells to temozolomide. International Journal of Cancer, 144(7), 1735–1745. https://doi.org/10.1002/ijc.31912.

  42. 42.

    Kang, S., Lee, J. M., Jeon, B., Elkamhawy, A., Paik, S., Hong, J., et al. (2018). Repositioning of the antipsychotic trifluoperazine: synthesis, biological evaluation and in silico study of trifluoperazine analogs as anti-glioblastoma agents. European Journal of Medicinal Chemistry, 151, 186–198. https://doi.org/10.1016/j.ejmech.2018.03.055.

  43. 43.

    Hayashi, K., Michiue, H., Yamada, H., Takata, K., Nakayama, H., Wei, F. Y., et al. (2016). Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization. Scientific Reports, 6, 23372. https://doi.org/10.1038/srep23372.

  44. 44.

    Al Hassan, M., Fakhoury, I., El Masri, Z., Ghazale, N., Dennaoui, R., El Atat, O., et al. (2018). Metformin treatment inhibits motility and invasion of glioblastoma cancer cells. Analytical Cellular Pathology, 2018, 9. https://doi.org/10.1155/2018/5917470.

  45. 45.

    Oesterle, A., Laufs, U., & Liao, J. K. (2017). Pleiotropic effects of statins on the cardiovascular system. Circulation Research, 120(1), 229–243. https://doi.org/10.1161/CIRCRESAHA.116.308537.

  46. 46.

    Shojaei, S., Alizadeh, J., Thliveris, J., Koleini, N., Kardami, E., Hatch, G. M., et al. (2018). Statins: a new approach to combat temozolomide chemoresistance in glioblastoma. Journal of Investigative Medicine, 66(8), 1083–1087. https://doi.org/10.1136/jim-2018-000874.

  47. 47.

    Rasmussen, E. R., Pottegard, A., Bygum, A., von Buchwald, C., Homoe, P., & Hallas, J. (2019). Angiotensin II receptor blockers are safe in patients with prior angioedema related to angiotensin-converting enzyme inhibitors - a nationwide registry-based cohort study. Journal of Internal Medicine, 285(5), 553–561. https://doi.org/10.1111/joim.12867.

  48. 48.

    Barreras, A., & Gurk-Turner, C. (2003). Angiotensin II receptor blockers. Proc (Bayl Univ Med Cent), 16(1), 123–126. https://doi.org/10.1080/08998280.2003.11927893.

  49. 49.

    Ino, K., Shibata, K., Kajiyama, H., Yamamoto, E., Nagasaka, T., Nawa, A., et al. (2006). Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival. British Journal of Cancer, 94(4), 552–560. https://doi.org/10.1038/sj.bjc.6602961.

  50. 50.

    Arrieta, O., Villarreal-Garza, C., Vizcaino, G., Pineda, B., Hernandez-Pedro, N., Guevara-Salazar, P., et al. (2015). Association between AT1 and AT2 angiotensin II receptor expression with cell proliferation and angiogenesis in operable breast cancer. Tumour Biology, 36(7), 5627–5634. https://doi.org/10.1007/s13277-015-3235-3.

  51. 51.

    Rocken, C., Rohl, F. W., Diebler, E., Lendeckel, U., Pross, M., Carl-McGrath, S., et al. (2007). The angiotensin II/angiotensin II receptor system correlates with nodal spread in intestinal type gastric cancer. Cancer Epidemiology, Biomarkers & Prevention, 16(6), 1206–1212. https://doi.org/10.1158/1055-9965.epi-05-0934.

  52. 52.

    Feng, E., Sui, C., Wang, T., & Sun, G. (2017). Temozolomide with or without radiotherapy in patients with newly diagnosed glioblastoma Multiforme: a meta-analysis. European Neurology, 77(3–4), 201–210. https://doi.org/10.1159/000455842.

  53. 53.

    Ghaffari, S. (2011). Cancer, stem cells and cancer stem cells: old ideas, new developments. F1000 Med Rep, 3, 23. https://doi.org/10.3410/M3-23.

  54. 54.

    Nakada M., M. T, Pyko I., Hayashi Y. and Hamada J. (2011). The pivotal roles of GSK3β in glioma biology In M. Garami (Ed.), Molecular Targets of CNS Tumors IntechOpen.

  55. 55.

    Vashishtha, V., Jinghan, N., & A, K. Y. (2018). Antagonistic role of GSK3 isoforms in glioma survival. Journal of Cancer, 9(10), 1846–1855. https://doi.org/10.7150/jca.21248.

  56. 56.

    Llorens-Martin, M., Jurado, J., Hernandez, F., & Avila, J. (2014). GSK-3beta, a pivotal kinase in Alzheimer disease. Frontiers in Molecular Neuroscience, 7, 46. https://doi.org/10.3389/fnmol.2014.00046.

  57. 57.

    del Ser, T., Steinwachs, K. C., Gertz, H. J., Andres, M. V., Gomez-Carrillo, B., Medina, M., et al. (2013). Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. Journal of Alzheimer's Disease, 33(1), 205–215. https://doi.org/10.3233/JAD-2012-120805.

  58. 58.

    Tolosa, E., Litvan, I., Hoglinger, G. U., Burn, D., Lees, A., Andres, M. V., et al. (2014). A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Movement Disorders, 29(4), 470–478. https://doi.org/10.1002/mds.25824.

  59. 59.

    Lovestone, S., Boada, M., Dubois, B., Hull, M., Rinne, J. O., Huppertz, H. J., et al. (2015). A phase II trial of tideglusib in Alzheimer’s disease. Journal of Alzheimer's Disease, 45(1), 75–88. https://doi.org/10.3233/jad-141959.

  60. 60.

    Mathuram, T. L., Ravikumar, V., Reece, L. M., Karthik, S., Sasikumar, C. S., & Cherian, K. M. (2016). Tideglusib induces apoptosis in human neuroblastoma IMR32 cells, provoking sub-G0/G1 accumulation and ROS generation. Environmental Toxicology and Pharmacology, 46, 194–205. https://doi.org/10.1016/j.etap.2016.07.013.

  61. 61.

    Zhou, A., Lin, K., Zhang, S., Chen, Y., Zhang, N., Xue, J., et al. (2016). Nuclear GSK3beta promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nature Cell Biology, 18(9), 954–966. https://doi.org/10.1038/ncb3396.

  62. 62.

    Chalhoub, R. M., Bahmad, H. F., Harati, H., Assi, S., Araji, T., Bou-Gharios, J., et al. (2019). Specific inhibition of GSK-3β by Tideglusib: potential therapeutic target for neuroblastoma cancer stem cells. Submitted.

  63. 63.

    Hata, A. N., & Breyer, R. M. (2004). Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacology & Therapeutics, 103(2), 147–166. https://doi.org/10.1016/j.pharmthera.2004.06.003.

  64. 64.

    Amano, H., Hayashi, I., Endo, H., Kitasato, H., Yamashina, S., Maruyama, T., et al. (2003). Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. The Journal of Experimental Medicine, 197(2), 221–232. https://doi.org/10.1084/jem.20021408.

  65. 65.

    Seliger, C., & Hau, P. (2018). Drug repurposing of metabolic agents in malignant glioma. International Journal of Molecular Sciences, 19(9). https://doi.org/10.3390/ijms19092768.

  66. 66.

    Li, J., Kim, S. G., & Blenis, J. (2014). Rapamycin: One drug, many effects. Cell Metabolism, 19(3), 373–379. https://doi.org/10.1016/j.cmet.2014.01.001.

  67. 67.

    Yang, Z., Hackshaw, A., Feng, Q., Fu, X., Zhang, Y., Mao, C., et al. (2017). Comparison of gefitinib, erlotinib and afatinib in non-small cell lung cancer: a meta-analysis. International Journal of Cancer, 140(12), 2805–2819. https://doi.org/10.1002/ijc.30691.

  68. 68.

    Yalon, M., Rood, B., MacDonald, T. J., McCowage, G., Kane, R., Constantini, S., et al. (2013). A feasibility and efficacy study of rapamycin and erlotinib for recurrent pediatric low-grade glioma (LGG). Pediatric Blood & Cancer, 60(1), 71–76. https://doi.org/10.1002/pbc.24142.

  69. 69.

    Mollashahi, B., Aghamaleki, F. S., & Movafagh, A. (2019). The roles of miRNAs in medulloblastoma: a systematic review. J Cancer Prev, 24(2), 79–90. https://doi.org/10.15430/jcp.2019.24.2.79.

  70. 70.

    Zulch, K. J. (1980). Principles of the new World Health Organization (WHO) classification of brain tumors. Neuroradiology, 19(2), 59–66. https://doi.org/10.1007/bf00342596.

  71. 71.

    DeAngelis, L. M. (2001). Brain tumors. The New England Journal of Medicine, 344(2), 114–123. https://doi.org/10.1056/nejm200101113440207.

  72. 72.

    Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L. M., Angelo, M., McLaughlin, M. E., et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415(6870), 436–442. https://doi.org/10.1038/415436a.

  73. 73.

    Thompson, M. C., Fuller, C., Hogg, T. L., Dalton, J., Finkelstein, D., Lau, C. C., et al. (2006). Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. Journal of Clinical Oncology, 24(12), 1924–1931. https://doi.org/10.1200/jco.2005.04.4974.

  74. 74.

    Kool, M., Koster, J., Bunt, J., Hasselt, N. E., Lakeman, A., van Sluis, P., et al. (2008). Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One, 3(8), e3088. https://doi.org/10.1371/journal.pone.0003088.

  75. 75.

    Cho, Y. J., Tsherniak, A., Tamayo, P., Santagata, S., Ligon, A., Greulich, H., et al. (2011). Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. Journal of Clinical Oncology, 29(11), 1424–1430. https://doi.org/10.1200/jco.2010.28.5148.

  76. 76.

    Taylor, M. D., Northcott, P. A., Korshunov, A., Remke, M., Cho, Y. J., Clifford, S. C., et al. (2012). Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica, 123(4), 465–472. https://doi.org/10.1007/s00401-011-0922-z.

  77. 77.

    Thomas, A., & Noel, G. (2019). Medulloblastoma: optimizing care with a multidisciplinary approach. Journal of Multidisciplinary Healthcare, 12, 335–347. https://doi.org/10.2147/jmdh.s167808.

  78. 78.

    Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760. https://doi.org/10.1038/nature05236.

  79. 79.

    Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401. https://doi.org/10.1038/nature03128.

  80. 80.

    Abouantoun, T. J., Castellino, R. C., & MacDonald, T. J. (2011). Sunitinib induces PTEN expression and inhibits PDGFR signaling and migration of medulloblastoma cells. Journal of Neuro-Oncology, 101(2), 215–226. https://doi.org/10.1007/s11060-010-0259-9.

  81. 81.

    Abouantoun, T. J., & MacDonald, T. J. (2009). Imatinib blocks migration and invasion of medulloblastoma cells by concurrently inhibiting activation of platelet-derived growth factor receptor and transactivation of epidermal growth factor receptor. Molecular Cancer Therapeutics, 8(5), 1137–1147. https://doi.org/10.1158/1535-7163.mct-08-0889.

  82. 82.

    Wolle, D., Lee, S. J., Li, Z., Litan, A., Barwe, S. P., & Langhans, S. A. (2014). Inhibition of epidermal growth factor signaling by the cardiac glycoside ouabain in medulloblastoma. Cancer Medicine, 3(5), 1146–1158. https://doi.org/10.1002/cam4.314.

  83. 83.

    Huang, L., Garrett Injac, S., Cui, K., Braun, F., Lin, Q., Du, Y., et al. (2018). Systems biology-based drug repositioning identifies digoxin as a potential therapy for groups 3 and 4 medulloblastoma. Science Translational Medicine, 10(464). https://doi.org/10.1126/scitranslmed.aat0150.

  84. 84.

    Takwi, A. A., Li, Y., Becker Buscaglia, L. E., Zhang, J., Choudhury, S., Park, A. K., et al. (2012). A statin-regulated microRNA represses human c-Myc expression and function. EMBO Molecular Medicine, 4(9), 896–909. https://doi.org/10.1002/emmm.201101045.

  85. 85.

    Bar, E. E., Chaudhry, A., Farah, M. H., & Eberhart, C. G. (2007). Hedgehog signaling promotes medulloblastoma survival via Bc/II. The American Journal of Pathology, 170(1), 347–355. https://doi.org/10.2353/ajpath.2007.060066.

  86. 86.

    Bar, E. E., & Stearns, D. (2008). New developments in medulloblastoma treatment: the potential of a cyclopamine-lovastatin combination. Expert Opinion on Investigational Drugs, 17(2), 185–195. https://doi.org/10.1517/13543784.17.2.185.

  87. 87.

    Sheikholeslami, K., Ali Sher, A., Lockman, S., Kroft, D., Ganjibakhsh, M., Nejati-Koshki, K., et al. (2019). Simvastatin induces apoptosis in medulloblastoma brain tumor cells via mevalonate cascade prenylation substrates. Cancers (Basel), 11(7). https://doi.org/10.3390/cancers11070994.

  88. 88.

    Bai, R. Y., Staedtke, V., Rudin, C. M., Bunz, F., & Riggins, G. J. (2015). Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro-Oncology, 17(4), 545–554. https://doi.org/10.1093/neuonc/nou234.

  89. 89.

    Larsen, A. R., Bai, R. Y., Chung, J. H., Borodovsky, A., Rudin, C. M., Riggins, G. J., et al. (2015). Repurposing the antihelmintic mebendazole as a hedgehog inhibitor. Molecular Cancer Therapeutics, 14(1), 3–13. https://doi.org/10.1158/1535-7163.mct-14-0755-t.

  90. 90.

    Bell, J. B., Rink, J. S., Eckerdt, F., Clymer, J., Goldman, S., Thaxton, C. S., et al. (2018). HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Scientific Reports, 8(1), 1211. https://doi.org/10.1038/s41598-017-18100-8.

  91. 91.

    Rossi, A., Russo, G., Puca, A., La Montagna, R., Caputo, M., Mattioli, E., et al. (2009). The antiretroviral nucleoside analogue Abacavir reduces cell growth and promotes differentiation of human medulloblastoma cells. International Journal of Cancer, 125(1), 235–243. https://doi.org/10.1002/ijc.24331.

  92. 92.

    Baryawno, N., Sveinbjornsson, B., Eksborg, S., Orrego, A., Segerstrom, L., Oqvist, C. O., et al. (2008). Tumor-growth-promoting cyclooxygenase-2 prostaglandin E2 pathway provides medulloblastoma therapeutic targets. Neuro-Oncology, 10(5), 661–674. https://doi.org/10.1215/15228517-2008-035.

  93. 93.

    Yang, M. Y., Lee, H. T., Chen, C. M., Shen, C. C., & Ma, H. I. (2014). Celecoxib suppresses the phosphorylation of STAT3 protein and can enhance the radiosensitivity of medulloblastoma-derived cancer stem-like cells. International Journal of Molecular Sciences, 15(6), 11013–11029. https://doi.org/10.3390/ijms150611013.

  94. 94.

    Eslin, D., Lee, C., Sankpal, U. T., Maliakal, P., Sutphin, R. M., Abraham, L., et al. (2013). Anticancer activity of tolfenamic acid in medulloblastoma: a preclinical study. Tumour Biology, 34(5), 2781–2789. https://doi.org/10.1007/s13277-013-0836-6.

  95. 95.

    Kaplan, J. H. (2002). Biochemistry of Na,K-ATPase. Annual Review of Biochemistry, 71, 511–535. https://doi.org/10.1146/annurev.biochem.71.102201.141218.

  96. 96.

    Lingrel, J. B. (2010). The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annual Review of Physiology, 72, 395–412. https://doi.org/10.1146/annurev-physiol-021909-135725.

  97. 97.

    Mijatovic, T., Van Quaquebeke, E., Delest, B., Debeir, O., Darro, F., & Kiss, R. (2007). Cardiotonic steroids on the road to anti-cancer therapy. Biochimica et Biophysica Acta, 1776(1), 32–57. https://doi.org/10.1016/j.bbcan.2007.06.002.

  98. 98.

    Yamada, M., Ikeuchi, T., & Hatanaka, H. (1997). The neurotrophic action and signalling of epidermal growth factor. Progress in Neurobiology, 51(1), 19–37.

  99. 99.

    Wong, R. W., & Guillaud, L. (2004). The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine & Growth Factor Reviews, 15(2–3), 147–156. https://doi.org/10.1016/j.cytogfr.2004.01.004.

  100. 100.

    Gilbertson, R. J., Perry, R. H., Kelly, P. J., Pearson, A. D., & Lunec, J. (1997). Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Research, 57(15), 3272–3280.

  101. 101.

    Waage, I. S., Vreim, I., & Torp, S. H. (2013). C-erbB2/HER2 in human gliomas, medulloblastomas, and meningiomas: a minireview. International Journal of Surgical Pathology, 21(6), 573–582. https://doi.org/10.1177/1066896913492196.

  102. 102.

    Bal, M. M., Das Radotra, B., Srinivasan, R., & Sharma, S. C. (2006). Does c-erbB-2 expression have a role in medulloblastoma prognosis? Indian Journal of Pathology & Microbiology, 49(4), 535–539.

  103. 103.

    Ivanov, D. P., Coyle, B., Walker, D. A., & Grabowska, A. M. (2016). In vitro models of medulloblastoma: choosing the right tool for the job. Journal of Biotechnology, 236, 10–25. https://doi.org/10.1016/j.jbiotec.2016.07.028.

  104. 104.

    Zeki, A. A., Yeganeh, B., Kenyon, N. J., & Ghavami, S. (2017). Editorial: new insights into a classical pathway: key roles of the mevalonate cascade in different diseases (part II). Current Molecular Pharmacology, 10(2), 74–76. https://doi.org/10.2174/187446721002170301204357.

  105. 105.

    Matusewicz, L., Meissner, J., Toporkiewicz, M., & Sikorski, A. F. (2015). The effect of statins on cancer cells—review. Tumour Biology, 36(7), 4889–4904. https://doi.org/10.1007/s13277-015-3551-7.

  106. 106.

    Chan, K. K., Oza, A. M., & Siu, L. L. (2003). The statins as anticancer agents. Clinical Cancer Research, 9(1), 10–19.

  107. 107.

    Bjarnadottir, O., Kimbung, S., Johansson, I., Veerla, S., Jonsson, M., Bendahl, P. O., et al. (2015). Global transcriptional changes following statin treatment in breast cancer. Clinical Cancer Research, 21(15), 3402–3411. https://doi.org/10.1158/1078-0432.ccr-14-1403.

  108. 108.

    Wang, T., Seah, S., Loh, X., Chan, C. W., Hartman, M., Goh, B. C., et al. (2016). Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway. Oncotarget, 7(3), 2532–2544. https://doi.org/10.18632/oncotarget.6304.

  109. 109.

    de Bont, J. M., Packer, R. J., Michiels, E. M., den Boer, M. L., & Pieters, R. (2008). Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro-Oncology, 10(6), 1040–1060. https://doi.org/10.1215/15228517-2008-059.

  110. 110.

    Cochrane, C. R., Szczepny, A., Watkins, D. N., & Cain, J. E. (2015). Hedgehog signaling in the maintenance of cancer stem cells. Cancers (Basel), 7(3), 1554–1585. https://doi.org/10.3390/cancers7030851.

  111. 111.

    Northcott, P. A., Dubuc, A. M., Pfister, S., & Taylor, M. D. (2012). Molecular subgroups of medulloblastoma. Expert Review of Neurotherapeutics, 12(7), 871–884. https://doi.org/10.1586/ern.12.66.

  112. 112.

    Guerini, A. E., Triggiani, L., Maddalo, M., Bonu, M. L., Frassine, F., Baiguini, A., et al. (2019). Mebendazole as a candidate for drug repurposing in oncology: an extensive review of current literature. Cancers (Basel), 11(9). https://doi.org/10.3390/cancers11091284.

  113. 113.

    Kohler, P. (2001). The biochemical basis of anthelmintic action and resistance. International Journal for Parasitology, 31(4), 336–345. https://doi.org/10.1016/s0020-7519(01)00131-x.

  114. 114.

    Goel, H. L., & Mercurio, A. M. (2013). VEGF targets the tumour cell. Nature Reviews. Cancer, 13(12), 871–882. https://doi.org/10.1038/nrc3627.

  115. 115.

    Bai, R. Y., Staedtke, V., Wanjiku, T., Rudek, M. A., Joshi, A., Gallia, G. L., et al. (2015). Brain penetration and efficacy of different mebendazole polymorphs in a mouse brain tumor model. Clinical Cancer Research, 21(15), 3462–3470. https://doi.org/10.1158/1078-0432.ccr-14-2681.

  116. 116.

    Rohatgi, R., Milenkovic, L., & Scott, M. P. (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science, 317(5836), 372–376. https://doi.org/10.1126/science.1139740.

  117. 117.

    Yuen, G. J., Weller, S., & Pakes, G. E. (2008). A review of the pharmacokinetics of abacavir. Clinical Pharmacokinetics, 47(6), 351–371. https://doi.org/10.2165/00003088-200847060-00001.

  118. 118.

    Phatak, P., & Burger, A. M. (2007). Telomerase and its potential for therapeutic intervention. British Journal of Pharmacology, 152(7), 1003–1011. https://doi.org/10.1038/sj.bjp.0707374.

  119. 119.

    Tendian, S. W., & Parker, W. B. (2000). Interaction of deoxyguanosine nucleotide analogs with human telomerase. Molecular Pharmacology, 57(4), 695–699. https://doi.org/10.1124/mol.57.4.695.

  120. 120.

    Shay, J. W., & Keith, W. N. (2008). Targeting telomerase for cancer therapeutics. British Journal of Cancer, 98(4), 677–683. https://doi.org/10.1038/sj.bjc.6604209.

  121. 121.

    Chang, Q., Pang, J. C., Li, J., Hu, L., Kong, X., & Ng, H. K. (2004). Molecular analysis of PinX1 in medulloblastomas. International Journal of Cancer, 109(2), 309–314. https://doi.org/10.1002/ijc.11689.

  122. 122.

    Witzig, T. E., Timm, M., Stenson, M., Svingen, P. A., & Kaufmann, S. H. (2000). Induction of apoptosis in malignant B cells by phenylbutyrate or phenylacetate in combination with chemotherapeutic agents. Clinical Cancer Research, 6(2), 681–692.

  123. 123.

    Shay, J. W., & Wright, W. E. (2005). Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis, 26(5), 867–874. https://doi.org/10.1093/carcin/bgh296.

  124. 124.

    Epling-Burnette, P. K., Liu, J. H., Catlett-Falcone, R., Turkson, J., Oshiro, M., Kothapalli, R., et al. (2001). Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. The Journal of Clinical Investigation, 107(3), 351–362. https://doi.org/10.1172/jci9940.

  125. 125.

    Kim, K. W., Mutter, R. W., Cao, C., Albert, J. M., Shinohara, E. T., Sekhar, K. R., et al. (2006). Inhibition of signal transducer and activator of transcription 3 activity results in down-regulation of Survivin following irradiation. Molecular Cancer Therapeutics, 5(11), 2659–2665. https://doi.org/10.1158/1535-7163.mct-06-0261.

  126. 126.

    Chen, K. H., Hsu, C. C., Song, W. S., Huang, C. S., Tsai, C. C., Kuo, C. D., et al. (2010). Celecoxib enhances radiosensitivity in medulloblastoma-derived CD133-positive cells. Child's Nervous System, 26(11), 1605–1612. https://doi.org/10.1007/s00381-010-1190-2.

  127. 127.

    Abdelrahim, M., Baker, C. H., Abbruzzese, J. L., & Safe, S. (2006). Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. Journal of the National Cancer Institute, 98(12), 855–868. https://doi.org/10.1093/jnci/djj232.

  128. 128.

    Shelake, S., Sankpal, U. T., Paul Bowman, W., Wise, M., Ray, A., & Basha, R. (2017). Targeting specificity protein 1 transcription factor and survivin using tolfenamic acid for inhibiting Ewing sarcoma cell growth. Investigational New Drugs, 35(2), 158–165. https://doi.org/10.1007/s10637-016-0417-9.

  129. 129.

    Yao, J. C., Wang, L., Wei, D., Gong, W., Hassan, M., Wu, T. T., et al. (2004). Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clinical Cancer Research, 10(12 Pt 1), 4109–4117. https://doi.org/10.1158/1078-0432.ccr-03-0628.

  130. 130.

    Patil, S., Sankpal, U. T., Hurtado, M., Bowman, W. P., Murray, J., Borgmann, K., et al. (2019). Combination of clotam and vincristine enhances anti-proliferative effect in medulloblastoma cells. Gene, 705, 67–76. https://doi.org/10.1016/j.gene.2019.04.037.

  131. 131.

    Colon, N. C., & Chung, D. H. (2011). Neuroblastoma. Advances in Pediatrics, 58(1), 297–311. https://doi.org/10.1016/j.yapd.2011.03.011.

  132. 132.

    Zaatiti, H., Abdallah, J., Nasr, Z., Khazen, G., Sandler, A., & Abou-Antoun, T. J. (2018). Tumorigenic proteins upregulated in the MYCN-amplified IMR-32 human neuroblastoma cells promote proliferation and migration. International Journal of Oncology, 52(3), 787–803. https://doi.org/10.3892/ijo.2018.4236.

  133. 133.

    Abou-Antoun, T. J., Nazarian, J., Ghanem, A., Vukmanovic, S., & Sandler, A. D. (2018). Molecular and functional analysis of anchorage independent, treatment-evasive neuroblastoma tumorspheres with enhanced malignant properties: a possible explanation for radio-therapy resistance. PLoS One, 13(1), e0189711. https://doi.org/10.1371/journal.pone.0189711.

  134. 134.

    Lopez-Barcons, L., Maurer, B. J., Kang, M. H., & Reynolds, C. P. (2017). P450 inhibitor ketoconazole increased the intratumor drug levels and antitumor activity of fenretinide in human neuroblastoma xenograft models. International Journal of Cancer, 141(2), 405–413. https://doi.org/10.1002/ijc.30706.

  135. 135.

    Michaelis, M., Agha, B., Rothweiler, F., Löschmann, N., Voges, Y., Mittelbronn, M., et al. (2015). Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen. Scientific Reports, 5, 8202–8202. https://doi.org/10.1038/srep08202.

  136. 136.

    Zhong, X., Zhao, E., Tang, C., Zhang, W., Tan, J., Dong, Z., et al. (2016). Antibiotic drug tigecycline reduces neuroblastoma cells proliferation by inhibiting Akt activation in vitro and in vivo. Tumor Biology, 37(6), 7615–7623. https://doi.org/10.1007/s13277-015-4613-6.

  137. 137.

    Di Zanni, E., Bianchi, G., Ravazzolo, R., Raffaghello, L., Ceccherini, I., & Bachetti, T. (2017). Targeting of PHOX2B expression allows the identification of drugs effective in counteracting neuroblastoma cell growth. Oncotarget, 8(42), 72133–72146. https://doi.org/10.18632/oncotarget.19922.

  138. 138.

    Aveic, S., Pantile, M., Polo, P., Sidarovich, V., De Mariano, M., Quattrone, A., et al. (2018). Autophagy inhibition improves the cytotoxic effects of receptor tyrosine kinase inhibitors. Cancer Cell International, 18, 63–63. https://doi.org/10.1186/s12935-018-0557-4.

  139. 139.

    Saulnier Sholler, G. L., Kalkunte, S., Greenlaw, C., McCarten, K., & Forman, E. (2006). Antitumor activity of Nifurtimox observed in a patient with neuroblastoma. Journal of Pediatric Hematology/Oncology, 28(10).

  140. 140.

    Saulnier Sholler, G. L., Brard, L., Straub, J. A., Dorf, L., Illeyne, S., Koto, K., et al. (2009). Nifurtimox induces apoptosis of neuroblastoma cells in vitro and in vivo. Journal of Pediatric Hematology/Oncology, 31(3), 187–193. https://doi.org/10.1097/MPH.0b013e3181984d91.

  141. 141.

    Cabanillas Stanchi, K. M., Bruchelt, G., Handgretinger, R., & Holzer, U. (2015). Nifurtimox reduces N-Myc expression and aerobic glycolysis in neuroblastoma. Cancer Biology & Therapy, 16(9), 1353–1363. https://doi.org/10.1080/15384047.2015.1070987.

  142. 142.

    Kong, E., Zhu, J., Wu, W., Ren, H., Jiao, X., Wang, H., et al. (2019). Nifurtimox inhibits the progression of neuroblastoma in vivo. Journal of Cancer, 10(10), 2194–2204. https://doi.org/10.7150/jca.27851.

  143. 143.

    Bassiri, H., Benavides, A., Haber, M., Gilmour, S. K., Norris, M. D., & Hogarty, M. D. (2015). Translational development of difluoromethylornithine (DFMO) for the treatment of neuroblastoma. Translational pediatrics, 4(3), 226–238. https://doi.org/10.3978/j.issn.2224-4336.2015.04.06.

  144. 144.

    Lozier, A. M., Rich, M. E., Grawe, A. P., Peck, A. S., Zhao, P., Chang, A. T.-T., et al. (2015). Targeting ornithine decarboxylase reverses the LIN28/Let-7 axis and inhibits glycolytic metabolism in neuroblastoma. Oncotarget, 6(1), 196–206. https://doi.org/10.18632/oncotarget.2768.

  145. 145.

    Larsson, K., Kock, A., Idborg, H., Arsenian Henriksson, M., Martinsson, T., Johnsen, J. I., et al. (2015). COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 8070–8075. https://doi.org/10.1073/pnas.1424355112.

  146. 146.

    Mooney, M. R., Geerts, D., Kort, E. J., & Bachmann, A. S. (2019). Anti-tumor effect of sulfasalazine in neuroblastoma. Biochemical Pharmacology, 162, 237–249. https://doi.org/10.1016/j.bcp.2019.01.007.

  147. 147.

    Komar-Stossel, C., Gross, E., Dery, E., Corchia, N., Meir, K., Fried, I., et al. (2014). TL-118 and gemcitabine drug combination display therapeutic efficacy in a MYCN amplified orthotopic neuroblastoma murine model—evaluation by MRI. PLoS One, 9(3), e90224–e90224. https://doi.org/10.1371/journal.pone.0090224.

  148. 148.

    Campos-Arroyo, D., Maldonado, V., Bahena, I., Quintanar, V., Patiño, N., Carlos Martinez-Lazcano, J., et al. (2016). Probenecid sensitizes neuroblastoma cancer stem cells to cisplatin. Cancer Investigation, 34(3), 155–166. https://doi.org/10.3109/07357907.2016.1139717.

  149. 149.

    Rodríguez-Hernández, C. J., Mateo-Lozano, S., García, M., Casalà, C., Briansó, F., Castrejón, N., et al. (2016). Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens. Oncotarget, 7(13), 16112–16129. https://doi.org/10.18632/oncotarget.7448.

  150. 150.

    Nishio, N., Fujita, M., Tanaka, Y., Maki, H., Zhang, R., Hirosawa, T., et al. (2012). Zoledronate sensitizes neuroblastoma-derived tumor-initiating cells to cytolysis mediated by human γδ T cells. Journal of Immunotherapy, 35(8).

  151. 151.

    Alizadeh, J., Zeki, A. A., Mirzaei, N., Tewary, S., Rezaei Moghadam, A., Glogowska, A., et al. (2017). Mevalonate Cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells. Scientific Reports, 7, 44841–44841. https://doi.org/10.1038/srep44841.

  152. 152.

    Su, C., Shi, A., Cao, G., Tao, T., Chen, R., Hu, Z., et al. (2015). Fenofibrate suppressed proliferation and migration of human neuroblastoma cells via oxidative stress dependent of TXNIP upregulation. Biochemical and Biophysical Research Communications, 460(4), 983–988. https://doi.org/10.1016/j.bbrc.2015.03.138.

  153. 153.

    Costa, D., Gigoni, A., Würth, R., Cancedda, R., Florio, T., & Pagano, A. (2014). Metformin inhibition of neuroblastoma cell proliferation is differently modulated by cell differentiation induced by retinoic acid or overexpression of NDM29 non-coding RNA. Cancer Cell International, 14, 59–59. https://doi.org/10.1186/1475-2867-14-59.

  154. 154.

    Kumar, A., Al-Sammarraie, N., DiPette, D. J., & Singh, U. S. (2014). Metformin impairs Rho GTPase signaling to induce apoptosis in neuroblastoma cells and inhibits growth of tumors in the xenograft mouse model of neuroblastoma. Oncotarget, 5(22), 11709–11722. https://doi.org/10.18632/oncotarget.2606.

  155. 155.

    Vujic, I., Sanlorenzo, M., Posch, C., Esteve-Puig, R., Yen, A. J., Kwong, A., et al. (2015). Metformin and trametinib have synergistic effects on cell viability and tumor growth in NRAS mutant cancer. Oncotarget, 6(2), 969–978. https://doi.org/10.18632/oncotarget.2824.

  156. 156.

    Mouhieddine, T. H., Nokkari, A., Itani, M. M., Chamaa, F., Bahmad, H., Monzer, A., et al. (2015). Metformin and Ara-a effectively suppress brain cancer by targeting cancer stem/progenitor cells. Frontiers in Neuroscience, 9, 442–442. https://doi.org/10.3389/fnins.2015.00442.

  157. 157.

    Binlateh, T., Tanasawet, S., Rattanaporn, O., Sukketsiri, W., & Hutamekalin, P. (2019). Metformin promotes neuronal differentiation via crosstalk between Cdk5 and Sox6 in neuroblastoma cells. Evidence-based complementary and alternative medicine : eCAM, 2019, 1765182–1765182. https://doi.org/10.1155/2019/1765182.

  158. 158.

    Vella, S., Conaldi, P. G., Florio, T., & Pagano, A. (2016). PPAR gamma in neuroblastoma: the translational perspectives of hypoglycemic drugs. PPAR Research, 2016, 3038164–3038164. https://doi.org/10.1155/2016/3038164.

  159. 159.

    Wolter, J. K., Wolter, N. E., Blanch, A., Partridge, T., Cheng, L., Morgenstern, D. A., et al. (2014). Anti-tumor activity of the beta-adrenergic receptor antagonist propranolol in neuroblastoma. Oncotarget, 5(1), 161–172. https://doi.org/10.18632/oncotarget.1083.

  160. 160.

    Vella, S., Penna, I., Longo, L., Pioggia, G., Garbati, P., Florio, T., et al. (2015). Perhexiline maleate enhances antitumor efficacy of cisplatin in neuroblastoma by inducing over-expression of NDM29 ncRNA. Scientific Reports, 5, 18144–18144. https://doi.org/10.1038/srep18144.

  161. 161.

    Gu, S., Tian, Y., Chlenski, A., Salwen, H. R., Lu, Z., Raj, J. U., et al. (2012). Valproic acid shows a potent antitumor effect with alteration of DNA methylation in neuroblastoma. Anti-Cancer Drugs, 23(10), 1054–1066. https://doi.org/10.1097/CAD.0b013e32835739dd.

  162. 162.

    Shah, R. D., Jagtap, J. C., Mruthyunjaya, S., Shelke, G. V., Pujari, R., Das, G., et al. (2013). Sodium valproate potentiates staurosporine-induced apoptosis in neuroblastoma cells via Akt/survivin independently of HDAC inhibition. Journal of Cellular Biochemistry, 114(4), 854–863. https://doi.org/10.1002/jcb.24422.

  163. 163.

    Groh, T., Hrabeta, J., Ashraf Khalil, M., Doktorova, H., Eckschlager, T., & Stiborova, M. (2015). The synergistic effects of DNA-damaging drugs cisplatin and etoposide with a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells. International Journal of Oncology, 47(1), 343–352.

  164. 164.

    Fang, E., Wang, J., Hong, M., Zheng, L., & Tong, Q. (2019). Valproic acid suppresses Warburg effect and tumor progression in neuroblastoma. Biochemical and Biophysical Research Communications, 508(1), 9–16. https://doi.org/10.1016/j.bbrc.2018.11.103.

  165. 165.

    Bayat Mokhtari, R., Baluch, N., Ka Hon Tsui, M., Kumar, S., S Homayouni, T., Aitken, K., et al. (2017). Acetazolamide potentiates the anti-tumor potential of HDACi, MS-275, in neuroblastoma. BMC Cancer, 17(1), 156–156, https://doi.org/10.1186/s12885-017-3126-7.

  166. 166.

    Bilir, A., Erguven, M., Yazihan, N., Aktas, E., Oktem, G., & Sabanci, A. (2010). Enhancement of vinorelbine-induced cytotoxicity and apoptosis by clomipramine and lithium chloride in human neuroblastoma cancer cell line SH-SY5Y. Journal of Neuro-Oncology, 100(3), 385–395. https://doi.org/10.1007/s11060-010-0209-6.

  167. 167.

    Zheng, X., Naiditch, J., Czurylo, M., Jie, C., Lautz, T., Clark, S., et al. (2013). Differential effect of long-term drug selection with doxorubicin and vorinostat on neuroblastoma cells with cancer stem cell characteristics. Cell Death & Disease, 4(7), e740–e740. https://doi.org/10.1038/cddis.2013.264.

  168. 168.

    Sidarovich, V., De Mariano, M., Aveic, S., Pancher, M., Adami, V., Gatto, P., et al. (2018). A high-content screening of anticancer compounds suggests the multiple tyrosine kinase inhibitor Ponatinib for repurposing in neuroblastoma therapy. Molecular Cancer Therapeutics, 17(7), 1405–1415. https://doi.org/10.1158/1535-7163.mct-17-0841.

  169. 169.

    Bahmad, H. F., Mouhieddine, T. H., Chalhoub, R. M., Assi, S., Araji, T., Chamaa, F., et al. (2018). The Akt/mTOR pathway in cancer stem/progenitor cells is a potential therapeutic target for glioblastoma and neuroblastoma. Oncotarget, 9(71), 33549-33561, https://doi.org/10.18632/oncotarget.26088.

  170. 170.

    Cerna, T., Hrabeta, J., Eckschlager, T., Frei, E., Schmeiser, H. H., Arlt, V. M., et al. (2018). The histone deacetylase inhibitor valproic acid exerts a synergistic cytotoxicity with the DNA-damaging drug Ellipticine in neuroblastoma cells. International Journal of Molecular Sciences, 19(1), 164. https://doi.org/10.3390/ijms19010164.

  171. 171.

    Chen, Y. U. N., Tsai, Y.-H., & Tseng, S.-H. (2011). Combined Valproic acid and celecoxib treatment induced synergistic cytotoxicity and apoptosis in neuroblastoma cells. Anticancer Research, 31(6), 2231–2239.

  172. 172.

    He, W., Wu, Y., Tang, X., Xia, Y., He, G., Min, Z., et al. (2016). HDAC inhibitors suppress c-Jun/Fra-1-mediated proliferation through transcriptionally downregulating MKK7 and Raf1 in neuroblastoma cells. Oncotarget, 7(6), 6727–6747. https://doi.org/10.18632/oncotarget.6797.

  173. 173.

    Dedoni, S., Marras, L., Olianas, M. C., Ingianni, A., & Onali, P. (2019). Downregulation of TrkB expression and signaling by Valproic acid and other histone deacetylase inhibitors. Journal of Pharmacology and Experimental Therapeutics, 370(3), 490. https://doi.org/10.1124/jpet.119.258129.

  174. 174.

    Khalil, M. A., Hraběta, J., Groh, T., Procházka, P., Doktorová, H., & Eckschlager, T. (2016). Valproic acid increases CD133 positive cells that show low sensitivity to cytostatics in neuroblastoma. PLoS One, 11(9), e0162916–e0162916. https://doi.org/10.1371/journal.pone.0162916.

  175. 175.

    Lange, I., Espinoza-Fuenzalida, I., Ali, M. W., Serrano, L. E., & Koomoa, D.-L. T. (2017). FTY-720 induces apoptosis in neuroblastoma via multiple signaling pathways. Oncotarget, 8(66), 109985–109999. https://doi.org/10.18632/oncotarget.22452.

  176. 176.

    Kanno, H., Nishihara, H., Oikawa, M., Ozaki, Y., Murata, J., Sawamura, Y., et al. (2012). Expression of O6-methylguanine DNA methyltransferase (MGMT) and immunohistochemical analysis of 12 pineal parenchymal tumors. Neuropathology, 32(6), 647–653. https://doi.org/10.1111/j.1440-1789.2012.01315.x.

  177. 177.

    DeBoer, R., Batjer, H., Marymont, M., Goldman, S., Walker, M., Gottardi-Littell, N., et al. (2009). Response of an adult patient with pineoblastoma to vorinostat and retinoic acid. Journal of Neuro-Oncology, 95(2), 289–292. https://doi.org/10.1007/s11060-009-9921-5.

  178. 178.

    Mohankumar, K. M., Currle, D. S., White, E., Boulos, N., Dapper, J., Eden, C., et al. (2015). An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. Nature Genetics, 47(8), 878–887. https://doi.org/10.1038/ng.3323.

  179. 179.

    Nimmervoll, B. V., Boulos, N., Bianski, B., Dapper, J., DeCuypere, M., Shelat, A., et al. (2018). Establishing a preclinical multidisciplinary board for brain tumors. Clinical Cancer Research, 24(7), 1654. https://doi.org/10.1158/1078-0432.CCR-17-2168.

Download references

Acknowledgments

We would like to thank all members in Dr. Abou-Kheir’s Laboratory (The WAK Lab) and Dr. Abou-Antoun’s Laboratory for their help on this work.

Author information

WAK and TAA conceived the concept and idea of the present review. HFB, TAA, and WAK worked on the study design strategy and selected the topics to be discussed. HFB and MKE did literature searches and screened titles and abstracts for relevance. HFB, MKE, TEZ, and JB abstracted the data from the eligible full text articles, analyzed and interpreted the data, and drafted the manuscript. TAA and WAK critically revised the manuscript with input from the entire team. All authors have read and approved the final draft.

Correspondence to Tamara Abou-Antoun or Wassim Abou-Kheir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bahmad, H.F., Elajami, M.K., El Zarif, T. et al. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev (2020). https://doi.org/10.1007/s10555-019-09840-2

Download citation

Keywords

  • Drug repurposing
  • Cancer stem cells
  • Pediatric brain tumors
  • Low-grade glioma
  • Medulloblastoma