Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Pediatric diffuse intrinsic pontine glioma: where do we stand?

Abstract

Pediatric diffuse intrinsic pontine glioma (DIPG) represents approximately 20% of all pediatric CNS tumors. However, disease outcomes are dismal with a median survival of less than 1 year and a 2-year overall survival rate of less than 10%. Despite extensive efforts to improve survival outcomes, progress towards clinical improvement has been largely stagnant throughout the last 4 decades. Focal radiotherapy remains the standard of care with no promising single-agent alternatives and no evidence for improvement with the addition of a long list of systemic therapies. A better understanding of the biology of DIPG, though not easy due to obstacles in obtaining pathological material to study, is promising for the development of specific individualized treatment for this fatal disease. Recent studies have found epigenetic mutations to be successful predictors and prognostic factors for developing future management policies. The aim of this review is to give a global overview about the epidemiology, diagnosis, and treatment of DIPG. We further examine the controversial biopsy and autopsy issue that is unique to DIPG and assess the subsequent impact this issue has on the research efforts and clinical management of DIPG.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Hassan, H., Pinches, A., Picton, S. V., & Phillips, R. S. (2017). Survival rates and prognostic predictors of high grade brain stem gliomas in childhood: a systematic review and meta-analysis. Journal of Neuro-Oncology, 135, 1–8. https://doi.org/10.1007/s11060-017-2546-1.

  2. 2.

    Saratsis, A. M., Kambhampati, M., Snyder, K., Yadavilli, S., Devaney, J. M., Harmon, B., Hall, J., Raabe, E. H., An, P., Weingart, M., Rood, B. R., Magge, S. N., MacDonald, T., Packer, R. J., & Nazarian, J. (2014). Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathologica, 127(6), 881–895. https://doi.org/10.1007/s00401-013-1218-2.

  3. 3.

    Barkovich, A. J., Krischer, J., Kun, L. F., Packer, R., Zimmerman, R. A., Freeman, C. R., et al. (1990). Brain stem gliomas: a classification system based on magnetic resonance imaging. Pediatric Neurosurgery, 16(2), 73–83. https://doi.org/10.1159/000120511.

  4. 4.

    Bartels, U., Hawkins, C., Vézina, G., Kun, L., Souweidane, M., & Bouffet, E. (2011). Proceedings of the diffuse intrinsic pontine glioma (DIPG) Toronto Think Tank: advancing basic and translational research and cooperation in DIPG. Journal of Neuro-Oncology, 105(1), 119–125. https://doi.org/10.1007/s11060-011-0704-4.

  5. 5.

    Smith, M. A., Freidlin, B., Ries, L. A., & Simon, R. (1998). Trends in reported incidence of primary malignant brain tumors in children in the United States. Journal of the National Cancer Institute, 90(17), 1269–1277 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9731733.

  6. 6.

    Hargrave, D., Bartels, U., & Bouffet, E. (2006). Diffuse brainstem glioma in children: critical review of clinical trials. The Lancet Oncology, 7(3), 241–248. https://doi.org/10.1016/S1470-2045(06)70615-5.

  7. 7.

    Buczkowicz, P., Bartels, U., Bouffet, E., Becher, O., & Hawkins, C. (2014). Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathologica, 128(4), 573–581. https://doi.org/10.1007/s00401-014-1319-6.

  8. 8.

    Landolfi, J. C., Thaler, H. T., & DeAngelis, L. M. (1998). Adult brainstem gliomas. Neurology, 51(4), 1136–1139 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9781543.

  9. 9.

    Recinos, P. F., Sciubba, D. M., & Jallo, G. I. (2007). Brainstem tumors: where are we today? Pediatric Neurosurgery, 43(3), 192–201. https://doi.org/10.1159/000098831.

  10. 10.

    Freeman, C. R., & Farmer, J. P. (1998). Pediatric brain stem gliomas: a review. International Journal of Radiation Oncology, Biology, Physics, 40(2), 265–271. https://doi.org/10.1016/s0360-3016(97)00572-5.

  11. 11.

    Lassiter, K. R. L., Alexander, E., Davis, C. H., & Kelly, D. L. (1971). Surgical treatment of brain stem gliomas. Journal of Neurosurgery, 34(6), 719–725. https://doi.org/10.3171/jns.1971.34.6.0719.

  12. 12.

    Warren, K. E. (2012). Diffuse intrinsic pontine glioma: poised for progress. Frontiers in Oncology, 2, 205. https://doi.org/10.3389/fonc.2012.00205.

  13. 13.

    Robison, N. J., & Kieran, M. W. (2014). Diffuse intrinsic pontine glioma: a reassessment. Journal of Neuro-Oncology, 119(1), 7–15. https://doi.org/10.1007/s11060-014-1448-8.

  14. 14.

    Bradley, K. A., Zhou, T., McNall-Knapp, R. Y., Jakacki, R. I., Levy, A. S., Vezina, G., & Pollack, I. F. (2013). Motexafin-gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a Children’s Oncology Group phase 2 study. International Journal of Radiation Oncology, Biology, and Physics, 85(1), e55–e60. https://doi.org/10.1016/j.ijrobp.2012.09.004.

  15. 15.

    Angelini, P., Hawkins, C., Laperriere, N., Bouffet, E., & Bartels, U. (2011). Post mortem examinations in diffuse intrinsic pontine glioma: challenges and chances. Journal of Neuro-Oncology, 101(1), 75–81. https://doi.org/10.1007/s11060-010-0224-7.

  16. 16.

    Albright, A. L., Packer, R. J., Zimmerman, R., Rorke, L. B., Boyett, J., & Hammond, G. D. (1993). Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery, 33(6), 1026–1029 discussion 1029-30. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8133987.

  17. 17.

    Schumacher, M., Schulte-Mönting, J., Stoeter, P., Warmuth-Metz, M., & Solymosi, L. (2007). Magnetic resonance imaging compared with biopsy in the diagnosis of brainstem diseases of childhood: a multicenter review. Journal of Neurosurgery: Pediatrics, 106(2), 111–119. https://doi.org/10.3171/ped.2007.106.2.111.

  18. 18.

    Plessier, A., Le Dret, L., Varlet, P., Beccaria, K., Lacombe, J., Mériaux, S., et al. (2017). New in vivo avatars of diffuse intrinsic pontine gliomas (DIPG) from stereotactic biopsies performed at diagnosis. Oncotarget, 8(32), 52543–52559. https://doi.org/10.18632/oncotarget.15002.

  19. 19.

    Sewing, A. C. P., Lagerweij, T., van Vuurden, D. G., Meel, M. H., Veringa, S. J. E., Carcaboso, A. M., et al. (2017). Preclinical evaluation of convection-enhanced delivery of liposomal doxorubicin to treat pediatric diffuse intrinsic pontine glioma and thalamic high-grade glioma. Journal of Neurosurgery: Pediatrics, 19(5), 518–530. https://doi.org/10.3171/2016.9.PEDS16152.

  20. 20.

    Misuraca, K. L., Cordero, F. J., & Becher, O. J. (2015). Pre-clinical models of diffuse intrinsic pontine glioma. Frontiers in Oncology, 5, 172. https://doi.org/10.3389/fonc.2015.00172.

  21. 21.

    Lapin, D. H., Tsoli, M., & Ziegler, D. S. (2017). Genomic insights into diffuse intrinsic pontine glioma. Frontiers in Oncology, 7, 57. https://doi.org/10.3389/fonc.2017.00057.

  22. 22.

    Kambhampati, M., Perez, J. P., Yadavilli, S., Saratsis, A. M., Hill, A. D., Ho, C.-Y., et al. (2015). A standardized autopsy procurement allows for the comprehensive study of DIPG biology. Oncotarget, 6(14), 12740–12747. https://doi.org/10.18632/oncotarget.3374.

  23. 23.

    Caretti, V., Jansen, M. H. A., van Vuurden, D. G., Lagerweij, T., Bugiani, M., Horsman, I., et al. (2013). Implementation of a multi-institutional diffuse intrinsic pontine glioma autopsy protocol and characterization of a primary cell culture. Neuropathology and Applied Neurobiology, 39(4), 426–436. https://doi.org/10.1111/j.1365-2990.2012.01294.x.

  24. 24.

    Puget, S., Beccaria, K., Blauwblomme, T., Roujeau, T., James, S., Grill, J., et al. (2015). Biopsy in a series of 130 pediatric diffuse intrinsic pontine gliomas. Child's Nervous System, 31(10), 1773–1780. https://doi.org/10.1007/s00381-015-2832-1.

  25. 25.

    Cage, T. A., Samagh, S. P., Mueller, S., Nicolaides, T., Haas-Kogan, D., Prados, M., Banerjee, A., Auguste, K. I., & Gupta, N. (2013). Feasibility, safety, and indications for surgical biopsy of intrinsic brainstem tumors in children. Child's Nervous System, 29(8), 1313–1319. https://doi.org/10.1007/s00381-013-2101-0.

  26. 26.

    Hamisch, C., Kickingereder, P., Fischer, M., Simon, T., & Ruge, M. I. (2017). Update on the diagnostic value and safety of stereotactic biopsy for pediatric brainstem tumors: a systematic review and meta-analysis of 735 cases. Journal of Neurosurgery: Pediatrics, 20(3), 261–268. https://doi.org/10.3171/2017.2.PEDS1665.

  27. 27.

    Pfaff, E., El Damaty, A., Balasubramanian, G. P., Blattner-Johnson, M., Worst, B. C., Stark, S., et al. (2019). Brainstem biopsy in pediatric diffuse intrinsic pontine glioma in the era of precision medicine: the INFORM study experience. European Journal of Cancer, 114, 27–35. https://doi.org/10.1016/j.ejca.2019.03.019.

  28. 28.

    Gupta, N., Goumnerova, L. C., Manley, P., Chi, S. N., Neuberg, D., Puligandla, M., Fangusaro, J., Goldman, S., Tomita, T., Alden, T., DiPatri, A., Rubin, J. B., Gauvain, K., Limbrick, D., Leonard, J., Geyer, J. R., Leary, S., Browd, S., Wang, Z., Sood, S., Bendel, A., Nagib, M., Gardner, S., Karajannis, M. A., Harter, D., Ayyanar, K., Gump, W., Bowers, D. C., Weprin, B., MacDonald, T., Aguilera, D., Brahma, B., Robison, N. J., Kiehna, E., Krieger, M., Sandler, E., Aldana, P., Khatib, Z., Ragheb, J., Bhatia, S., Mueller, S., Banerjee, A., Bredlau, A. L., Gururangan, S., Fuchs, H., Cohen, K. J., Jallo, G., Dorris, K., Handler, M., Comito, M., Dias, M., Nazemi, K., Baird, L., Murray, J., Lindeman, N., Hornick, J. L., Malkin, H., Sinai, C., Greenspan, L., Wright, K. D., Prados, M., Bandopadhayay, P., Ligon, K. L., & Kieran, M. W. (2018). Prospective feasibility and safety assessment of surgical biopsy for patients with newly diagnosed diffuse intrinsic pontine glioma. Neuro-Oncology, 20(11), 1547–1555. https://doi.org/10.1093/neuonc/noy070.

  29. 29.

    Samadani, U., & Judy, K. D. (2003). Stereotactic brainstem biopsy is indicated for the diagnosis of a vast array of brainstem pathology. Stereotactic and Functional Neurosurgery, 81(1–4), 5–9. https://doi.org/10.1159/000075097.

  30. 30.

    Pincus, D. W., Richter, E. O., Yachnis, A. T., Bennett, J., Bhatti, M. T., & Smith, A. (2006). Brainstem stereotactic biopsy sampling in children. Journal of Neurosurgery: Pediatrics, 104(2), 108–114. https://doi.org/10.3171/ped.2006.104.2.108.

  31. 31.

    Bandopadhayay, P., Greenwald, N. F., Wala, J., Sharpira, O., Tracy, A., Filbin, M., et al. (2017). DIPG-29. Genomic landscape of diffuse intrinsic pontine glioma: an analysis of the DIPG-BATs cohort. Neuro-Oncology, 19(suppl_4), iv11. https://doi.org/10.1093/neuonc/nox083.044.

  32. 32.

    Alix-Panabières, C., & Pantel, K. (2016). Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discovery, 6(5), 479–491. https://doi.org/10.1158/2159-8290.CD-15-1483.

  33. 33.

    Mattox, A. K., Bettegowda, C., Zhou, S., Papadopoulos, N., Kinzler, K. W., & Vogelstein, B. (2019). Applications of liquid biopsies for cancer. Science Translational Medicine, 11(507), eaay1984. https://doi.org/10.1126/scitranslmed.aay1984.

  34. 34.

    Huang, T. Y., Piunti, A., Lulla, R. R., Qi, J., Horbinski, C. M., Tomita, T., James, C. D., Shilatifard, A., & Saratsis, A. M. (2017). Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathologica Communications, 5(1), 28. https://doi.org/10.1186/s40478-017-0436-6.

  35. 35.

    Panditharatna, E., Kilburn, L. B., Aboian, M. S., Kambhampati, M., Gordish-Dressman, H., Magge, S. N., Gupta, N., Myseros, J. S., Hwang, E. I., Kline, C., Crawford, J. R., Warren, K. E., Cha, S., Liang, W. S., Berens, M. E., Packer, R. J., Resnick, A. C., Prados, M., Mueller, S., & Nazarian, J. (2018). Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clinical Cancer Research, 24(23), 5850–5859. https://doi.org/10.1158/1078-0432.CCR-18-1345.

  36. 36.

    Pan, C., Diplas, B. H., Chen, X., Wu, Y., Xiao, X., Jiang, L., Geng, Y., Xu, C., Sun, Y., Zhang, P., Wu, W., Wang, Y., Wu, Z., Zhang, J., Jiao, Y., Yan, H., & Zhang, L. (2019). Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathologica, 137(2), 297–306. https://doi.org/10.1007/s00401-018-1936-6.

  37. 37.

    Buczkowicz, P., Hoeman, C., Rakopoulos, P., Pajovic, S., Letourneau, L., Dzamba, M., Morrison, A., Lewis, P., Bouffet, E., Bartels, U., Zuccaro, J., Agnihotri, S., Ryall, S., Barszczyk, M., Chornenkyy, Y., Bourgey, M., Bourque, G., Montpetit, A., Cordero, F., Castelo-Branco, P., Mangerel, J., Tabori, U., Ho, K. C., Huang, A., Taylor, K. R., Mackay, A., Bendel, A. E., Nazarian, J., Fangusaro, J. R., Karajannis, M. A., Zagzag, D., Foreman, N. K., Donson, A., Hegert, J. V., Smith, A., Chan, J., Lafay-Cousin, L., Dunn, S., Hukin, J., Dunham, C., Scheinemann, K., Michaud, J., Zelcer, S., Ramsay, D., Cain, J., Brennan, C., Souweidane, M. M., Jones, C., Allis, C. D., Brudno, M., Becher, O., & Hawkins, C. (2014). Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 46(5), 451–456. https://doi.org/10.1038/ng.2936.

  38. 38.

    Khuong-Quang, D.-A., Buczkowicz, P., Rakopoulos, P., Liu, X.-Y., Fontebasso, A. M., Bouffet, E., Bartels, U., Albrecht, S., Schwartzentruber, J., Letourneau, L., Bourgey, M., Bourque, G., Montpetit, A., Bourret, G., Lepage, P., Fleming, A., Lichter, P., Kool, M., von Deimling, A., Sturm, D., Korshunov, A., Faury, D., Jones, D. T., Majewski, J., Pfister, S. M., Jabado, N., & Hawkins, C. (2012). K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathologica, 124(3), 439–447. https://doi.org/10.1007/s00401-012-0998-0.

  39. 39.

    Schwartzentruber, J., Korshunov, A., Liu, X.-Y., Jones, D. T. W., Pfaff, E., Jacob, K., et al. (2012). Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 482(7384), 226–231. https://doi.org/10.1038/nature10833.

  40. 40.

    Wu, G., Broniscer, A., McEachron, T. A., Lu, C., Paugh, B. S., Becksfort, J., et al. (2012). Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genetics, 44(3), 251–253. https://doi.org/10.1038/ng.1102.

  41. 41.

    Monje, M., Mitra, S. S., Freret, M. E., Raveh, T. B., Kim, J., Masek, M., Attema, J. L., Li, G., Haddix, T., Edwards, M. S., Fisher, P. G., Weissman, I. L., Rowitch, D. H., Vogel, H., Wong, A. J., & Beachy, P. A. (2011). Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proceedings of the National Academy of Sciences of the United States of America, 108(11), 4453–4458. https://doi.org/10.1073/pnas.1101657108.

  42. 42.

    Kepert, J. F., Tóth, K. F., Caudron, M., Mücke, N., Langowski, J., & Rippe, K. (2003). Conformation of reconstituted mononucleosomes and effect of linker histone H1 binding studied by scanning force microscopy. Biophysical Journal, 85(6), 4012–4022. https://doi.org/10.1016/S0006-3495(03)74815-2.

  43. 43.

    Mariño-Ramírez, L., Kann, M. G., Shoemaker, B. A., & Landsman, D. (2005). Histone structure and nucleosome stability. Expert Review of Proteomics, 2(5), 719–729. https://doi.org/10.1586/14789450.2.5.719.

  44. 44.

    Carvalho, D., Taylor, K. R., Olaciregui, N. G., Molinari, V., Clarke, M., Mackay, A., Ruddle, R., Henley, A., Valenti, M., Hayes, A., Brandon, A. D. H., Eccles, S. A., Raynaud, F., Boudhar, A., Monje, M., Popov, S., Moore, A. S., Mora, J., Cruz, O., Vinci, M., Brennan, P. E., Bullock, A. N., Carcaboso, A. M., & Jones, C. (2019). ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. Communications Biology, 2(1), 156. https://doi.org/10.1038/s42003-019-0420-8.

  45. 45.

    Castel, D., Philippe, C., Calmon, R., Le Dret, L., Truffaux, N., Boddaert, N., et al. (2015). Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathologica, 130(6), 815–827. https://doi.org/10.1007/s00401-015-1478-0.

  46. 46.

    Yuen, B. T. K., & Knoepfler, P. S. (2013). Histone H3.3 mutations: a variant path to cancer. Cancer Cell, 24(5), 567–574. https://doi.org/10.1016/j.ccr.2013.09.015.

  47. 47.

    Kumar, S. S., Sengupta, S., Lee, K., Hura, N., Fuller, C., DeWire, M., et al. (2017). BMI-1 is a potential therapeutic target in diffuse intrinsic pontine glioma. Oncotarget, 8(38), 62962–62975. https://doi.org/10.18632/oncotarget.18002.

  48. 48.

    Han, H. J., Jain, P., & Resnick, A. C. (2018). Shared ACVR1 mutations in FOP and DIPG: opportunities and challenges in extending biological and clinical implications across rare diseases. Bone, 109, 91–100. https://doi.org/10.1016/j.bone.2017.08.001.

  49. 49.

    Taylor, K. R., Vinci, M., Bullock, A. N., & Jones, C. (2014). ACVR1 mutations in DIPG: lessons learned from FOP. Cancer Research, 74(17), 4565–4570. https://doi.org/10.1158/0008-5472.CAN-14-1298.

  50. 50.

    Taylor, K. R., Mackay, A., Truffaux, N., Butterfield, Y. S., Morozova, O., Philippe, C., et al. (2014). Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nature Genetics, 46(5), 457–461. https://doi.org/10.1038/ng.2925.

  51. 51.

    Viñals, F., & Ventura, F. (2004). Myogenin protein stability is decreased by BMP-2 through a mechanism implicating Id1. Journal of Biological Chemistry, 279(44), 45766–45772. https://doi.org/10.1074/jbc.M408059200.

  52. 52.

    Hoeman, C. M., Cordero, F. J., Hu, G., Misuraca, K., Romero, M. M., Cardona, H. J., et al. (2019). ACVR1 R206H cooperates with H3.1K27M in promoting diffuse intrinsic pontine glioma pathogenesis. Nature Communications, 10(1), 1023. https://doi.org/10.1038/s41467-019-08823-9.

  53. 53.

    Ségaliny, A. I., Tellez-Gabriel, M., Heymann, M.-F., & Heymann, D. (2015). Receptor tyrosine kinases: characterisation, mechanism of action and therapeutic interests for bone cancers. Journal of bone oncology, 4(1), 1–12. https://doi.org/10.1016/j.jbo.2015.01.001.

  54. 54.

    Zarghooni, M., Bartels, U., Lee, E., Buczkowicz, P., Morrison, A., Huang, A., et al. (2010). Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor α and poly (ADP-ribose) polymerase as potential therapeutic targets. Journal of Clinical Oncology, 28(8), 1337–1344. https://doi.org/10.1200/JCO.2009.25.5463.

  55. 55.

    Puget, S., Philippe, C., Bax, D. A., Job, B., Varlet, P., Junier, M.-P., Andreiuolo, F., Carvalho, D., Reis, R., Guerrini-Rousseau, L., Roujeau, T., Dessen, P., Richon, C., Lazar, V., le Teuff, G., Sainte-Rose, C., Geoerger, B., Vassal, G., Jones, C., & Grill, J. (2012). Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One, 7(2), e30313. https://doi.org/10.1371/journal.pone.0030313.

  56. 56.

    Paugh, B. S., Zhu, X., Qu, C., Endersby, R., Diaz, A. K., Zhang, J., Bax, D. A., Carvalho, D., Reis, R. M., Onar-Thomas, A., Broniscer, A., Wetmore, C., Zhang, J., Jones, C., Ellison, D. W., & Baker, S. J. (2013). Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Research, 73(20), 6219–6229. https://doi.org/10.1158/0008-5472.CAN-13-1491.

  57. 57.

    Broniscer, A., Baker, S. D., Wetmore, C., Pai Panandiker, A. S., Huang, J., Davidoff, A. M., Onar-Thomas, A., Panetta, J. C., Chin, T. K., Merchant, T. E., Baker, J. N., Kaste, S. C., Gajjar, A., & Stewart, C. F. (2013). Phase I Trial, Pharmacokinetics, and pharmacodynamics of vandetanib and dasatinib in children with newly diagnosed diffuse intrinsic pontine glioma. Clinical Cancer Research, 19(11), 3050–3058. https://doi.org/10.1158/1078-0432.CCR-13-0306.

  58. 58.

    Pollack, I. F., Jakacki, R. I., Blaney, S. M., Hancock, M. L., Kieran, M. W., Phillips, P., Kun, L. E., Friedman, H., Packer, R., Banerjee, A., Geyer, J. R., Goldman, S., Poussaint, T. Y., Krasin, M. J., Wang, Y., Hayes, M., Murgo, A., Weiner, S., & Boyett, J. M. (2007). Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report1. Neuro-Oncology, 9(2), 145–160. https://doi.org/10.1215/15228517-2006-031.

  59. 59.

    Hoeman, C., Shen, C., & Becher, O. J. (2018). CDK4/6 and PDGFRA signaling as therapeutic targets in diffuse intrinsic pontine glioma. Frontiers in Oncology, 8, 191. https://doi.org/10.3389/fonc.2018.00191.

  60. 60.

    Paugh, B. S., Broniscer, A., Qu, C., Miller, C. P., Zhang, J., Tatevossian, R. G., Olson, J. M., Geyer, J. R., Chi, S. N., da Silva, N. S., Onar-Thomas, A., Baker, J. N., Gajjar, A., Ellison, D. W., & Baker, S. J. (2011). Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. Journal of Clinical Oncology, 29(30), 3999–4006. https://doi.org/10.1200/JCO.2011.35.5677.

  61. 61.

    Guglielmi, L., Cinnella, C., Nardella, M., Maresca, G., Valentini, A., Mercanti, D., et al. (2014). MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death & Disease, 5(2), e1081–e1081. https://doi.org/10.1038/cddis.2014.42.

  62. 62.

    Wu, G., Diaz, A. K., Paugh, B. S., Rankin, S. L., Ju, B., Li, Y., Zhu, X., Qu, C., Chen, X., Zhang, J., Easton, J., Edmonson, M., Ma, X., Lu, C., Nagahawatte, P., Hedlund, E., Rusch, M., Pounds, S., Lin, T., Onar-Thomas, A., Huether, R., Kriwacki, R., Parker, M., Gupta, P., Becksfort, J., Wei, L., Mulder, H. L., Boggs, K., Vadodaria, B., Yergeau, D., Russell, J. C., Ochoa, K., Fulton, R. S., Fulton, L. L., Jones, C., Boop, F. A., Broniscer, A., Wetmore, C., Gajjar, A., Ding, L., Mardis, E. R., Wilson, R. K., Taylor, M. R., Downing, J. R., Ellison, D. W., Zhang, J., & Baker, S. J. (2014). The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nature Genetics, 46(5), 444–450. https://doi.org/10.1038/ng.2938.

  63. 63.

    Plass, C., Pfister, S. M., Lindroth, A. M., Bogatyrova, O., Claus, R., & Lichter, P. (2013). Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nature Reviews Genetics, 14(11), 765–780. https://doi.org/10.1038/nrg3554.

  64. 64.

    Grill, J., Puget, S., Andreiuolo, F., Philippe, C., MacConaill, L., & Kieran, M. W. (2012). Critical oncogenic mutations in newly diagnosed pediatric diffuse intrinsic pontine glioma. Pediatric Blood & Cancer, 58(4), 489–491. https://doi.org/10.1002/pbc.24060.

  65. 65.

    Kleiblova, P., Shaltiel, I. A., Benada, J., Ševčík, J., Pecháčková, S., Pohlreich, P., Voest, E. E., Dundr, P., Bartek, J., Kleibl, Z., Medema, R. H., & Macurek, L. (2013). Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. The Journal of Cell Biology, 201(4), 511–521. https://doi.org/10.1083/jcb.201210031.

  66. 66.

    Yagi, H., Chuman, Y., Kozakai, Y., Imagawa, T., Takahashi, Y., Yoshimura, F., et al. (2012). A small molecule inhibitor of p53-inducible protein phosphatase PPM1D. Bioorganic & Medicinal Chemistry Letters, 22(1), 729–732. https://doi.org/10.1016/j.bmcl.2011.10.084.

  67. 67.

    Oghabi Bakhshaiesh, T., Majidzadeh-A, K., & Esmaeili, R. (2017). Wip1: a candidate phosphatase for cancer diagnosis and treatment. DNA Repair, 54, 63–66. https://doi.org/10.1016/j.dnarep.2017.03.004.

  68. 68.

    Giacinti, C., & Giordano, A. (2006). RB and cell cycle progression. Oncogene, 25(38), 5220–5227. https://doi.org/10.1038/sj.onc.1209615.

  69. 69.

    Paugh, B. S., Qu, C., Jones, C., Liu, Z., Adamowicz-Brice, M., Zhang, J., Bax, D. A., Coyle, B., Barrow, J., Hargrave, D., Lowe, J., Gajjar, A., Zhao, W., Broniscer, A., Ellison, D. W., Grundy, R. G., & Baker, S. J. (2010). Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. Journal of Clinical Oncology, 28(18), 3061–3068. https://doi.org/10.1200/JCO.2009.26.7252.

  70. 70.

    Warren, K. E., Killian, K., Suuriniemi, M., Wang, Y., Quezado, M., & Meltzer, P. S. (2012). Genomic aberrations in pediatric diffuse intrinsic pontine gliomas. Neuro-Oncology, 14(3), 326–332. https://doi.org/10.1093/neuonc/nor190.

  71. 71.

    Becher, O. J. (2019). CDK4/6 and diffuse intrinsic pontine glioma - evaluate at diagnosis? EBioMedicine, 44, 16–17. https://doi.org/10.1016/j.ebiom.2019.05.020.

  72. 72.

    Willems, E., Dedobbeleer, M., Digregorio, M., Lombard, A., Lumapat, P. N., & Rogister, B. (2018). The functional diversity of Aurora kinases: a comprehensive review. Cell Division, 13, 7. https://doi.org/10.1186/s13008-018-0040-6.

  73. 73.

    Tang, A., Gao, K., Chu, L., Zhang, R., Yang, J., & Zheng, J. (2017). Aurora kinases: novel therapy targets in cancers. Oncotarget, 8(14), 23937–23954. https://doi.org/10.18632/oncotarget.14893.

  74. 74.

    Buczkowicz, P., Zarghooni, M., Bartels, U., Morrison, A., Misuraca, K. L., Chan, T., Bouffet, E., Huang, A., Becher, O., & Hawkins, C. (2013). Aurora kinase B is a potential therapeutic target in pediatric diffuse intrinsic pontine glioma. Brain Pathology, 23(3), 244–253. https://doi.org/10.1111/j.1750-3639.2012.00633.x.

  75. 75.

    Matheson, C. J., Backos, D. S., & Reigan, P. (2016). Targeting WEE1 kinase in cancer. Trends in Pharmacological Sciences, 37(10), 872–881. https://doi.org/10.1016/j.tips.2016.06.006.

  76. 76.

    Geenen, J. J. J., & Schellens, J. H. M. (2017). Molecular pathways: targeting the protein kinase Wee1 in cancer. Clinical Cancer Research, 23(16), 4540–4544. https://doi.org/10.1158/1078-0432.CCR-17-0520.

  77. 77.

    Caretti, V., Hiddingh, L., Lagerweij, T., Schellen, P., Koken, P. W., Hulleman, E., van Vuurden, D., Vandertop, W. P., Kaspers, G. J., Noske, D. P., & Wurdinger, T. (2013). WEE1 kinase inhibition enhances the radiation response of diffuse intrinsic pontine gliomas. Molecular Cancer Therapeutics, 12(2), 141–150. https://doi.org/10.1158/1535-7163.MCT-12-0735.

  78. 78.

    Mueller, S., Hashizume, R., Yang, X., Kolkowitz, I., Olow, A. K., Phillips, J., Smirnov, I., Tom, M. W., Prados, M. D., James, C. D., Berger, M. S., Gupta, N., & Haas-Kogan, D. A. (2014). Targeting Wee1 for the treatment of pediatric high-grade gliomas. Neuro-Oncology, 16(3), 352–360. https://doi.org/10.1093/neuonc/not220.

  79. 79.

    Punt, J., & Cartmill, M. (1999). Diffuse brain stem glioma. Child's Nervous System, 15(5), 235–237. https://doi.org/10.1007/s003810050379.

  80. 80.

    Ratnam, K., & Low, J. A. (2007). Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clinical Cancer Research, 13(5), 1383–1388. https://doi.org/10.1158/1078-0432.CCR-06-2260.

  81. 81.

    Baxter, P., Su, J., Li, X., Thomas, A. O., Billups, C., Thompson, P., et al. (2016). EPT-15A phase1/2 clinical trial of veliparib (ABT-888) and radiation followed by maintenance therapy with veliparib and temozolomide (TMZ) in patients with newly diagnosed diffuse intrinsic pontine glioma (DIPG): a Pediatric Brain Tumor Consortium interim report of phase II study. Neuro-Oncology, 18(suppl 3), 1–iii27. https://doi.org/10.1093/neuonc/now069.14.

  82. 82.

    Su, J. M., Thompson, P., Adesina, A., Li, X.-N., Kilburn, L., Onar-Thomas, A., Kocak, M., Chyla, B., McKeegan, E., Warren, K. E., Goldman, S., Pollack, I. F., Fouladi, M., Chen, A., Giranda, V., Boyett, J., Kun, L., & Blaney, S. M. (2014). A phase I trial of veliparib (ABT-888) and temozolomide in children with recurrent CNS tumors: a pediatric brain tumor consortium report. Neuro-oncology, 16(12), 1661–1668. https://doi.org/10.1093/neuonc/nou103.

  83. 83.

    Zhou, Z., Luther, N., Ibrahim, G. M., Hawkins, C., Vibhakar, R., Handler, M. H., & Souweidane, M. M. (2013). B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 111(3), 257–264. https://doi.org/10.1007/s11060-012-1021-2.

  84. 84.

    Kaye, E. C., Baker, J. N., & Broniscer, A. (2014). Management of diffuse intrinsic pontine glioma in children: current and future strategies for improving prognosis. CNS oncology, 3(6), 421–431. https://doi.org/10.2217/cns.14.47.

  85. 85.

    Tang, X., Zhao, S., Zhang, Y., Wang, Y., Zhang, Z., Yang, M., Zhu, Y., Zhang, G., Guo, G., Tong, A., & Zhou, L. (2019). B7-H3 as a novel CAR-T therapeutic target for glioblastoma. Molecular therapy oncolytics, 14, 279–287. https://doi.org/10.1016/j.omto.2019.07.002.

  86. 86.

    Majzner, R. G., Theruvath, J. L., Nellan, A., Heitzeneder, S., Cui, Y., Mount, C. W., et al. (2019). CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 25(8), 2560–2574. https://doi.org/10.1158/1078-0432.CCR-18-0432.

  87. 87.

    Greenberger, J. S., Cassady, J. R., & Levene, M. B. (1977). Radiation therapy of thalamic, midbrain and brain stem gliomas. Radiology, 122(2), 463–468. https://doi.org/10.1148/122.2.463.

  88. 88.

    Halperin, E. C. (1985). Pediatric brain stem tumors: patterns of treatment failure and their implications for radiotherapy. International Journal of Radiation Oncology, Biology, and Physics, 11(7), 1293–1298. https://doi.org/10.1016/0360-3016(85)90244-5.

  89. 89.

    Panandiker, A. S. P., Wong, J. K., Nedelka, M. A., Gajjar, A., & Broniscer, A. (2014). Effect of time from diagnosis to start of radiotherapy on children with diffuse intrinsic pontine glioma, (September 2013), (pp. 1180–1183). doi: https://doi.org/10.1002/pbc

  90. 90.

    Cancer, A. C., Phase, G., Packer, R., Boyett, M., Ph, D., Zimmerman, R. A., … Ph, D. (1994). Outcome of children with brain stem gliomas after treatment with 7800 cGy of hyperfractionated radiotherapy.

  91. 91.

    Sanford, R. A., & Carpio, R. D. E. L. (1993). ?? Clinical original contribution in children: a Pediatric Oncology Group study, 21(March).

  92. 92.

    Zaghloul, M. S., Akoush, H., Ahmed, S., Tolba, M., Refaat, A., Youssef, A., Khateeb, N. E., & A. A. A. (2018). Hypofractionated radiation for pediatric diffuse intrinsic pontine glioma (DIPG): younger children have better survival. International Journal of Radiation Oncology, Biology, Physics, 101(4), 1008–1009.

  93. 93.

    Tsang, D. S., & Laperriere, N. J. (2019). Re-irradiation for paediatric tumours. Clinical Oncology, 31(3), 191–198. https://doi.org/10.1016/j.clon.2018.10.003.

  94. 94.

    Lassaletta, A., Strother, D., Laperriere, N., Hukin, J., Vanan, M. I., Goddard, K., et al. (2018). Reirradiation in patients with diffuse intrinsic pontine gliomas: the Canadian experience. Pediatric Blood & Cancer, 65(6), e26988. https://doi.org/10.1002/pbc.26988.

  95. 95.

    Evans, A., Hitrle, R., Ortega, J., Sposto, R., Wara, W., Wilson, C., et al. (1987). Brain-stem tumors in childhood: a prospective randomized trial of irradiation with and without adjuvant CCNU, VCR, and prednisone. Journal of Neurosurgery, 66, 227–233.

  96. 96.

    Jennings, B. M. T., Sposto, R., Boyett, J. M., Vezina, L. G., Holmes, E., Berger, M. S., et al. (2016). Preradiation chemotherapy in primary high-risk brainstem tumors: phase II study CCG-9941 of the Children’s Cancer Group. Journal of Clinical Oncology, 20(16), 3431–3437. https://doi.org/10.1200/JCO.2002.04.109.

  97. 97.

    Allen, J., Siffert, J., Donahue, B., Nirenberg, A., Jakacki, R., Robertson, P., et al. (1999). A phase I/II study of carboplatin combined with hyperfractionated radiotherapy for brainstem gliomas. Cancer, 86, 1064–1069.

  98. 98.

    Broniscer, A., da Leite, C. C., Lanchote, V. L., Machado, T. M. S., & Cristófani, L. M. (2000). Radiation therapy and high-dose tamoxifen in the treatment of patients with diffuse brainstem gliomas: results of a Brazilian cooperative study. Journal of Clinical Oncology, 18(6), 1246–1253. https://doi.org/10.1200/JCO.2000.18.6.1246.

  99. 99.

    Cohen, K. J., Heideman, R. L., Zhou, T., Holmes, E. J., Lavey, R. S., Bouffet, E., & Pollack, I. F. (2011). with newly diagnosed diffuse intrinsic. Oncology Group, 13(4), 410–416.

  100. 100.

    Bailey, S., Howman, A., Wheatley, K., Wherton, D., Boota, N., & Pizer, B. (2013). Diffuse intrinsic pontine glioma treated with prolonged temozolomide and radiotherapy – results of a United Kingdom phase II trial CNS 2007 04. European Journal of Cancer, 49(18), 3856–3862. https://doi.org/10.1016/j.ejca.2013.08.006.

  101. 101.

    Ho, S. L., Singh, R., Zhou, Z., Lavi, E., & Souweidane, M. M. (2015). Toxicity evaluation of prolonged convection-enhanced delivery of small-molecule kinase inhibitors in naïve rat brainstem. Child’s nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery, 31(2), 221–226. https://doi.org/10.1007/s00381-014-2568-3.

  102. 102.

    Luther, N., Cheung, N.-K., Souliopoulos, E. P., Karempelas, I., Bassiri, D., Edgar, M. A., et al. (2010). Interstitial infusion of glioma-targeted recombinant immunotoxin 8H9scFv-PE38. Molecular Cancer Therapeutics, 9(4), 1039–1046. https://doi.org/10.1158/1535-7163.MCT-09-0996.

  103. 103.

    Souweidane, M. M., Occhiogrosso, G., Mark, E. B., & Edgar, M. A. (2004). Interstitial infusion of IL13-PE38QQR in the rat brain stem. Journal of Neuro-Oncology, 67(3), 287–293 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15164984.

  104. 104.

    Grasso, C. S., Tang, Y., Truffaux, N., Berlow, N. E., Liu, L., Debily, M.-A., Quist, M. J., Davis, L. E., Huang, E. C., Woo, P. J., Ponnuswami, A., Chen, S., Johung, T. B., Sun, W., Kogiso, M., du, Y., Qi, L., Huang, Y., Hütt-Cabezas, M., Warren, K. E., le Dret, L., Meltzer, P. S., Mao, H., Quezado, M., van Vuurden, D., Abraham, J., Fouladi, M., Svalina, M. N., Wang, N., Hawkins, C., Nazarian, J., Alonso, M. M., Raabe, E. H., Hulleman, E., Spellman, P. T., Li, X. N., Keller, C., Pal, R., Grill, J., & Monje, M. (2015). Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine, 21(6), 555–559. https://doi.org/10.1038/nm.3855.

  105. 105.

    Hennika, T., Hu, G., Olaciregui, N. G., Barton, K. L., Ehteda, A., Chitranjan, A., et al. (2017). Pre-clinical study of panobinostat in xenograft and genetically engineered murine diffuse intrinsic pontine glioma models. PLoS One, 12(1), e0169485. https://doi.org/10.1371/journal.pone.0169485.

  106. 106.

    Helder, F., Felix, C., & Leite, O. (2014). Retrospective evaluation of the outcomes of children with diffuse intrinsic pontine glioma treated with radiochemotherapy and valproic acid in a single center, (pp. 261–266). doi: https://doi.org/10.1007/s11060-013-1280-6

  107. 107.

    Pollack, I. F., Stewart, C. F., Kocak, M., Poussaint, T. Y., Broniscer, A., Banerjee, A., Douglas, J. G., Kun, L. E., Boyett, J. M., & Geyer, J. R. (2011). A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro-Oncology, 13(3), 290–297. https://doi.org/10.1093/neuonc/noq199.

  108. 108.

    Carceller, F. (2019). Long-term survivors of diffuse intrinsic pontine glioma (DIPG): myth or reality. Translational Cancer Research, 8(20). https://doi.org/10.21037/tcr.2019.03.12.

  109. 109.

    Veldhuijzen van Zanten, S. E. M., Lane, A., Heymans, M. W., Baugh, J., Chaney, B., Hoffman, L. M., Doughman, R., Jansen, M. H. A., Sanchez, E., Vandertop, W. P., Kaspers, G. J. L., Vuurden, D. G., Fouladi, M., Jones, B. V., & Leach, J. (2017). External validation of the diffuse intrinsic pontine glioma survival prediction model: a collaborative report from the International DIPG Registry and the SIOPE DIPG Registry. Journal of Neuro-Oncology, 134(1), 231–240. https://doi.org/10.1007/s11060-017-2514-9.

  110. 110.

    Hoffman, L. M., Veldhuijzen van Zanten, S. E. M., Colditz, N., Baugh, J., Chaney, B., Hoffmann, M., et al. (2018). Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the International and European Society for Pediatric Oncology DIPG Registries. Journal of Clinical Oncology, 36(19), 1963–1972. https://doi.org/10.1200/JCO.2017.75.9308.

  111. 111.

    Rechberger, J. S., Lu, V. M., Zhang, L., Power, E. A., & Daniels, D. J. (2019). Clinical trials for diffuse intrinsic pontine glioma: the current state of affairs. Child's Nervous System. https://doi.org/10.1007/s00381-019-04363-1.

Download references

Author information

Correspondence to Wafaa M. Rashed or Mohamed Saad Zaghloul.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rashed, W.M., Maher, E., Adel, M. et al. Pediatric diffuse intrinsic pontine glioma: where do we stand?. Cancer Metastasis Rev 38, 759–770 (2019). https://doi.org/10.1007/s10555-019-09824-2

Download citation

Keywords

  • Diffuse intrinsic pontine glioma (DIPG)
  • Epidemiology
  • Biopsy and autopsy
  • Liquid biopsy
  • Biology
  • Treatment