Advertisement

Differential roles of protease isoforms in the tumor microenvironment

  • Chamikara Liyanage
  • Achala Fernando
  • Jyotsna BatraEmail author
Article

Abstract

Alternative splicing of precursor mRNA is a key mediator of gene expression regulation leading to greater diversity of the proteome in complex organisms. Systematic sequencing of the human genome and transcriptome has led to our understanding of how alternative splicing of critical genes leads to multiple pathological conditions such as cancer. For many years, proteases were known only for their roles as proteolytic enzymes, acting to regulate/process proteins associated with diverse cellular functions. However, the differential expression and altered function of various protease isoforms, such as (i) anti-apoptotic activities, (ii) mediating intercellular adhesion, and (iii) modifying the extracellular matrix, are evidence of their specific contribution towards shaping the tumor microenvironment. Revealing the alternative splicing of protease genes and characterization of their protein products/isoforms with distinct and opposing functions creates a platform to understand how protease isoforms contribute to specific cancer hallmarks. Here, in this review, we address cancer-specific isoforms produced by the alternative splicing of proteases and their distinctive roles in the tumor microenvironment.

Keywords

Protease Alternative splicing Cancer Tumor microenvironment 

Notes

Funding information

Chamikara Liyanage and Achala Fernando acknowledge QUT Postgraduate Research Award (QUTPRA) and QUT HDR Tuition Fee Sponsorship; Jyotsna Batra acknowledges Cancer Council Australia, Cure Cancer and Cancer Australia PdCCRS Young Investigator and a National Health and Medical Research Council (NHMRC) Career Development Fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lopez-Otin, C., & Overall, C. M. (2002). Protease degradomics: a new challenge for proteomics. Nature Reviews. Molecular Cell Biology, 3(7), 509–519.  https://doi.org/10.1038/nrm858.CrossRefPubMedGoogle Scholar
  2. 2.
    Puente, X. S., Ordóñez, G. R., & López-Otín, C. (2008). Protease genomics and the cancer degradome. In G. Høyer-Hansen, D. Edwards, F. Blasi, & B. F. Sloane (Eds.), The cancer degradome (pp. 3–15). New York: Springer.CrossRefGoogle Scholar
  3. 3.
    Lopez-Otin, C., & Matrisian, L. M. (2007). Emerging roles of proteases in tumour suppression. Nature Reviews. Cancer, 7(10), 800–808.  https://doi.org/10.1038/nrc2228.CrossRefPubMedGoogle Scholar
  4. 4.
    Bond, J. S. (2019). Proteases: history, discovery, and roles in health and disease. The Journal of Biological Chemistry, 294(5), 1643–1651.  https://doi.org/10.1074/jbc.TM118.004156.CrossRefPubMedGoogle Scholar
  5. 5.
    Buo, L., Aasen, A. O., Karlsrud, T. S., Johansen, H. T., & Sivertsen, S. M. (1990). The role of proteases in the growth, invasion and spread of cancer cells. Tidsskrift for den Norske Lægeforening, 110(29), 3753–3756.PubMedGoogle Scholar
  6. 6.
    Duffy, M. J. (1992). The role of proteolytic enzymes in cancer invasion and metastasis. Clinical & Experimental Metastasis, 10(3), 145–155.CrossRefGoogle Scholar
  7. 7.
    Friedl, P., & Wolf, K. (2008). Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Research, 68(18), 7247–7249.  https://doi.org/10.1158/0008-5472.CAN-08-0784.CrossRefPubMedGoogle Scholar
  8. 8.
    Zucker, S. (1988). A critical appraisal of the role of proteolytic enzymes in cancer invasion: emphasis on tumor surface proteinases. Cancer Investigation, 6(2), 219–231.CrossRefPubMedGoogle Scholar
  9. 9.
    Yang, Y., Hong, H., Zhang, Y., & Cai, W. (2009). Molecular imaging of proteases in cancer. Cancer Growth Metastasis, 2, 13–27.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    El Marabti, E., & Younis, I. (2018). The cancer spliceome: reprograming of alternative splicing in cancer. Frontiers in Molecular Biosciences, 5, 80.  https://doi.org/10.3389/fmolb.2018.00080.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang, B. D., & Lee, N. H. (2018). Aberrant RNA splicing in cancer and drug resistance. Cancers (Basel), 10(11).  https://doi.org/10.3390/cancers10110458.
  12. 12.
    David, C. J., & Manley, J. L. (2010). Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes & Development, 24(21), 2343–2364.  https://doi.org/10.1101/gad.1973010.CrossRefGoogle Scholar
  13. 13.
    Vegran, F., Boidot, R., Solary, E., & Lizard-Nacol, S. (2011). A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly. PLoS One, 6(12), e29058.  https://doi.org/10.1371/journal.pone.0029058.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Brawerman, G. (1987). Determinants of messenger RNA stability. Cell, 48(1), 5–6.  https://doi.org/10.1016/0092-8674(87)90346-1.CrossRefPubMedGoogle Scholar
  15. 15.
    Young, R. A., Hagenbuchle, O., & Schibler, U. (1981). A single mouse alpha-amylase gene specifies two different tissue-specific mRNAs. Cell, 23(2), 451–458.  https://doi.org/10.1016/0092-8674(81)90140-9.CrossRefPubMedGoogle Scholar
  16. 16.
    Gong, Q., Chan, S. J., Bajkowski, A. S., Steiner, D. F., & Frankfater, A. (1993). Characterization of the cathepsin B gene and multiple mRNAs in human tissues: evidence for alternative splicing of cathepsin B pre-mRNA. DNA and Cell Biology, 12(4), 299–309.  https://doi.org/10.1089/dna.1993.12.299.CrossRefPubMedGoogle Scholar
  17. 17.
    Rehman, S. U., Husain, M. A., Sarwar, T., Ishqi, H. M., & Tabish, M. (2015). Modulation of alternative splicing by anticancer drugs. Wiley Interdisciplinary Rev RNA, 6(4), 369–379.  https://doi.org/10.1002/wrna.1283.CrossRefGoogle Scholar
  18. 18.
    Ishii, K., Otsuka, T., Iguchi, K., Usui, S., Yamamoto, H., Sugimura, Y., et al. (2004). Evidence that the prostate-specific antigen (PSA)/Zn2+ axis may play a role in human prostate cancer cell invasion. Cancer Letters, 207(1), 79–87.  https://doi.org/10.1016/j.canlet.2003.09.029.CrossRefPubMedGoogle Scholar
  19. 19.
    Webber, M. M., Waghray, A., & Bello, D. (1995). Prostate-specific antigen, a serine protease, facilitates human prostate cancer cell invasion. Clinical Cancer Research, 1(10), 1089–1094.PubMedGoogle Scholar
  20. 20.
    Fortier, A. H., Nelson, B. J., Grella, D. K., & Holaday, J. W. (1999). Antiangiogenic activity of prostate-specific antigen. Journal of the National Cancer Institute, 91(19), 1635–1640.  https://doi.org/10.1093/jnci/91.19.1635.CrossRefPubMedGoogle Scholar
  21. 21.
    Heidtmann, H. H., Nettelbeck, D. M., Mingels, A., Jager, R., Welker, H. G., & Kontermann, R. E. (1999). Generation of angiostatin-like fragments from plasminogen by prostate-specific antigen. British Journal of Cancer, 81(8), 1269–1273.  https://doi.org/10.1038/sj.bjc.6692167.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Heuze-Vourc’h, N., Leblond, V., & Courty, Y. (2003). Complex alternative splicing of the hKLK3 gene coding for the tumor marker PSA (prostate-specific-antigen). European Journal of Biochemistry, 270(4), 706–714.  https://doi.org/10.1046/j.1432-1033.2003.03425.x.CrossRefPubMedGoogle Scholar
  23. 23.
    Heuze, N., Olayat, S., Gutman, N., Zani, M. L., & Courty, Y. (1999). Molecular cloning and expression of an alternative hKLK3 transcript coding for a variant protein of prostate-specific antigen. Cancer Research, 59(12), 2820–2824.PubMedGoogle Scholar
  24. 24.
    Whitbread, A. K., Veveris-Lowe, T. L., Dong, Y., Tan, O. L., Gardiner, R., Samaratunga, H. M., et al. (2010). Expression of PSA-RP2, an alternatively spliced variant from the PSA gene, is increased in prostate cancer tissues but the protein is not secreted from prostate cancer cells. Biological Chemistry, 391(4), 461–466.  https://doi.org/10.1515/BC.2010.043.CrossRefPubMedGoogle Scholar
  25. 25.
    Tanaka, T., Isono, T., Yoshiki, T., Yuasa, T., & Okada, Y. (2000). A novel form of prostate-specific antigen transcript produced by alternative splicing. Cancer Research, 60(1), 56–59.PubMedGoogle Scholar
  26. 26.
    Pampalakis, G., Scorilas, A., & Sotiropoulou, G. (2008). Novel splice variants of prostate-specific antigen and applications in diagnosis of prostate cancer. Clinical Biochemistry, 41(7-8), 591–597.  https://doi.org/10.1016/j.clinbiochem.2007.12.022.CrossRefPubMedGoogle Scholar
  27. 27.
    Borgono, C. A., & Diamandis, E. P. (2004). The emerging roles of human tissue kallikreins in cancer. Nature Reviews. Cancer, 4(11), 876–890.  https://doi.org/10.1038/nrc1474.CrossRefPubMedGoogle Scholar
  28. 28.
    Dong, Y., Bui, L. T., Odorico, D. M., Tan, O. L., Myers, S. A., Samaratunga, H., et al. (2005). Compartmentalized expression of kallikrein 4 (KLK4/hK4) isoforms in prostate cancer: nuclear, cytoplasmic and secreted forms. Endocrine-Related Cancer, 12(4), 875–889.  https://doi.org/10.1677/erc.1.01062.CrossRefPubMedGoogle Scholar
  29. 29.
    Myers, S. A., & Clements, J. A. (2001). Kallikrein 4 (KLK4), a new member of the human kallikrein gene family is up-regulated by estrogen and progesterone in the human endometrial cancer cell line, KLE. The Journal of Clinical Endocrinology and Metabolism, 86(5), 2323–2326.  https://doi.org/10.1210/jcem.86.5.7625.CrossRefPubMedGoogle Scholar
  30. 30.
    Michael, I. P., Kurlender, L., Memari, N., Yousef, G. M., Du, D., Grass, L., et al. (2005). Intron retention: a common splicing event within the human kallikrein gene family. Clinical Chemistry, 51(3), 506–515.  https://doi.org/10.1373/clinchem.2004.042341.CrossRefPubMedGoogle Scholar
  31. 31.
    Ogawa, K., Utsunomiya, T., Mimori, K., Tanaka, F., Inoue, H., Nagahara, H., et al. (2005). Clinical significance of human kallikrein gene 6 messenger RNA expression in colorectal cancer. Clinical Cancer Research, 11(8), 2889–2893.  https://doi.org/10.1158/1078-0432.CCR-04-2281.CrossRefPubMedGoogle Scholar
  32. 32.
    Klucky, B., Mueller, R., Vogt, I., Teurich, S., Hartenstein, B., Breuhahn, K., et al. (2007). Kallikrein 6 induces E-cadherin shedding and promotes cell proliferation, migration, and invasion. Cancer Research, 67(17), 8198–8206.  https://doi.org/10.1158/0008-5472.CAN-07-0607.CrossRefPubMedGoogle Scholar
  33. 33.
    Sananes, A., Cohen, I., Shahar, A., Hockla, A., De Vita, E., Miller, A. K., et al. (2018). A potent, proteolysis-resistant inhibitor of kallikrein-related peptidase 6 (KLK6) for cancer therapy, developed by combinatorial engineering. The Journal of Biological Chemistry, 293(33), 12663–12680.  https://doi.org/10.1074/jbc.RA117.000871.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pampalakis, G., Kurlender, L., Diamandis, E. P., & Sotiropoulou, G. (2004). Cloning and characterization of novel isoforms of the human kallikrein 6 gene. Biochemical and Biophysical Research Communications, 320(1), 54–61.  https://doi.org/10.1016/j.bbrc.2004.04.205.CrossRefPubMedGoogle Scholar
  35. 35.
    Sher, Y. P., Chou, C. C., Chou, R. H., Wu, H. M., Wayne Chang, W. S., Chen, C. H., et al. (2006). Human kallikrein 8 protease confers a favorable clinical outcome in non-small cell lung cancer by suppressing tumor cell invasiveness. Cancer Research, 66(24), 11763–11770.  https://doi.org/10.1158/0008-5472.CAN-06-3165.CrossRefPubMedGoogle Scholar
  36. 36.
    Magklara, A., Scorilas, A., Katsaros, D., Massobrio, M., Yousef, G. M., Fracchioli, S., et al. (2001). The human KLK8 (neuropsin/ovasin) gene: identification of two novel splice variants and its prognostic value in ovarian cancer. Clinical Cancer Research, 7(4), 806–811.PubMedGoogle Scholar
  37. 37.
    Planque, C., Choi, Y. H., Guyetant, S., Heuze-Vourc’h, N., Briollais, L., & Courty, Y. (2010). Alternative splicing variant of kallikrein-related peptidase 8 as an independent predictor of unfavorable prognosis in lung cancer. Clinical Chemistry, 56(6), 987–997.  https://doi.org/10.1373/clinchem.2009.138917.CrossRefPubMedGoogle Scholar
  38. 38.
    Bengsch, F., Buck, A., Gunther, S. C., Seiz, J. R., Tacke, M., Pfeifer, D., et al. (2014). Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene, 33(36), 4474–4484.  https://doi.org/10.1038/onc.2013.395.CrossRefPubMedGoogle Scholar
  39. 39.
    Chen, Q., Fei, J., Wu, L., Jiang, Z., Wu, Y., Zheng, Y., et al. (2011). Detection of cathepsin B, cathepsin L, cystatin C, urokinase plasminogen activator and urokinase plasminogen activator receptor in the sera of lung cancer patients. Oncology Letters, 2(4), 693–699.  https://doi.org/10.3892/ol.2011.302.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fujise, N., Nanashim, A., Taniguchi, Y., Matsuo, S., Hatano, K., Matsumoto, Y., et al. (2000). Prognostic impact of cathepsin B and matrix metalloproteinase-9 in pulmonary adenocarcinomas by immunohistochemical study. Lung Cancer, 27(1), 19–26.CrossRefPubMedGoogle Scholar
  41. 41.
    Krueger, S., Haeckel, C., Buehling, F., & Roessner, A. (1999). Inhibitory effects of antisense cathepsin B cDNA transfection on invasion and motility in a human osteosarcoma cell line. Cancer Research, 59(23), 6010–6014.PubMedGoogle Scholar
  42. 42.
    Rempel, S. A., Rosenblum, M. L., Mikkelsen, T., Yan, P. S., Ellis, K. D., Golembieski, W. A., et al. (1994). Cathepsin B expression and localization in glioma progression and invasion. Cancer Research, 54(23), 6027–6031.PubMedGoogle Scholar
  43. 43.
    Sevenich, L., Werner, F., Gajda, M., Schurigt, U., Sieber, C., Muller, S., et al. (2011). Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice. Oncogene, 30(1), 54–64.  https://doi.org/10.1038/onc.2010.387.CrossRefPubMedGoogle Scholar
  44. 44.
    Sloane, B. F., Dunn, J. R., & Honn, K. V. (1981). Lysosomal cathepsin B: correlation with metastatic potential. Science, 212(4499), 1151–1153.  https://doi.org/10.1126/science.7233209.CrossRefPubMedGoogle Scholar
  45. 45.
    Vasiljeva, O., Korovin, M., Gajda, M., Brodoefel, H., Bojic, L., Kruger, A., et al. (2008). Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene, 27(30), 4191–4199.  https://doi.org/10.1038/onc.2008.59.CrossRefPubMedGoogle Scholar
  46. 46.
    Vasiljeva, O., Papazoglou, A., Kruger, A., Brodoefel, H., Korovin, M., Deussing, J., et al. (2006). Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Research, 66(10), 5242–5250.  https://doi.org/10.1158/0008-5472.CAN-05-4463.CrossRefPubMedGoogle Scholar
  47. 47.
    Withana, N. P., Blum, G., Sameni, M., Slaney, C., Anbalagan, A., Olive, M. B., et al. (2012). Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Research, 72(5), 1199–1209.  https://doi.org/10.1158/0008-5472.CAN-11-2759.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wu, D., Wang, H. J., Li, Z. N., Wang, L. H., Zheng, F. Y., Jiang, J., et al. (2012). Cathepsin B may be a potential biomarker in cervical cancer. Histology and Histopathology, 27(1), 79–87.PubMedGoogle Scholar
  49. 49.
    Mehtani, S., Gong, Q., Panella, J., Subbiah, S., Peffley, D. M., & Frankfater, A. (1998). In vivo expression of an alternatively spliced human tumor message that encodes a truncated form of cathepsin B. Subcellular distribution of the truncated enzyme in COS cells. The Journal of Biological Chemistry, 273(21), 13236–13244.  https://doi.org/10.1074/jbc.273.21.13236.CrossRefPubMedGoogle Scholar
  50. 50.
    Tholen, M., Wolanski, J., Stolze, B., Chiabudini, M., Gajda, M., Bronsert, P., et al. (2015). Stress-resistant translation of cathepsin L mRNA in breast cancer progression. The Journal of Biological Chemistry, 290(25), 15758–15769.  https://doi.org/10.1074/jbc.M114.624353.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rescheleit, D. K., Rommerskirch, W. J., & Wiederanders, B. (1996). Sequence analysis and distribution of two new human cathepsin L splice variants. FEBS Letters, 394(3), 345–348.CrossRefPubMedGoogle Scholar
  52. 52.
    Arora, S., & Chauhan, S. S. (2002). Identification and characterization of a novel human cathepsin L splice variant. Gene, 293(1-2), 123–131.  https://doi.org/10.1016/s0378-1119(02)00700-x.CrossRefPubMedGoogle Scholar
  53. 53.
    Abudula, A., Rommerskirch, W., Weber, E., Gunther, D., & Wiederanders, B. (2001). Splice variants of human cathepsin L mRNA show different expression rates. Biological Chemistry, 382(11), 1583–1591.  https://doi.org/10.1515/BC.2001.193.CrossRefPubMedGoogle Scholar
  54. 54.
    Goulet, B., Sansregret, L., Leduy, L., Bogyo, M., Weber, E., Chauhan, S. S., et al. (2007). Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Molecular Cancer Research, 5(9), 899–907.  https://doi.org/10.1158/1541-7786.MCR-07-0160.CrossRefPubMedGoogle Scholar
  55. 55.
    Chauhan, S. S., Popescu, N. C., Ray, D., Fleischmann, R., Gottesman, M. M., & Troen, B. R. (1993). Cloning, genomic organization, and chromosomal localization of human cathepsin L. The Journal of Biological Chemistry, 268(2), 1039–1045.PubMedGoogle Scholar
  56. 56.
    Estrov, Z., Thall, P. F., Talpaz, M., Estey, E. H., Kantarjian, H. M., Andreeff, M., et al. (1998). Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia. Blood, 92(9), 3090–3097.CrossRefPubMedGoogle Scholar
  57. 57.
    Faderl, S., Thall, P. F., Kantarjian, H. M., Talpaz, M., Harris, D., Van, Q., et al. (1999). Caspase 2 and caspase 3 as predictors of complete remission and survival in adults with acute lymphoblastic leukemia. Clinical Cancer Research, 5(12), 4041–4047.PubMedGoogle Scholar
  58. 58.
    Kim, M. S., Kim, H. S., Jeong, E. G., Soung, Y. H., Yoo, N. J., & Lee, S. H. (2011). Somatic mutations of caspase-2 gene in gastric and colorectal cancers. Pathology, Research and Practice, 207(10), 640–644.  https://doi.org/10.1016/j.prp.2011.08.004.CrossRefPubMedGoogle Scholar
  59. 59.
    Kumar, S., White, D. L., Takai, S., Turczynowicz, S., Juttner, C. A., & Hughes, T. P. (1995). Apoptosis regulatory gene NEDD2 maps to human chromosome segment 7q34-35, a region frequently affected in haematological neoplasms. Human Genetics, 95(6), 641–644.  https://doi.org/10.1007/bf00209480.CrossRefPubMedGoogle Scholar
  60. 60.
    Ren, K., Lu, J., Porollo, A., & Du, C. (2012). Tumor-suppressing function of caspase-2 requires catalytic site Cys-320 and site Ser-139 in mice. The Journal of Biological Chemistry, 287(18), 14792–14802.  https://doi.org/10.1074/jbc.M112.347625.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Droin, N., Dubrez, L., Eymin, B., Renvoize, C., Breard, J., Dimanche-Boitrel, M. T., et al. (1998). Upregulation of CASP genes in human tumor cells undergoing etoposide-induced apoptosis. Oncogene, 16(22), 2885–2894.  https://doi.org/10.1038/sj.onc.1201821.CrossRefPubMedGoogle Scholar
  62. 62.
    Droin, N., Beauchemin, M., Solary, E., & Bertrand, R. (2000). Identification of a caspase-2 isoform that behaves as an endogenous inhibitor of the caspase cascade. Cancer Research, 60(24), 7039–7047.PubMedGoogle Scholar
  63. 63.
    Han, C., Zhao, R., Kroger, J., Qu, M., Wani, A. A., & Wang, Q. E. (2013). Caspase-2 short isoform interacts with membrane-associated cytoskeleton proteins to inhibit apoptosis. PLoS One, 8(7), e67033.  https://doi.org/10.1371/journal.pone.0067033.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Parent, N., Sane, A. T., Droin, N., & Bertrand, R. (2005). Procaspase-2S inhibits procaspase-3 processing and activation, preventing ROCK-1-mediated apoptotic blebbing and body formation in human B lymphoma Namalwa cells. Apoptosis, 10(2), 313–322.  https://doi.org/10.1007/s10495-005-0805-7.CrossRefPubMedGoogle Scholar
  65. 65.
    Toh, W. H., Logette, E., Corcos, L., & Sabapathy, K. (2008). TAp73 beta and DNp73 beta activate the expression of the pro-survival caspase-2(S). Nucleic Acids Research, 36(13), 4498–4509.  https://doi.org/10.1093/nar/gkn414.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Huang, S. C., Tang, M. J., Hsu, K. F., Cheng, Y. M., & Chou, C. Y. (2002). Fas and its ligand, caspases, and bcl-2 expression in gonadotropin-releasing hormone agonist-treated uterine leiomyoma. The Journal of Clinical Endocrinology and Metabolism, 87(10), 4580–4586.  https://doi.org/10.1210/jc.2001-011968.CrossRefPubMedGoogle Scholar
  67. 67.
    Huang, Y., Shin, N. H., Sun, Y., & Wang, K. K. (2001). Molecular cloning and characterization of a novel caspase-3 variant that attenuates apoptosis induced by proteasome inhibition. Biochemical and Biophysical Research Communications, 283(4), 762–769.  https://doi.org/10.1006/bbrc.2001.4871.CrossRefPubMedGoogle Scholar
  68. 68.
    Liu, Y. R., Sun, B., Zhao, X. L., Gu, Q., Liu, Z. Y., Dong, X. Y., et al. (2013). Basal caspase-3 activity promotes migration, invasion, and vasculogenic mimicry formation of melanoma cells. Melanoma Research, 23(4), 243–253.  https://doi.org/10.1097/CMR.0b013e3283625498.CrossRefPubMedGoogle Scholar
  69. 69.
    Mukai, M., Kusama, T., Hamanaka, Y., Koga, T., Endo, H., Tatsuta, M., et al. (2005). Cross talk between apoptosis and invasion signaling in cancer cells through caspase-3 activation. Cancer Research, 65(20), 9121–9125.  https://doi.org/10.1158/0008-5472.Can-04-4344.CrossRefPubMedGoogle Scholar
  70. 70.
    O’Donovan, N., Crown, J., Stunell, H., Hill, A. D., McDermott, E., O’Higgins, N., et al. (2003). Caspase 3 in breast cancer. Clinical Cancer Research, 9(2), 738–742.PubMedGoogle Scholar
  71. 71.
    Vegran, F., Boidot, R., Oudin, C., Riedinger, J. M., Bonnetain, F., & Lizard-Nacol, S. (2006). Overexpression of caspase-3s splice variant in locally advanced breast carcinoma is associated with poor response to neoadjuvant chemotherapy. Clinical Cancer Research, 12(19), 5794–5800.  https://doi.org/10.1158/1078-0432.CCR-06-0725.CrossRefPubMedGoogle Scholar
  72. 72.
    Woenckhaus, C., Giebel, J., Failing, K., Fenic, I., Dittberner, T., & Poetsch, M. (2003). Expression of AP-2alpha, c-kit, and cleaved caspase-6 and -3 in naevi and malignant melanomas of the skin. A possible role for caspases in melanoma progression? The Journal of Pathology, 201(2), 278–287.  https://doi.org/10.1002/path.1424.CrossRefPubMedGoogle Scholar
  73. 73.
    Zhao, X., Wang, D., Zhao, Z., Xiao, Y., Sengupta, S., Xiao, Y., et al. (2006). Caspase-3-dependent activation of calcium-independent phospholipase A2 enhances cell migration in non-apoptotic ovarian cancer cells. The Journal of Biological Chemistry, 281(39), 29357–29368.  https://doi.org/10.1074/jbc.M513105200.CrossRefPubMedGoogle Scholar
  74. 74.
    Barbero, S., Barila, D., Mielgo, A., Stagni, V., Clair, K., & Stupack, D. (2008). Identification of a critical tyrosine residue in caspase 8 that promotes cell migration. The Journal of Biological Chemistry, 283(19), 13031–13034.  https://doi.org/10.1074/jbc.M800549200.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Barbero, S., Mielgo, A., Torres, V., Teitz, T., Shields, D. J., Mikolon, D., et al. (2009). Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. Cancer Research, 69(9), 3755–3763.  https://doi.org/10.1158/0008-5472.CAN-08-3937.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Helfer, B., Boswell, B. C., Finlay, D., Cipres, A., Vuori, K., Bong Kang, T., et al. (2006). Caspase-8 promotes cell motility and calpain activity under nonapoptotic conditions. Cancer Research, 66(8), 4273–4278.  https://doi.org/10.1158/0008-5472.CAN-05-4183.CrossRefPubMedGoogle Scholar
  77. 77.
    Senft, J., Helfer, B., & Frisch, S. M. (2007). Caspase-8 interacts with the p85 subunit of phosphatidylinositol 3-kinase to regulate cell adhesion and motility. Cancer Research, 67(24), 11505–11509.  https://doi.org/10.1158/0008-5472.CAN-07-5755.CrossRefPubMedGoogle Scholar
  78. 78.
    Teitz, T., Stupack, D. G., & Lahti, J. M. (2006). Halting neuroblastoma metastasis by controlling integrin-mediated death. Cell Cycle, 5(7), 681–685.  https://doi.org/10.4161/cc.5.7.2615.CrossRefPubMedGoogle Scholar
  79. 79.
    Miller, M. A., Karacay, B., Zhu, X., O’Dorisio, M. S., & Sandler, A. D. (2006). Caspase 8L, a novel inhibitory isoform of caspase 8, is associated with undifferentiated neuroblastoma. Apoptosis, 11(1), 15–24.  https://doi.org/10.1007/s10495-005-3258-0.CrossRefPubMedGoogle Scholar
  80. 80.
    Mohr, A., Zwacka, R. M., Jarmy, G., Buneker, C., Schrezenmeier, H., Dohner, K., et al. (2005). Caspase-8L expression protects CD34+ hematopoietic progenitor cells and leukemic cells from CD95-mediated apoptosis. Oncogene, 24(14), 2421–2429.  https://doi.org/10.1038/sj.onc.1208432.CrossRefPubMedGoogle Scholar
  81. 81.
    Finlay, D., Howes, A., & Vuori, K. (2009). Caspase-8 as a potential mediator of pro-tumorigenic signals. Cell Cycle, 8(21), 3441–3442.  https://doi.org/10.4161/cc.8.21.9649.CrossRefPubMedGoogle Scholar
  82. 82.
    Finlay, D., & Vuori, K. (2007). Novel noncatalytic role for caspase-8 in promoting Src-mediated adhesion and Erk signaling in neuroblastoma cells. Cancer Research, 67(24), 11704–11711.  https://doi.org/10.1158/0008-5472.Can-07-1906.CrossRefPubMedGoogle Scholar
  83. 83.
    Xu, Z., Tang, K., Wang, M., Rao, Q., Liu, B., & Wang, J. (2009). A new caspase-8 isoform caspase-8s increased sensitivity to apoptosis in Jurkat cells. Journal of Biomedicine & Biotechnology, 2009, 930462.  https://doi.org/10.1155/2009/930462.CrossRefGoogle Scholar
  84. 84.
    Chalfant, C. E., Rathman, K., Pinkerman, R. L., Wood, R. E., Obeid, L. M., Ogretmen, B., et al. (2002). De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. The Journal of Biological Chemistry, 277(15), 12587–12595.  https://doi.org/10.1074/jbc.M112010200.CrossRefPubMedGoogle Scholar
  85. 85.
    Gangwar, R., Mandhani, A., & Mittal, R. D. (2009). Caspase 9 and caspase 8 gene polymorphisms and susceptibility to bladder cancer in north Indian population. Annals of Surgical Oncology, 16(7), 2028–2034.  https://doi.org/10.1245/s10434-009-0488-3.CrossRefPubMedGoogle Scholar
  86. 86.
    Hagen, R. M., Chedea, V. S., Mintoff, C. P., Bowler, E., Morse, H. R., & Ladomery, M. R. (2013). Epigallocatechin-3-gallate promotes apoptosis and expression of the caspase 9a splice variant in PC3 prostate cancer cells. International Journal of Oncology, 43(1), 194–200.  https://doi.org/10.3892/ijo.2013.1920.CrossRefPubMedGoogle Scholar
  87. 87.
    Shultz, J. C., Goehe, R. W., Murudkar, C. S., Wijesinghe, D. S., Mayton, E. K., Massiello, A., et al. (2011). SRSF1 regulates the alternative splicing of caspase 9 via a novel intronic splicing enhancer affecting the chemotherapeutic sensitivity of non-small cell lung cancer cells. Molecular Cancer Research, 9(7), 889–900.  https://doi.org/10.1158/1541-7786.MCR-11-0061.CrossRefPubMedGoogle Scholar
  88. 88.
    Shultz, J. C., Goehe, R. W., Wijesinghe, D. S., Murudkar, C., Hawkins, A. J., Shay, J. W., et al. (2010). Alternative splicing of caspase 9 is modulated by the phosphoinositide 3-kinase/Akt pathway via phosphorylation of SRp30a. Cancer Research, 70(22), 9185–9196.  https://doi.org/10.1158/0008-5472.Can-10-1545.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Theodoropoulos, G. E., Michalopoulos, N. V., Panoussopoulos, S. G., Taka, S., & Gazouli, M. (2010). Effects of caspase-9 and survivin gene polymorphisms in pancreatic cancer risk and tumor characteristics. Pancreas, 39(7), 976–980.  https://doi.org/10.1097/MPA.0b013e3181d705d4.CrossRefPubMedGoogle Scholar
  90. 90.
    Zhang, D., Liu, H., Yang, B., Hu, J., & Cheng, Y. (2019). L-securinine inhibits cell growth and metastasis of human androgen-independent prostate cancer DU145 cells via regulating mitochondrial and AGTR1/MEK/ERK/STAT3/PAX2 apoptotic pathways. Bioscience Reports, 39(5).  https://doi.org/10.1042/BSR20190469.
  91. 91.
    Zhang, Y., Hou, Q., Li, X., Zhu, J., Wang, W., Li, B., et al. (2019). Enrichment of novel quinazoline derivatives with high antitumor activity in mitochondria tracked by its self-fluorescence. European Journal of Medicinal Chemistry, 178, 417–432.  https://doi.org/10.1016/j.ejmech.2019.06.015.CrossRefPubMedGoogle Scholar
  92. 92.
    Goehe, R. W., Shultz, J. C., Murudkar, C., Usanovic, S., Lamour, N. F., Massey, D. H., et al. (2010). hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing. The Journal of Clinical Investigation, 120(11), 3923–3939.  https://doi.org/10.1172/JCI43552.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Seol, D. W., & Billiar, T. R. (1999). A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. Journal of Biological Chemistry, 274(4), 2072–2076.  https://doi.org/10.1074/jbc.274.4.2072.CrossRefPubMedGoogle Scholar
  94. 94.
    Muhlethaler-Mottet, A., Flahaut, M., Bourloud, K. B., Nardou, K., Coulon, A., Liberman, J., et al. (2011). Individual caspase-10 isoforms play distinct and opposing roles in the initiation of death receptor-mediated tumour cell apoptosis. Cell Death & Disease, 2, e125.  https://doi.org/10.1038/cddis.2011.8.CrossRefGoogle Scholar
  95. 95.
    Engels, I. H., Totzke, G., Fischer, U., Schulze-Osthoff, K., & Janicke, R. U. (2005). Caspase-10 sensitizes breast carcinoma cells to TRAIL-induced but not tumor necrosis factor-induced apoptosis in a caspase-3-dependent manner. Molecular and Cellular Biology, 25(7), 2808–2818.  https://doi.org/10.1128/MCB.25.7.2808-2818.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Ng, P. W., Porter, A. G., & Janicke, R. U. (1999). Molecular cloning and characterization of two novel pro-apoptotic isoforms of caspase-10. The Journal of Biological Chemistry, 274(15), 10301–10308.  https://doi.org/10.1074/jbc.274.15.10301.CrossRefPubMedGoogle Scholar
  97. 97.
    Wang, H., Wang, P., Sun, X., Luo, Y., Wang, X., Ma, D., et al. (2007). Cloning and characterization of a novel caspase-10 isoform that activates NF-kappa B activity. Biochimica et Biophysica Acta, 1770(11), 1528–1537.  https://doi.org/10.1016/j.bbagen.2007.07.010.CrossRefPubMedGoogle Scholar
  98. 98.
    Fry, J. L., & Toker, A. (2010). Secreted and membrane-bound isoforms of protease ADAM9 have opposing effects on breast cancer cell migration. Cancer Research, 70(20), 8187–8198.  https://doi.org/10.1158/0008-5472.CAN-09-4231.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Shintani, Y., Higashiyama, S., Ohta, M., Hirabayashi, H., Yamamoto, S., Yoshimasu, T., et al. (2004). Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis. Cancer Research, 64(12), 4190–4196.  https://doi.org/10.1158/0008-5472.CAN-03-3235.CrossRefPubMedGoogle Scholar
  100. 100.
    Mazzocca, A., Coppari, R., De Franco, R., Cho, J. Y., Libermann, T. A., Pinzani, M., et al. (2005). A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Research, 65(11), 4728–4738.  https://doi.org/10.1158/0008-5472.CAN-04-4449.CrossRefPubMedGoogle Scholar
  101. 101.
    Kveiborg, M., Frohlich, C., Albrechtsen, R., Tischler, V., Dietrich, N., Holck, P., et al. (2005). A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer Research, 65(11), 4754–4761.  https://doi.org/10.1158/0008-5472.Can-05-0262.CrossRefPubMedGoogle Scholar
  102. 102.
    Shao, S. H., Li, Z. L., Gao, W., Yu, G. H., Liu, D. X., & Pan, F. (2014). ADAM-12 as a diagnostic marker for the proliferation, migration and invasion in patients with small cell lung cancer. PLoS One, 9(1), e85936.  https://doi.org/10.1371/journal.pone.0085936.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Duhachek Muggy, S. (2014). Multiple isoforms of ADAM12 in breast cancer: differential regulation of expression and unique roles in cancer progression. Kansas State University, K-State Electronic Theses, Dissertations, and Reports: 2004Google Scholar
  104. 104.
    Roy, R., Wewer, U. M., Zurakowski, D., Pories, S. E., & Moses, M. A. (2004). ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. The Journal of Biological Chemistry, 279(49), 51323–51330.  https://doi.org/10.1074/jbc.M409565200.CrossRefPubMedGoogle Scholar
  105. 105.
    Roy, R., Rodig, S., Bielenberg, D., Zurakowski, D., & Moses, M. A. (2011). ADAM12 transmembrane and secreted isoforms promote breast tumor growth: a distinct role for ADAM12-S protein in tumor metastasis. The Journal of Biological Chemistry, 286(23), 20758–20768.  https://doi.org/10.1074/jbc.M110.216036.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Carl-McGrath, S., Lendeckel, U., Ebert, M., Roessner, A., & Rocken, C. (2005). The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. International Journal of Oncology, 26(1), 17–24.PubMedGoogle Scholar
  107. 107.
    Horiuchi, K., Weskamp, G., Lum, L., Hammes, H. P., Cai, H., Brodie, T. A., et al. (2003). Potential role for ADAM15 in pathological neovascularization in mice. Molecular and Cellular Biology, 23(16), 5614–5624.  https://doi.org/10.1128/mcb.23.16.5614-5624.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Kuefer, R., Day, K. C., Kleer, C. G., Sabel, M. S., Hofer, M. D., Varambally, S., et al. (2006). ADAM15 disintegrin is associated with aggressive prostate and breast cancer disease. Neoplasia, 8(4), 319–329.  https://doi.org/10.1593/neo.05682.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Ortiz, R. M., Karkkainen, I., & Huovila, A. P. J. (2004). Aberrant alternative exon use and increased copy number of human metalloprotease-disintegrin ADAM15 gene in breast cancer cells. Genes, Chromosomes & Cancer, 41(4), 366–378.  https://doi.org/10.1002/gcc.20102.CrossRefGoogle Scholar
  110. 110.
    Schutz, A., Hartig, W., Wobus, M., Grosche, J., Wittekind, C., & Aust, G. (2005). Expression of ADAM15 in lung carcinomas. Virchows Archiv, 446(4), 421–429.  https://doi.org/10.1007/s00428-004-1193-z.CrossRefPubMedGoogle Scholar
  111. 111.
    Wu, E., Croucher, P. I., & McKie, N. (1997). Expression of members of the novel membrane linked metalloproteinase family ADAM in cells derived from a range of haematological malignancies. Biochemical and Biophysical Research Communications, 235(2), 437–442.  https://doi.org/10.1006/bbrc.1997.6714.CrossRefPubMedGoogle Scholar
  112. 112.
    Zhong, J. L., Poghosyan, Z., Pennington, C. J., Scott, X., Handsley, M. M., Warn, A., et al. (2008). Distinct functions of natural ADAM-15 cytoplasmic domain variants in human mammary carcinoma. Molecular Cancer Research, 6(3), 383–394.  https://doi.org/10.1158/1541-7786.MCR-07-2028.CrossRefPubMedGoogle Scholar
  113. 113.
    Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical Reviews, 102(12), 4501–4524.CrossRefPubMedGoogle Scholar
  114. 114.
    Adamopoulos, P. G., Kontos, C. K., & Scorilas, A. (2018). Discovery of novel transcripts of the human tissue kallikrein (KLK1) and kallikrein-related peptidase 2 (KLK2) in human cancer cells, exploiting next-generation sequencing technology. Genomics.  https://doi.org/10.1016/j.ygeno.2018.03.022.
  115. 115.
    Borgono, C. A., Michael, I. P., & Diamandis, E. P. (2004). Human tissue kallikreins: physiologic roles and applications in cancer. Molecular Cancer Research, 2(5), 257–280.PubMedGoogle Scholar
  116. 116.
    Wolf, W. C., Evans, D. M., Chao, L., & Chao, J. (2001). A synthetic tissue kallikrein inhibitor suppresses cancer cell invasiveness. The American Journal of Pathology, 159(5), 1797–1805.  https://doi.org/10.1016/S0002-9440(10)63026-X.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Lai, J., An, J., Srinivasan, S., Clements, J. A., & Batra, J. (2016). A computational analysis of the genetic and transcript diversity at the kallikrein locus. Biological Chemistry, 397(12), 1307–1313.  https://doi.org/10.1515/hsz-2016-0161.CrossRefPubMedGoogle Scholar
  118. 118.
    Hong, S. K. (2014). Kallikreins as biomarkers for prostate cancer. BioMed Research International, 2014, 526341.  https://doi.org/10.1155/2014/526341.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Balk, S. P., Ko, Y. J., & Bubley, G. J. (2003). Biology of prostate-specific antigen. Journal of Clinical Oncology, 21(2), 383–391.  https://doi.org/10.1200/JCO.2003.02.083.CrossRefPubMedGoogle Scholar
  120. 120.
    Lai, J., An, J., Nelson, C. C., Lehman, M. L., Batra, J., & Clements, J. A. (2014). Analysis of androgen and anti-androgen regulation of KLK-related peptidase 2, 3, and 4 alternative transcripts in prostate cancer. Biological Chemistry, 395(9), 1127–1132.  https://doi.org/10.1515/hsz-2014-0149.CrossRefPubMedGoogle Scholar
  121. 121.
    Riegman, P. H., Klaassen, P., van der Korput, J. A., Romijn, J. C., & Trapman, J. (1988). Molecular cloning and characterization of novel prostate antigen cDNA’s. Biochemical and Biophysical Research Communications, 155(1), 181–188.  https://doi.org/10.1016/s0006-291x(88)81066-0.CrossRefPubMedGoogle Scholar
  122. 122.
    Gilgunn, S., Conroy, P. J., Saldova, R., Rudd, P. M., & O’Kennedy, R. J. (2013). Aberrant PSA glycosylation-a sweet predictor of prostate cancer. Nature Reviews Urology, 10(2), 99–107.  https://doi.org/10.1038/nruro1.2012.258.CrossRefPubMedGoogle Scholar
  123. 123.
    Obiezu, C. V., Soosaipillai, A., Jung, K., Stephan, C., Scorilas, A., Howarth, D. H., et al. (2002). Detection of human kallikrein 4 in healthy and cancerous prostatic tissues by immunofluorometry and immunohistochemistry. Clinical Chemistry, 48(8), 1232–1240.PubMedGoogle Scholar
  124. 124.
    Xi, Z. J., Klokk, T. I., Korkmaz, K., Kurys, P., Elbi, C., Risberg, B., et al. (2004). Kallikrein 4 is a predominantly nuclear protein and is overexpressed in prostate cancer. Cancer Research, 64(7), 2365–2370.  https://doi.org/10.1158/0008-5472.Can-03-2025.CrossRefPubMedGoogle Scholar
  125. 125.
    Kurlender, L., Borgono, C., Michael, I. P., Obiezu, C., Elliott, M. B., Yousef, G. M., et al. (2005). A survey of alternative transcripts of human tissue kallikrein genes. Biochimica et Biophysica Acta, 1755(1), 1–14.  https://doi.org/10.1016/j.bbcan.2005.02.001.CrossRefPubMedGoogle Scholar
  126. 126.
    Obiezu, C. V., & Diamandis, E. P. (2000). An alternatively spliced variant of KLK4 expressed in prostatic tissue. Clinical Biochemistry, 33(7), 599–600.CrossRefPubMedGoogle Scholar
  127. 127.
    Dong, Y., Kaushal, A., Bui, L., Chu, S., Fuller, P. J., Nicklin, J., et al. (2001). Human kallikrein 4 (KLK4) is highly expressed in serous ovarian carcinomas. Clinical Cancer Research, 7(8), 2363–2371.PubMedGoogle Scholar
  128. 128.
    Korkmaz, K. S., Korkmaz, C. G., Pretlow, T. G., & Saatcioglu, F. (2001). Distinctly different gene structure of KLK4/KLK-L1/prostase/ARM1 compared with other members of the kallikrein family: intracellular localization, alternative cDNA forms, and Regulation by multiple hormones. DNA and Cell Biology, 20(7), 435–445.  https://doi.org/10.1089/104454901750361497.CrossRefPubMedGoogle Scholar
  129. 129.
    Klokk, T. I., Kilander, A., Xi, Z., Waehre, H., Risberg, B., Danielsen, H. E., et al. (2007). Kallikrein 4 is a proliferative factor that is overexpressed in prostate cancer. Cancer Research, 67(11), 5221–5230.  https://doi.org/10.1158/0008-5472.CAN-06-4728.CrossRefPubMedGoogle Scholar
  130. 130.
    Veveris-Lowe, T. L., Lawrence, M. G., Collard, R. L., Bui, L., Herington, A. C., Nicol, D. L., et al. (2005). Kallikrein 4 (hK4) and prostate-specific antigen (PSA) are associated with the loss of E-cadherin and an epithelial-mesenchymal transition (EMT)-like effect in prostate cancer cells. Endocrine-Related Cancer, 12(3), 631–643.  https://doi.org/10.1677/erc.1.00958.CrossRefPubMedGoogle Scholar
  131. 131.
    Wang, W., Mize, G. J., Zhang, X., & Takayama, T. K. (2010). Kallikrein-related peptidase-4 initiates tumor-stroma interactions in prostate cancer through protease-activated receptor-1. International Journal of Cancer, 126(3), 599–610.  https://doi.org/10.1002/ijc.24904.CrossRefPubMedGoogle Scholar
  132. 132.
    Pampalakis, G., Prosnikli, E., Agalioti, T., Vlahou, A., Zoumpourlis, V., & Sotiropoulou, G. (2009). A tumor-protective role for human kallikrein-related peptidase 6 in breast cancer mediated by inhibition of epithelial-to-mesenchymal transition. Cancer Research, 69(9), 3779–3787.  https://doi.org/10.1158/0008-5472.CAN-08-1976.CrossRefPubMedGoogle Scholar
  133. 133.
    Kuzmanov, U., Jiang, N., Smith, C. R., Soosaipillai, A., & Diamandis, E. P. (2009). Differential N-glycosylation of kallikrein 6 derived from ovarian cancer cells or the central nervous system. Molecular & Cellular Proteomics, 8(4), 791–798.  https://doi.org/10.1074/mcp.M800516-MCP200.CrossRefGoogle Scholar
  134. 134.
    Nagahara, H., Mimori, K., Utsunomiya, T., Barnard, G. F., Ohira, M., Hirakawa, K., et al. (2005). Clinicopathologic and biological significance of kallikrein 6 overexpression in human gastric cancer. Clinical Cancer Research, 11(19 Pt 1), 6800–6806.  https://doi.org/10.1158/1078-0432.CCR-05-0943.CrossRefPubMedGoogle Scholar
  135. 135.
    Adamopoulos, P. G., Kontos, C. K., & Scorilas, A. (2017). Molecular cloning of novel transcripts of human kallikrein-related peptidases 5, 6, 7, 8 and 9 (KLK5 - KLK9), using Next-generation sequencing. Scientific Reports, 7(1), 17299.  https://doi.org/10.1038/s41598-017-16269-6.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Bayani, J., & Diamandis, E. P. (2011). The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clinical Chemistry and Laboratory Medicine, 50(2), 211–233.  https://doi.org/10.1515/CCLM.2011.750.CrossRefPubMedGoogle Scholar
  137. 137.
    Cane, S., Bignotti, E., Bellone, S., Palmieri, M., De las Casas, L., Roman, J. J., et al. (2004). The novel serine protease tumor-associated differentially expressed gene-14 (KLK8/Neuropsin/Ovasin) is highly overexpressed in cervical cancer. American Journal of Obstetrics and Gynecology, 190(1), 60–66.  https://doi.org/10.1016/j.ajog.2003.07.020.CrossRefPubMedGoogle Scholar
  138. 138.
    Darling, M. R., Tsai, S., Jackson-Boeters, L., Daley, T. D., & Diamandis, E. P. (2008). Human kallikrein 8 expression in salivary gland tumors. Head and Neck Pathology, 2(3), 169–174.  https://doi.org/10.1007/s12105-008-0068-z.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Jin, H., Nagai, N., Shigemasa, K., Gu, L., Tanimoto, H., Yunokawa, M., et al. (2006). Expression of tumor-associated differentially expressed gene-14 (TADG-14/KLK8) and its protein hK8 in uterine endometria and endometrial carcinomas. Tumour Biology, 27(5), 274–282.  https://doi.org/10.1159/000094741.CrossRefPubMedGoogle Scholar
  140. 140.
    Liu, X., Quan, B., Tian, Z., Xi, H., Jia, G., Wang, H., et al. (2017). Elevated expression of KLK8 predicts poor prognosis in colorectal cancer. Biomedicine & Pharmacotherapy, 88, 595–602.  https://doi.org/10.1016/j.biopha.2017.01.112.CrossRefGoogle Scholar
  141. 141.
    Shigemasa, K., Tian, X., Gu, L., Tanimoto, H., Underwood, L. J., O’Brien, T. J., et al. (2004). Human kallikrein 8 (hK8/TADG-14) expression is associated with an early clinical stage and favorable prognosis in ovarian cancer. Oncology Reports, 11(6), 1153–1159.PubMedGoogle Scholar
  142. 142.
    Liu, C. J., Liu, T. Y., Kuo, L. T., Cheng, H. W., Chu, T. H., Chang, K. W., et al. (2008). Differential gene expression signature between primary and metastatic head and neck squamous cell carcinoma. The Journal of Pathology, 214(4), 489–497.  https://doi.org/10.1002/path.2306.CrossRefPubMedGoogle Scholar
  143. 143.
    Lu, Z. X., Huang, Q., & Su, B. (2009). Functional characterization of the human-specific (type II) form of kallikrein 8, a gene involved in learning and memory. Cell Research, 19(2), 259–267.  https://doi.org/10.1038/cr.2009.4.CrossRefPubMedGoogle Scholar
  144. 144.
    Mohamed, M. M., & Sloane, B. F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nature Reviews. Cancer, 6(10), 764–775.  https://doi.org/10.1038/nrc1949.CrossRefPubMedGoogle Scholar
  145. 145.
    Tan, G. J., Peng, Z. K., Lu, J. P., & Tang, F. Q. (2013). Cathepsins mediate tumor metastasis. World Journal of Biological Chemistry, 4(4), 91–101.  https://doi.org/10.4331/wjbc.v4.i4.91.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., et al. (2012). Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochimica et Biophysica Acta, 1824(1), 68–88.  https://doi.org/10.1016/j.bbapap.2011.10.002.CrossRefPubMedGoogle Scholar
  147. 147.
    Aggarwal, N., & Sloane, B. F. (2014). Cathepsin B: multiple roles in cancer. Proteomics. Clinical Applications, 8(5-6), 427–437.  https://doi.org/10.1002/prca.201300105.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Kusunoki, T., Nishida, S., Nakano, T., Funasaka, K., Kimoto, S., Murata, K., et al. (1995). Study on cathepsin B activity in human thyroid tumors. Auris Nasus Larynx, 22(1), 43–48.CrossRefPubMedGoogle Scholar
  149. 149.
    Victor, B. C., Anbalagan, A., Mohamed, M. M., Sloane, B. F., & Cavallo-Medved, D. (2011). Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion. Breast Cancer Research, 13(6), R115.  https://doi.org/10.1186/bcr3058.CrossRefPubMedGoogle Scholar
  150. 150.
    Yan, S., Sameni, M., & Sloane, B. F. (1998). Cathepsin B and human tumor progression. Biological Chemistry, 379(2), 113–123.PubMedGoogle Scholar
  151. 151.
    Vidak, E., Javorsek, U., Vizovisek, M., & Turk, B. (2019). Cysteine cathepsins and their axtracellular roles: shaping the microenvironment. Cells, 8(3), 264.  https://doi.org/10.3390/cells8030264.CrossRefPubMedCentralGoogle Scholar
  152. 152.
    Berquin, I. M., Ahram, M., & Sloane, B. F. (1997). Exon 2 of human cathepsin B derives from an Alu element. FEBS Letters, 419(1), 121–123.CrossRefPubMedGoogle Scholar
  153. 153.
    Baici, A., Muntener, K., Willimann, A., & Zwicky, R. (2006). Regulation of human cathepsin B by alternative mRNA splicing: homeostasis, fatal errors and cell death. Biological Chemistry, 387(8), 1017–1021.  https://doi.org/10.1515/BC.2006.125.CrossRefPubMedGoogle Scholar
  154. 154.
    Muntener, K., Zwicky, R., Csucs, G., Rohrer, J., & Baici, A. (2004). Exon skipping of cathepsin B: mitochondrial targeting of a lysosomal peptidase provokes cell death. The Journal of Biological Chemistry, 279(39), 41012–41017.  https://doi.org/10.1074/jbc.M405333200.CrossRefPubMedGoogle Scholar
  155. 155.
    Lowy, D. R., & Willumsen, B. M. (1993). Function and regulation of ras. Annual Review of Biochemistry, 62, 851–891.  https://doi.org/10.1146/annurev.bi.62.070193.004223.CrossRefPubMedGoogle Scholar
  156. 156.
    Quilliam, L. A., Khosravi-Far, R., Huff, S. Y., & Der, C. J. (1995). Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. Bioessays, 17(5), 395–404.  https://doi.org/10.1002/bies.950170507.CrossRefPubMedGoogle Scholar
  157. 157.
    Senda, T., Matsuno, K., & Mita, S. (1997). The presence of sigma receptor subtypes in bovine retinal membranes. Experimental Eye Research, 64(5), 857–860.  https://doi.org/10.1006/exer.1996.0272.CrossRefPubMedGoogle Scholar
  158. 158.
    Muntener, K., Willimann, A., Zwicky, R., Svoboda, B., Mach, L., & Baici, A. (2005). Folding competence of N-terminally truncated forms of human procathepsin B. The Journal of Biological Chemistry, 280(12), 11973–11980.  https://doi.org/10.1074/jbc.M413052200.CrossRefPubMedGoogle Scholar
  159. 159.
    Bestvater, F., Dallner, C., & Spiess, E. (2005). The C-terminal subunit of artificially truncated human cathepsin B mediates its nuclear targeting and contributes to cell viability. BMC Cell Biology, 6(1), 16.  https://doi.org/10.1186/1471-2121-6-16.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Chauhan, S. S., Goldstein, L. J., & Gottesman, M. M. (1991). Expression of cathepsin L in human tumors. Cancer Research, 51(5), 1478–1481.PubMedGoogle Scholar
  161. 161.
    Sudhan, D. R., & Siemann, D. W. (2015). Cathepsin L targeting in cancer treatment. Pharmacology & Therapeutics, 155, 105–116.  https://doi.org/10.1016/j.pharmthera.2015.08.007.CrossRefGoogle Scholar
  162. 162.
    Zhang, L. S., Wei, L. X., Shen, G. Z., He, B. F., Gong, W., Min, N., et al. (2015). Cathepsin L is involved in proliferation and invasion of ovarian cancer cells. Molecular Medicine Reports, 11(1), 468–474.  https://doi.org/10.3892/mmr.2014.2706.CrossRefPubMedGoogle Scholar
  163. 163.
    Colella, R., & Casey, S. F. (2003). Decreased activity of cathepsins L + B and decreased invasive ability of PC3 prostate cancer cells. Biotechnic & Histochemistry, 78(2), 101–108.CrossRefGoogle Scholar
  164. 164.
    Laurent-Matha, V., Derocq, D., Prebois, C., Katunuma, N., & Liaudet-Coopman, E. (2006). Processing of human cathepsin D is independent of its catalytic function and auto-activation: involvement of cathepsins L and B. Journal of Biochemistry, 139(3), 363–371.  https://doi.org/10.1093/jb.mvj037.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Caserman, S., Kenig, S., Sloane, B. F., & Lah, T. T. (2006). Cathepsin L splice variants in human breast cell lines. Biological Chemistry, 387(5), 629–634.  https://doi.org/10.1515/BC.2006.080.CrossRefPubMedGoogle Scholar
  166. 166.
    Mittal, S., Mir, R. A., & Chauhan, S. S. (2011). Post-transcriptional regulation of human cathepsin L expression. Biological Chemistry, 392(5), 405–413.  https://doi.org/10.1515/BC.2011.039.CrossRefPubMedGoogle Scholar
  167. 167.
    Godet, A. C., David, F., Hantelys, F., Tatin, F., Lacazette, E., Garmy-Susini, B., et al. (2019). IRES trans-acting factors, key actors of the stress response. International Journal of Molecular Sciences, 20(4).  https://doi.org/10.3390/ijms20040924.
  168. 168.
    Jean, D., Rousselet, N., & Frade, R. (2008). Cathepsin L expression is up-regulated by hypoxia in human melanoma cells: role of its 5'-untranslated region. Biochemical Journal, 413, 125–134.  https://doi.org/10.1042/Bj20071255.CrossRefPubMedGoogle Scholar
  169. 169.
    Zhong, Y. J., Shao, L. H., & Li, Y. (2013). Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). International Journal of Oncology, 42(2), 373–383.  https://doi.org/10.3892/ijo.2012.1754.CrossRefPubMedGoogle Scholar
  170. 170.
    McIlwain, D. R., Berger, T., & Mak, T. W. (2015). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 7(4).  https://doi.org/10.1101/cshperspect.a026716.
  171. 171.
    Chang, H. Y., & Yang, X. (2000). Proteases for cell suicide: functions and regulation of caspases. Microbiology and Molecular Biology Reviews, 64(4), 821–846.  https://doi.org/10.1128/mmbr.64.4.821-846.2000.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Kumar, S. (2007). Caspase function in programmed cell death. Cell Death and Differentiation, 14(1), 32–43.  https://doi.org/10.1038/sj.cdd.4402060.CrossRefPubMedGoogle Scholar
  173. 173.
    Wyllie, A. H. (1997). Apoptosis and carcinogenesis. European Journal of Cell Biology, 73(3), 189–197.PubMedGoogle Scholar
  174. 174.
    Chen, Q., Jin, M., Yang, F., Zhu, J., Xiao, Q., & Zhang, L. (2013). Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators of Inflammation, 2013, 928315.  https://doi.org/10.1155/2013/928315.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Suzanne, M., & Steller, H. (2009). Letting go: modification of cell adhesion during apoptosis. Journal of Biology, 8(5), 49.  https://doi.org/10.1186/jbiol152.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Xu, D. C., Arthurton, L., & Baena-Lopez, L. A. (2018). Learning on the fly: the interplay between caspases and cancer. BioMed Research International, 2018, 5473180.  https://doi.org/10.1155/2018/5473180.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Nicholson, D. W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death and Differentiation, 6(11), 1028–1042.  https://doi.org/10.1038/sj.cdd.4400598.CrossRefPubMedGoogle Scholar
  178. 178.
    Horiuchi, T., Himeji, D., Tsukamoto, H., Harashima, S., Hashimura, C., & Hayashi, K. (2000). Dominant expression of a novel splice variant of caspase-8 in human peripheral blood lymphocytes. Biochemical and Biophysical Research Communications, 272(3), 877–881.  https://doi.org/10.1006/bbrc.2000.2841.CrossRefPubMedGoogle Scholar
  179. 179.
    Schwerk, C., & Schulze-Osthoff, K. (2005). Regulation of apoptosis by alternative pre-mRNA splicing. Molecular Cell, 19(1), 1–13.  https://doi.org/10.1016/j.molcel.2005.05.026.CrossRefPubMedGoogle Scholar
  180. 180.
    Jelinek, M., Balusikova, K., Kopperova, D., Nemcova-Furstova, V., Sramek, J., Fidlerova, J., et al. (2013). Caspase-2 is involved in cell death induction by taxanes in breast cancer cells. Cancer Cell International, 13, 42.  https://doi.org/10.1186/1475-2867-13-42.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Kumar, S., Kinoshita, M., & Noda, M. (1997). Characterization of a mammalian cell death gene Nedd2. Leukemia, 11(Suppl 3), 385–386.PubMedGoogle Scholar
  182. 182.
    Wang, L., Miura, M., Bergeron, L., Zhu, H., & Yuan, J. (1994). Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell, 78(5), 739–750.  https://doi.org/10.1016/s0092-8674(94)90422-7.CrossRefPubMedGoogle Scholar
  183. 183.
    Fushimi, K., Ray, P., Kar, A., Wang, L., Sutherland, L. C., & Wu, J. Y. (2008). Up-regulation of the proapoptotic caspase 2 splicing isoform by a candidate tumor suppressor, RBM5. Proceedings of the National Academy of Sciences of the United States of America, 105(41), 15708–15713.  https://doi.org/10.1073/pnas.0805569105.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Droin, N., Rebe, C., Bichat, F., Hammann, A., Bertrand, R., & Solary, E. (2001). Modulation of apoptosis by procaspase-2 short isoform: selective inhibition of chromatin condensation, apoptotic body formation and phosphatidylserine externalization. Oncogene, 20(2), 260–269.  https://doi.org/10.1038/sj.onc.1204066.CrossRefPubMedGoogle Scholar
  185. 185.
    Ito, A., Uehara, T., & Nomura, Y. (2000). Isolation of Ich-1S (caspase-2S)-binding protein that partially inhibits caspase activity. FEBS Letters, 470(3), 360–364.  https://doi.org/10.1016/s0014-5793(00)01351-x.CrossRefPubMedGoogle Scholar
  186. 186.
    Logette, E., Wotawa, A., Solier, S., Desoche, L., Solary, E., & Corcos, L. (2003). The human caspase-2 gene: alternative promoters, pre-mRNA splicing and AUG usage direct isoform-specific expression. Oncogene, 22(6), 935–946.  https://doi.org/10.1038/sj.onc.1206172.CrossRefPubMedGoogle Scholar
  187. 187.
    Solier, S., Logette, E., Desoche, L., Solary, E., & Corcos, L. (2005). Nonsense-mediated mRNA decay among human caspases: the caspase-2S putative protein is encoded by an extremely short-lived mRNA. Cell Death and Differentiation, 12(6), 687–689.  https://doi.org/10.1038/sj.cdd.4401594.CrossRefPubMedGoogle Scholar
  188. 188.
    Baker, K. E., & Parker, R. (2004). Nonsense-mediated mRNA decay: terminating erroneous gene expression. Current Opinion in Cell Biology, 16(3), 293–299.  https://doi.org/10.1016/j.ceb.2004.03.003.CrossRefPubMedGoogle Scholar
  189. 189.
    Rohn, T. T., Cusack, S. M., Kessinger, S. R., & Oxford, J. T. (2004). Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. Experimental Cell Research, 295(1), 215–225.  https://doi.org/10.1016/j.yexcr.2003.12.029.CrossRefPubMedGoogle Scholar
  190. 190.
    Brentnall, M., Weir, D. B., Rongvaux, A., Marcus, A. I., & Boise, L. H. (2014). Procaspase-3 regulates fibronectin secretion and influences adhesion, migration and survival independently of catalytic function. Journal of Cell Science, 127(Pt 10), 2217–2226.  https://doi.org/10.1242/jcs.135137.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Gdynia, G., Grund, K., Eckert, A., Bock, B. C., Funke, B., Macher-Goeppinger, S., et al. (2007). Basal caspase activity promotes migration and invasiveness in glioblastoma cells. Molecular Cancer Research, 5(12), 1232–1240.  https://doi.org/10.1158/1541-7786.MCR-07-0343.CrossRefPubMedGoogle Scholar
  192. 192.
    Grenet, J., Teitz, T., Wei, T., Valentine, V., & Kidd, V. J. (1999). Structure and chromosome localization of the human CASP8 gene. Gene, 226(2), 225–232.  https://doi.org/10.1016/s0378-1119(98)00565-4.CrossRefPubMedGoogle Scholar
  193. 193.
    Graf, R. P., Keller, N., Barbero, S., & Stupack, D. (2014). Caspase-8 as a regulator of tumor cell motility. Current Molecular Medicine, 14(2), 246–254.  https://doi.org/10.2174/1566524014666140128111951.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Keller, N., Ozmadenci, D., Ichim, G., & Stupack, D. (2018). Caspase-8 function, and phosphorylation, in cell migration. Seminars in Cell & Developmental Biology, 82, 105–117.  https://doi.org/10.1016/j.semcdb.2018.01.009.CrossRefGoogle Scholar
  195. 195.
    Stupack, D. G., Teitz, T., Potter, M. D., Mikolon, D., Houghton, P. J., Kidd, V. J., et al. (2006). Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature, 439(7072), 95–99.  https://doi.org/10.1038/nature04323.CrossRefPubMedGoogle Scholar
  196. 196.
    Raguenez, G., Muhlethaler-Mottet, A., Meier, R., Duros, C., Benard, J., & Gross, N. (2009). Fenretinide-induced caspase-8 activation and apoptosis in an established model of metastatic neuroblastoma. BMC Cancer, 9, 97.  https://doi.org/10.1186/1471-2407-9-97.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Scaffidi, C., Medema, J. P., Krammer, P. H., & Peter, M. E. (1997). FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. Journal of Biological Chemistry, 272(43), 26953–26958.  https://doi.org/10.1074/jbc.272.43.26953.CrossRefPubMedGoogle Scholar
  198. 198.
    Fernandes-Alnemri, T., Armstrong, R. C., Krebs, J., Srinivasula, S. M., Wang, L., Bullrich, F., et al. (1996). In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 7464–7469.  https://doi.org/10.1073/pnas.93.15.7464.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Finlay, D., Howes, A., & Vuori, K. (2009). Critical Role for Caspase-8 in epidermal growth factor signaling. Cancer Research, 69(12), 5023–5029.  https://doi.org/10.1158/0008-5472.Can-08-3731.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Kim, B., Srivastava, S. K., & Kim, S. H. (2015). Caspase-9 as a therapeutic target for treating cancer. Expert Opinion on Therapeutic Targets, 19(1), 113–127.  https://doi.org/10.1517/14728222.2014.961425.CrossRefPubMedGoogle Scholar
  201. 201.
    Soung, Y. H., Lee, J. W., Kim, S. Y., Park, W. S., Nam, S. W., Lee, J. Y., et al. (2006). Mutational analysis of proapoptotic caspase-9 gene in common human carcinomas. APMIS, 114(4), 292–297.  https://doi.org/10.1111/j.1600-0463.2006.apm_364.x.CrossRefPubMedGoogle Scholar
  202. 202.
    Ekert, P. G., Read, S. H., Silke, J., Marsden, V. S., Kaufmann, H., Hawkins, C. J., et al. (2004). Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. The Journal of Cell Biology, 165(6), 835–842.  https://doi.org/10.1083/jcb.200312031.CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Marsden, V. S., O’Connor, L., O’Reilly, L. A., Silke, J., Metcalf, D., Ekert, P. G., et al. (2002). Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature, 419(6907), 634–637.  https://doi.org/10.1038/nature01101.CrossRefPubMedGoogle Scholar
  204. 204.
    Li, P., Zhou, L., Zhao, T., Liu, X., Zhang, P., Liu, Y., et al. (2017). Caspase-9: structure, mechanisms and clinical application. Oncotarget, 8(14), 23996–24008.  https://doi.org/10.18632/oncotarget.15098.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Srinivasula, S. M., Ahmad, M., Guo, Y., Zhan, Y., Lazebnik, Y., Fernandes-Alnemri, T., et al. (1999). Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis. Cancer Research, 59(5), 999–1002.PubMedGoogle Scholar
  206. 206.
    Vu, N. T., Park, M. A., Shultz, J. C., Goehe, R. W., Hoeferlin, L. A., Shultz, M. D., et al. (2013). hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L. The Journal of Biological Chemistry, 288(12), 8575–8584.  https://doi.org/10.1074/jbc.M112.443333.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Kischkel, F. C., Lawrence, D. A., Tinel, A., LeBlanc, H., Virmani, A., Schow, P., et al. (2001). Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. The Journal of Biological Chemistry, 276(49), 46639–46646.  https://doi.org/10.1074/jbc.M105102200.CrossRefPubMedGoogle Scholar
  208. 208.
    Harada, K., Toyooka, S., Shivapurkar, N., Maitra, A., Reddy, J. L., Matta, H., et al. (2002). Deregulation of caspase 8 and 10 expression in pediatric tumors and cell lines. Cancer Research, 62(20), 5897–5901.PubMedGoogle Scholar
  209. 209.
    Park, W. S., Lee, J. H., Shin, M. S., Park, J. Y., Kim, H. S., Lee, J. H., et al. (2002). Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene, 21(18), 2919–2925.  https://doi.org/10.1038/sj.onc.1205394.CrossRefPubMedGoogle Scholar
  210. 210.
    Shin, M. S., Kim, H. S., Kang, C. S., Park, W. S., Kim, S. Y., Lee, S. N., et al. (2002). Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood, 99(11), 4094–4099.  https://doi.org/10.1182/blood.v99.11.4094.CrossRefPubMedGoogle Scholar
  211. 211.
    Shin, M. S., Kim, H. S., Lee, S. H., Lee, J. W., Song, Y. H., Kim, Y. S., et al. (2002). Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene, 21(26), 4129–4136.  https://doi.org/10.1038/sj.onc.1205527.CrossRefPubMedGoogle Scholar
  212. 212.
    Horn, S., Hughes, M. A., Schilling, R., Sticht, C., Tenev, T., Ploesser, M., et al. (2017). Caspase-10 Negatively regulates caspase-8-mediated cell death, switching the response to CD95L in favor of NF-kappaB activation and cell survival. Cell Reports, 19(4), 785–797.  https://doi.org/10.1016/j.celrep.2017.04.010.CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Olsson, M., & Zhivotovsky, B. (2011). Caspases and cancer. Cell Death and Differentiation, 18(9), 1441–1449.  https://doi.org/10.1038/cdd.2011.30.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Peduto, L. (2009). ADAM9 as a potential target molecule in cancer. Current Pharmaceutical Design, 15(20), 2282–2287.  https://doi.org/10.2174/138161209788682415.CrossRefPubMedGoogle Scholar
  215. 215.
    Stone, A. L., Kroeger, M., & Sang, Q. X. (1999). Structure-function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins (review). Journal of Protein Chemistry, 18(4), 447–465.CrossRefPubMedGoogle Scholar
  216. 216.
    Duffy, M. J., McKiernan, E., O’Donovan, N., & McGowan, P. M. (2009). Role of ADAMs in cancer formation and progression. Clinical Cancer Research, 15(4), 1140–1144.  https://doi.org/10.1158/1078-0432.CCR-08-1585.CrossRefPubMedGoogle Scholar
  217. 217.
    Fritzsche, F. R., Wassermann, K., Jung, M., Tolle, A., Kristiansen, I., Lein, M., et al. (2008). ADAM9 is highly expressed in renal cell cancer and is associated with tumour progression. BMC Cancer, 8, 179.  https://doi.org/10.1186/1471-2407-8-179.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Giebeler, N., Schonefuss, A., Landsberg, J., Tuting, T., Mauch, C., & Zigrino, P. (2017). Deletion of ADAM-9 in HGF/CDK4 mice impairs melanoma development and metastasis. Oncogene, 36(35), 5058–5067.  https://doi.org/10.1038/onc.2017.162.CrossRefPubMedGoogle Scholar
  219. 219.
    Peduto, L., Reuter, V. E., Shaffer, D. R., Scher, H. I., & Blobel, C. P. (2005). Critical function for ADAM9 in mouse prostate cancer. Cancer Research, 65(20), 9312–9319.  https://doi.org/10.1158/0008-5472.Can-05-1063.CrossRefPubMedGoogle Scholar
  220. 220.
    Hotoda, N., Koike, H., Sasagawa, N., & Ishiura, S. (2002). A secreted form of human ADAM9 has an alpha-secretase activity for APP. Biochemical and Biophysical Research Communications, 293(2), 800–805.  https://doi.org/10.1016/S0006-291X(02)00302-9.CrossRefPubMedGoogle Scholar
  221. 221.
    Albrechtsen, R., Stautz, D., Sanjay, A., Kveiborg, M., & Wewer, U. M. (2011). Extracellular engagement of ADAM12 induces clusters of invadopodia with localized ectodomain shedding activity. Experimental Cell Research, 317(2), 195–209.  https://doi.org/10.1016/j.yexcr.2010.10.003.CrossRefPubMedGoogle Scholar
  222. 222.
    Frohlich, C., Albrechtsen, R., Dyrskjot, L., Rudkjaer, L., Orntoft, T. F., & Wewer, U. M. (2006). Molecular profiling of ADAM12 in human bladder cancer. Clinical Cancer Research, 12(24), 7359–7368.  https://doi.org/10.1158/1078-0432.CCR-06-1066.CrossRefPubMedGoogle Scholar
  223. 223.
    Iba, K., Albrechtsen, R., Gilpin, B. J., Loechel, F., & Wewer, U. M. (1999). Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. The American Journal of Pathology, 154(5), 1489–1501.  https://doi.org/10.1016/s0002-9440(10)65403-x.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Kodama, T., Ikeda, E., Okada, A., Ohtsuka, T., Shimoda, M., Shiomi, T., et al. (2004). ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. American Journal of Pathology, 165(5), 1743–1753.  https://doi.org/10.1016/S0002-9440(10)63429-3.CrossRefPubMedGoogle Scholar
  225. 225.
    Lendeckel, U., Kohl, J., Arndt, M., Carl-McGrath, S., Donat, H., & Rocken, C. (2005). Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. Journal of Cancer Research and Clinical Oncology, 131(1), 41–48.  https://doi.org/10.1007/s00432-004-0619-y.CrossRefPubMedGoogle Scholar
  226. 226.
    Mino, N., Miyahara, R., Nakayama, E., Takahashi, T., Takahashi, A., Iwakiri, S., et al. (2009). A disintegrin and metalloprotease 12 (ADAM12) is a prognostic factor in resected pathological stage I lung adenocarcinoma. Journal of Surgical Oncology, 100(3), 267–272.  https://doi.org/10.1002/jso.21313.CrossRefPubMedGoogle Scholar
  227. 227.
    Narita, D., Anghel, A., Seclaman, E., Ilina, R., Cireap, N., & Ursoniu, S. (2010). Molecular profiling of ADAM12 gene in breast cancers. Romanian Journal of Morphology and Embryology, 51(4), 669–676.PubMedGoogle Scholar
  228. 228.
    Peduto, L., Reuter, V. E., Sehara-Fujisawa, A., Shaffer, D. R., Scher, H. I., & Blobel, C. P. (2006). ADAM12 is highly expressed in carcinoma-associated stroma and is required for mouse prostate tumor progression. Oncogene, 25(39), 5462–5466.  https://doi.org/10.1038/sj.onc.1209536.CrossRefPubMedGoogle Scholar
  229. 229.
    Rocks, N., Paulissen, G., Quesada Calvo, F., Polette, M., Gueders, M., Munaut, C., et al. (2006). Expression of a disintegrin and metalloprotease (ADAM and ADAMTS) enzymes in human non-small-cell lung carcinomas (NSCLC). British Journal of Cancer, 94(5), 724–730.  https://doi.org/10.1038/sj.bjc.6602990.CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Eckert, M. A., Santiago-Medina, M., Lwin, T. M., Kim, J., Courtneidge, S. A., & Yang, J. (2017). ADAM12 induction by Twist1 promotes tumor invasion and metastasis via regulation of invadopodia and focal adhesions. Journal of Cell Science, 130(12), 2036–2048.  https://doi.org/10.1242/jcs.198200.CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Pories, S. E., Zurakowski, D., Roy, R., Lamb, C. C., Raza, S., Exarhopoulos, A., et al. (2008). Urinary metalloproteinases: noninvasive biomarkers for breast cancer risk assessment. Cancer Epidemiology, Biomarkers & Prevention, 17(5), 1034–1042.  https://doi.org/10.1158/1055-9965.EPI-07-0365.CrossRefGoogle Scholar
  232. 232.
    Gilpin, B. J., Loechel, F., Mattei, M. G., Engvall, E., Albrechtsen, R., & Wewer, U. M. (1998). A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. The Journal of Biological Chemistry, 273(1), 157–166.  https://doi.org/10.1074/jbc.273.1.157.CrossRefPubMedGoogle Scholar
  233. 233.
    Diaz, B., Yuen, A., Iizuka, S., Higashiyama, S., & Courtneidge, S. A. (2013). Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia. The Journal of Cell Biology, 201(2), 279–292.  https://doi.org/10.1083/jcb.201209151.CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Dyczynska, E., Sun, D., Yi, H., Sehara-Fujisawa, A., Blobel, C. P., & Zolkiewska, A. (2007). Proteolytic processing of delta-like 1 by ADAM proteases. The Journal of Biological Chemistry, 282(1), 436–444.  https://doi.org/10.1074/jbc.M605451200.CrossRefPubMedGoogle Scholar
  235. 235.
    Frohlich, C., Klitgaard, M., Noer, J. B., Kotzsch, A., Nehammer, C., Kronqvist, P., et al. (2013). ADAM12 is expressed in the tumour vasculature and mediates ectodomain shedding of several membrane-anchored endothelial proteins. Biochemical Journal, 452, 97–109.  https://doi.org/10.1042/Bj20121558.CrossRefPubMedGoogle Scholar
  236. 236.
    Horiuchi, K., Le Gall, S., Schulte, M., Yamaguchi, T., Reiss, K., Murphy, G., et al. (2007). Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Molecular Biology of the Cell, 18(1), 176–188.  https://doi.org/10.1091/mbc.e06-01-0014.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Ohlig, S., Farshi, P., Pickhinke, U., van den Boom, J., Hoing, S., Jakuschev, S., et al. (2011). Sonic hedgehog shedding results in functional activation of the solubilized protein. Developmental Cell, 20(6), 764–774.  https://doi.org/10.1016/j.devcel.2011.05.010.CrossRefPubMedGoogle Scholar
  238. 238.
    Kang, Q., Cao, Y., & Zolkiewska, A. (2000). Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells. Biochemical Journal, 352(Pt 3), 883–892.PubMedPubMedCentralGoogle Scholar
  239. 239.
    Leyme, A., Bourd-Boittin, K., Bonnier, D., Falconer, A., Arlot-Bonnemains, Y., & Theret, N. (2012). Identification of ILK as a new partner of the ADAM12 disintegrin and metalloprotease in cell adhesion and survival. Molecular Biology of the Cell, 23(17), 3461–3472.  https://doi.org/10.1091/mbc.E11-11-0918.CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Nyren-Erickson, E. K., Bouton, M., Raval, M., Totzauer, J., Mallik, S., & Alberto, N. (2014). Urinary concentrations of ADAM 12 from breast cancer patients pre- and post-surgery vs. cancer-free controls: a clinical study for biomarker validation. Journal of Negative Results in Biomedicine, 13, 5.  https://doi.org/10.1186/1477-5751-13-5.CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Kratzschmar, J., Lum, L., & Blobel, C. P. (1996). Metargidin, a membrane-anchored metalloprotease-disintegrin protein with an RGD integrin binding sequence. The Journal of Biological Chemistry, 271(9), 4593–4596.  https://doi.org/10.1074/jbc.271.9.4593.CrossRefPubMedGoogle Scholar
  242. 242.
    Beck, V., Herold, H., Benge, A., Luber, B., Hutzler, P., Tschesche, H., et al. (2005). ADAM15 decreases integrin alphavbeta3/vitronectin-mediated ovarian cancer cell adhesion and motility in an RGD-dependent fashion. The International Journal of Biochemistry & Cell Biology, 37(3), 590–603.  https://doi.org/10.1016/j.biocel.2004.08.005.CrossRefGoogle Scholar
  243. 243.
    Nath, D., Slocombe, P. M., Stephens, P. E., Warn, A., Hutchinson, G. R., Yamada, K. M., et al. (1999). Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells. Journal of Cell Science, 112(Pt 4), 579–587.PubMedGoogle Scholar
  244. 244.
    Eto, K., Puzon-McLaughlin, W., Sheppard, D., Sehara-Fujisawa, A., Zhang, X. P., & Takada, Y. (2000). RGD-independent binding of integrin alpha9beta1 to the ADAM-12 and -15 disintegrin domains mediates cell-cell interaction. The Journal of Biological Chemistry, 275(45), 34922–34930.  https://doi.org/10.1074/jbc.M001953200.CrossRefPubMedGoogle Scholar
  245. 245.
    Kleino, I., Ortiz, R. M., & Huovila, A. P. J. (2007). ADAM15 gene structure and differential alternative exon use in human tissues. BMC Molecular Biology, 8, 90.  https://doi.org/10.1186/1471-2199-8-90.CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Eatemadi, A., Aiyelabegan, H. T., Negahdari, B., Mazlomi, M. A., Daraee, H., Daraee, N., et al. (2017). Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomedicine & Pharmacotherapy, 86, 221–231.  https://doi.org/10.1016/j.biopha.2016.12.021.CrossRefGoogle Scholar
  247. 247.
    Wotawa, A., Solier, S., Logette, E., Solary, E., & Corcos, L. (2002). Differential influence of etoposide on two caspase-2 mRNA isoforms in leukemic cells. Cancer Letters, 185(2), 181–189.CrossRefPubMedGoogle Scholar
  248. 248.
    Solier, S., Lansiaux, A., Logette, E., Wu, J., Soret, J., Tazi, J., et al. (2004). Topoisomerase I and II inhibitors control caspase-2 pre-messenger RNA splicing in human cells. Molecular Cancer Research, 2(1), 53–61.PubMedGoogle Scholar
  249. 249.
    Martinet, W., Knaapen, M. W., De Meyer, G. R., Herman, A. G., & Kockx, M. M. (2003). Overexpression of the anti-apoptotic caspase-2 short isoform in macrophage-derived foam cells of human atherosclerotic plaques. The American Journal of Pathology, 162(3), 731–736.  https://doi.org/10.1016/S0002-9440(10)63869-2.CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Patwardhan, G. A., & Liu, Y. Y. (2011). Sphingolipids and expression regulation of genes in cancer. Progress in Lipid Research, 50(1), 104–114.  https://doi.org/10.1016/j.plipres.2010.10.003.CrossRefPubMedGoogle Scholar
  251. 251.
    Pan, D., Boon-Unge, K., Govitrapong, P., & Zhou, J. (2011). Emetine regulates the alternative splicing of caspase 9 in tumor cells. Oncology Letters, 2(6), 1309–1312.  https://doi.org/10.3892/ol.2011.395.CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Lin, J. C. (2017). Therapeutic applications of targeted alternative splicing to cancer treatment. International Journal of Molecular Sciences, 19(1).  https://doi.org/10.3390/ijms19010075.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
  2. 2.Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research InstituteQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations