Advertisement

The Warburg metabolism fuels tumor metastasis

  • Jianrong LuEmail author
Article

Abstract

The Warburg effect is prevalent in human cancer. Accordingly, most cancer cells display highly elevated glycolysis without proportionally increasing pyruvate oxidation. The metastatic process imposes strong selective pressure on cancer cells, and metastasizing cancer cells experience heightened oxidative stress. By constraining mitochondrial oxidative metabolism, the Warburg effect helps cancer cells to minimize oxidative stress, thereby facilitating metastatic dissemination. The PGC1α transcriptional coactivator is a central coordinator of oxidative metabolism. While promoting oxidative metabolism and reversing the Warburg effect, PGC1α critically activates antioxidant genes and protects cells against oxidative damage. Therefore, depending on the context, PGC1α may promote or suppress tumor metastasis. Cancer cells generally retain metabolic flexibility and can resist antiglycolysis treatment by undergoing metabolic reprogramming. Synthetic lethal combination therapies are thus essential to attack the liabilities of the Warburg metabolism for therapeutic benefit.

Keywords

Cancer Tumor metastasis Warburg effect  

Notes

References

  1. 1.
    Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: The biology of cancer metastasis: historical perspective. Cancer Research, 70, 5649–5669.CrossRefGoogle Scholar
  2. 2.
    Schmidt-Kittler, O., Ragg, T., Daskalakis, A., Granzow, M., Ahr, A., Blankenstein, T. J., Kaufmann, M., Diebold, J., Arnholdt, H., Muller, P., et al. (2003). From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 100, 7737–7742.CrossRefGoogle Scholar
  3. 3.
    Caixeiro, N. J., Kienzle, N., Lim, S. H., Spring, K. J., Tognela, A., Scott, K. F., de Souza, P., & Becker, T. M. (2014). Circulating tumour cells—a bona fide cause of metastatic cancer. Cancer Metastasis Reviews, 33, 747–756.CrossRefGoogle Scholar
  4. 4.
    Butler, T. P., & Gullino, P. M. (1975). Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Research, 35, 512–516.Google Scholar
  5. 5.
    Bockhorn, M., Jain, R. K., & Munn, L. L. (2007). Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? The Lancet Oncology, 8, 444–448.CrossRefGoogle Scholar
  6. 6.
    Nagy, J. A., Chang, S. H., Dvorak, A. M., & Dvorak, H. F. (2009). Why are tumour blood vessels abnormal and why is it important to know? British Journal of Cancer, 100, 865–869.CrossRefGoogle Scholar
  7. 7.
    Fidler, I. J. (1970). Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. Journal of the National Cancer Institute, 45, 773–782.Google Scholar
  8. 8.
    Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F., & Groom, A. C. (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. The American Journal of Pathology, 153, 865–873.CrossRefGoogle Scholar
  9. 9.
    Koppenol, W. H., Bounds, P. L., & Dang, C. V. (2011). Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews. Cancer, 11, 325–337.CrossRefGoogle Scholar
  10. 10.
    Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324, 1029–1033.CrossRefGoogle Scholar
  11. 11.
    Guppy, M., Leedman, P., Zu, X., & Russell, V. (2002). Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. The Biochemical Journal, 364, 309–315.CrossRefGoogle Scholar
  12. 12.
    Nakashima, R. A., Paggi, M. G., & Pedersen, P. L. (1984). Contributions of glycolysis and oxidative phosphorylation to adenosine 5′-triphosphate production in AS-30D hepatoma cells. Cancer Research, 44, 5702–5706.Google Scholar
  13. 13.
    Birsoy, K., Wang, T., Chen, W. W., Freinkman, E., Abu-Remaileh, M., & Sabatini, D. M. (2015). An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell, 162, 540–551.CrossRefGoogle Scholar
  14. 14.
    Molina, J. R., Sun, Y., Protopopova, M., Gera, S., Bandi, M., Bristow, C., McAfoos, T., Morlacchi, P., Ackroyd, J., Agip, A. A., et al. (2018). An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nature Medicine, 24, 1036–1046.CrossRefGoogle Scholar
  15. 15.
    Sullivan, L. B., Gui, D. Y., Hosios, A. M., Bush, L. N., Freinkman, E., & Vander Heiden, M. G. (2015). Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell, 162, 552–563.CrossRefGoogle Scholar
  16. 16.
    Viale, A., Pettazzoni, P., Lyssiotis, C. A., Ying, H., Sanchez, N., Marchesini, M., Carugo, A., Green, T., Seth, S., Giuliani, V., et al. (2014). Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 514, 628–632.CrossRefGoogle Scholar
  17. 17.
    Lu, J., Tan, M., & Cai, Q. (2015). The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Letters, 356, 156–164.CrossRefGoogle Scholar
  18. 18.
    Stacpoole, P. W. (2017). Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. Journal of the National Cancer Institute, 109.Google Scholar
  19. 19.
    Fan, J., Kang, H. B., Shan, C., Elf, S., Lin, R., Xie, J., Gu, T. L., Aguiar, M., Lonning, S., Chung, T. W., Arellano, M., Khoury, H. J., Shin, D. M., Khuri, F. R., Boggon, T. J., Kang, S., & Chen, J. (2014). Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect. The Journal of Biological Chemistry, 289, 26533–26541.CrossRefGoogle Scholar
  20. 20.
    Jin, Y., Cai, Q., Shenoy, A. K., Lim, S., Zhang, Y., Charles, S., Tarrash, M., Fu, X., Kamarajugadda, S., Trevino, J. G., Tan, M., & Lu, J. (2016). Src drives the Warburg effect and therapy resistance by inactivating pyruvate dehydrogenase through tyrosine-289 phosphorylation. Oncotarget, 7, 25113–25124.Google Scholar
  21. 21.
    Levine, A. J., & Puzio-Kuter, A. M. (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330, 1340–1344.CrossRefGoogle Scholar
  22. 22.
    Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews. Cancer, 4, 891–899.CrossRefGoogle Scholar
  23. 23.
    Hu, J., Locasale, J. W., Bielas, J. H., O’Sullivan, J., Sheahan, K., Cantley, L. C., Vander Heiden, M. G., & Vitkup, D. (2013). Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nature Biotechnology, 31, 522–529.CrossRefGoogle Scholar
  24. 24.
    Jose, C., Bellance, N., & Rossignol, R. (2011). Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochimica et Biophysica Acta, 1807, 552–561.CrossRefGoogle Scholar
  25. 25.
    Reznik, E., Wang, Q., La, K., Schultz, N., & Sander, C. (2017). Mitochondrial respiratory gene expression is suppressed in many cancers. Elife, 6.Google Scholar
  26. 26.
    Courtney, K. D., Bezwada, D., Mashimo, T., Pichumani, K., Vemireddy, V., Funk, A. M., Wimberly, J., McNeil, S. S., Kapur, P., Lotan, Y., Margulis, V., Cadeddu, J. A., Pedrosa, I., DeBerardinis, R. J., Malloy, C. R., Bachoo, R. M., & Maher, E. A. (2018). Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metabolism, 28, 793–800.e792.CrossRefGoogle Scholar
  27. 27.
    Fan, T. W., Lane, A. N., Higashi, R. M., Farag, M. A., Gao, H., Bousamra, M., & Miller, D. M. (2009). Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Molecular Cancer, 8, 41.CrossRefGoogle Scholar
  28. 28.
    Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J., Jiang, L., Ko, B., Skelton, R., Loudat, L., Wodzak, M., Klimko, C., McMillan, E., Butt, Y., Ni, M., Oliver, D., Torrealba, J., Malloy, C. R., Kernstine, K., Lenkinski, R. E., & DeBerardinis, R. J. (2016). Metabolic heterogeneity in human lung tumors. Cell, 164, 681–694.CrossRefGoogle Scholar
  29. 29.
    Maher, E. A., Marin-Valencia, I., Bachoo, R. M., Mashimo, T., Raisanen, J., Hatanpaa, K. J., Jindal, A., Jeffrey, F. M., Choi, C., Madden, C., Mathews, D., Pascual, J. M., Mickey, B. E., Malloy, C. R., & DeBerardinis, R. J. (2012). Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR in Biomedicine, 25, 1234–1244.CrossRefGoogle Scholar
  30. 30.
    Marin-Valencia, I., Yang, C., Mashimo, T., Cho, S., Baek, H., Yang, X. L., Rajagopalan, K. N., Maddie, M., Vemireddy, V., Zhao, Z., Cai, L., Good, L., Tu, B. P., Hatanpaa, K. J., Mickey, B. E., Matés, J. M., Pascual, J. M., Maher, E. A., Malloy, C. R., DeBerardinis, R. J., & Bachoo, R. M. (2012). Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metabolism, 15, 827–837.CrossRefGoogle Scholar
  31. 31.
    Caro, P., Kishan, A. U., Norberg, E., Stanley, I. A., Chapuy, B., Ficarro, S. B., Polak, K., Tondera, D., Gounarides, J., Yin, H., Zhou, F., Green, M. R., Chen, L., Monti, S., Marto, J. A., Shipp, M. A., & Danial, N. N. (2012). Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell, 22, 547–560.CrossRefGoogle Scholar
  32. 32.
    Vazquez, F., Lim, J. H., Chim, H., Bhalla, K., Girnun, G., Pierce, K., Clish, C. B., Granter, S. R., Widlund, H. R., Spiegelman, B. M., & Puigserver, P. (2013). PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell, 23, 287–301.CrossRefGoogle Scholar
  33. 33.
    Xue, M., Wei, W., Su, Y., Kim, J., Shin, Y. S., Mai, W. X., Nathanson, D. A., & Heath, J. R. (2015). Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. Journal of the American Chemical Society, 137, 4066–4069.CrossRefGoogle Scholar
  34. 34.
    Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., Korbel, C., Laschke, M. W., Gimotty, P. A., Philipp, S. E., et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23, 811–825.CrossRefGoogle Scholar
  35. 35.
    Luo, M., Shang, L., Brooks, M. D., Jiagge, E., Zhu, Y., Buschhaus, J. M., Conley, S., Fath, M. A., Davis, A., Gheordunescu, E., Wang, Y., Harouaka, R., Lozier, A., Triner, D., McDermott, S., Merajver, S. D., Luker, G. D., Spitz, D. R., & Wicha, M. S. (2018). Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metabolism, 28, 69–86.e66.CrossRefGoogle Scholar
  36. 36.
    Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425–434.CrossRefGoogle Scholar
  37. 37.
    Le, A., Cooper, C. R., Gouw, A. M., Dinavahi, R., Maitra, A., Deck, L. M., Royer, R. E., Vander Jagt, D. L., Semenza, G. L., & Dang, C. V. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 107, 2037–2042.CrossRefGoogle Scholar
  38. 38.
    Birsoy, K., Possemato, R., Lorbeer, F. K., Bayraktar, E. C., Thiru, P., Yucel, B., Wang, T., Chen, W. W., Clish, C. B., & Sabatini, D. M. (2014). Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature, 508, 108–112.CrossRefGoogle Scholar
  39. 39.
    Xie, J., Wu, H., Dai, C., Pan, Q., Ding, Z., Hu, D., Ji, B., Luo, Y., & Hu, X. (2014). Beyond Warburg effect—dual metabolic nature of cancer cells. Scientific Reports, 4, 4927.CrossRefGoogle Scholar
  40. 40.
    Brooks, G. A. (2018). The science and translation of lactate shuttle theory. Cell Metabolism, 27, 757–785.CrossRefGoogle Scholar
  41. 41.
    Feron, O. (2009). Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiotherapy and Oncology, 92, 329–333.CrossRefGoogle Scholar
  42. 42.
    Lim, J. H., Luo, C., Vazquez, F., & Puigserver, P. (2014). Targeting mitochondrial oxidative metabolism in melanoma causes metabolic compensation through glucose and glutamine utilization. Cancer Research, 74, 3535–3545.CrossRefGoogle Scholar
  43. 43.
    Piskounova, E., Agathocleous, M., Murphy, M. M., Hu, Z., Huddlestun, S. E., Zhao, Z., Leitch, A. M., Johnson, T. M., DeBerardinis, R. J., & Morrison, S. J. (2015). Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 527, 186–191.CrossRefGoogle Scholar
  44. 44.
    Kamarajugadda, S., Cai, Q., Chen, H., Nayak, S., Zhu, J., He, M., Jin, Y., Zhang, Y., Ai, L., Martin, S. S., Tan, M., & Lu, J. (2013). Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis. Cell Death & Disease, 4, e504.CrossRefGoogle Scholar
  45. 45.
    Li, A. E., Ito, H., Rovira, I. I., Kim, K. S., Takeda, K., Yu, Z. Y., Ferrans, V. J., & Finkel, T. (1999). A role for reactive oxygen species in endothelial cell anoikis. Circulation Research, 85, 304–310.CrossRefGoogle Scholar
  46. 46.
    Schafer, Z. T., Grassian, A. R., Song, L., Jiang, Z., Gerhart-Hines, Z., Irie, H. Y., Gao, S., Puigserver, P., & Brugge, J. S. (2009). Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature, 461, 109–113.CrossRefGoogle Scholar
  47. 47.
    Gorrini, C., Harris, I. S., & Mak, T. W. (2013). Modulation of oxidative stress as an anticancer strategy. Nature Reviews. Drug Discovery, 12, 931–947.CrossRefGoogle Scholar
  48. 48.
    Grassian, A. R., Metallo, C. M., Coloff, J. L., Stephanopoulos, G., & Brugge, J. S. (2011). Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes & Development, 25, 1716–1733.CrossRefGoogle Scholar
  49. 49.
    Kamarajugadda, S., Stemboroski, L., Cai, Q., Simpson, N. E., Nayak, S., Tan, M., & Lu, J. (2012). Glucose oxidation modulates anoikis and tumor metastasis. Molecular and Cellular Biology, 32, 1893–1907.CrossRefGoogle Scholar
  50. 50.
    Brand, K. A., & Hermfisse, U. (1997). Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. The FASEB Journal, 11, 388–395.CrossRefGoogle Scholar
  51. 51.
    Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews. Cancer, 11, 85–95.CrossRefGoogle Scholar
  52. 52.
    Le Gal, K., Ibrahim, M. X., Wiel, C., Sayin, V. I., Akula, M. K., Karlsson, C., Dalin, M. G., Akyurek, L. M., Lindahl, P., Nilsson, J., et al. (2015). Antioxidants can increase melanoma metastasis in mice. Science Translational Medicine, 7, 308re308.Google Scholar
  53. 53.
    Handschin, C., & Spiegelman, B. M. (2006). Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocrine Reviews, 27, 728–735.CrossRefGoogle Scholar
  54. 54.
    Xing, F., Luan, Y., Cai, J., Wu, S., Mai, J., Gu, J., Zhang, H., Li, K., Lin, Y., Xiao, X., Liang, J., Li, Y., Chen, W., Tan, Y., Sheng, L., Lu, B., Lu, W., Gao, M., Qiu, P., Su, X., Yin, W., Hu, J., Chen, Z., Sai, K., Wang, J., Chen, F., Chen, Y., Zhu, S., Liu, D., Cheng, S., Xie, Z., Zhu, W., & Yan, G. (2017). The anti-Warburg effect elicited by the cAMP-PGC1alpha pathway drives differentiation of glioblastoma cells into astrocytes. Cell Reports, 18, 468–481.CrossRefGoogle Scholar
  55. 55.
    Luo, C., Lim, J. H., Lee, Y., Granter, S. R., Thomas, A., Vazquez, F., Widlund, H. R., & Puigserver, P. (2016). A PGC1alpha-mediated transcriptional axis suppresses melanoma metastasis. Nature, 537, 422–426.CrossRefGoogle Scholar
  56. 56.
    Torrano, V., Valcarcel-Jimenez, L., Cortazar, A. R., Liu, X., Urosevic, J., Castillo-Martin, M., Fernandez-Ruiz, S., Morciano, G., Caro-Maldonado, A., Guiu, M., et al. (2016). The metabolic co-regulator PGC1alpha suppresses prostate cancer metastasis. Nature Cell Biology, 18, 645–656.CrossRefGoogle Scholar
  57. 57.
    Andrzejewski, S., Klimcakova, E., Johnson, R. M., Tabaries, S., Annis, M. G., McGuirk, S., Northey, J. J., Chenard, V., Sriram, U., Papadopoli, D. J., et al. (2017). PGC-1alpha promotes breast cancer metastasis and confers bioenergetic flexibility against metabolic drugs. Cell Metabolism, 26, 778–787 e775.CrossRefGoogle Scholar
  58. 58.
    LeBleu, V. S., O’Connell, J. T., Gonzalez Herrera, K. N., Wikman, H., Pantel, K., Haigis, M. C., de Carvalho, F. M., Damascena, A., Domingos Chinen, L. T., Rocha, R. M., et al. (2014). PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology, 16, 992–1003 1001–1015.CrossRefGoogle Scholar
  59. 59.
    St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jager, S., Handschin, C., Zheng, K., Lin, J., Yang, W., et al. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127, 397–408.CrossRefGoogle Scholar
  60. 60.
    Austin, S., & St-Pierre, J. (2012). PGC1alpha and mitochondrial metabolism—emerging concepts and relevance in ageing and neurodegenerative disorders. Journal of Cell Science, 125, 4963–4971.CrossRefGoogle Scholar
  61. 61.
    Butler, E. B., Zhao, Y., Munoz-Pinedo, C., Lu, J., & Tan, M. (2013). Stalling the engine of resistance: targeting cancer metabolism to overcome therapeutic resistance. Cancer Research, 73, 2709–2717.CrossRefGoogle Scholar
  62. 62.
    Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature Medicine, 23, 1124–1134.CrossRefGoogle Scholar
  63. 63.
    Kaelin, W. G., Jr. (2007). The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clinical Cancer Research, 13, 680s–684s.CrossRefGoogle Scholar
  64. 64.
    Semenza, G. L. (2013). HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. The Journal of Clinical Investigation, 123, 3664–3671.CrossRefGoogle Scholar
  65. 65.
    Chan, D. A., Sutphin, P. D., Nguyen, P., Turcotte, S., Lai, E. W., Banh, A., Reynolds, G. E., Chi, J. T., Wu, J., Solow-Cordero, D. E., et al. (2011). Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Science Translational Medicine, 3, 94ra70.Google Scholar
  66. 66.
    Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O., & Stephanopoulos, G. (2011). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481, 380–384.CrossRefGoogle Scholar
  67. 67.
    Sun, R. C., & Denko, N. C. (2014). Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metabolism, 19, 285–292.CrossRefGoogle Scholar
  68. 68.
    Ye, W. (2016). The complexity of translating anti-angiogenesis therapy from basic science to the clinic. Developmental Cell, 37, 114–125.CrossRefGoogle Scholar
  69. 69.
    De Bock, K., Mazzone, M., & Carmeliet, P. (2011). Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nature Reviews. Clinical Oncology, 8, 393–404.CrossRefGoogle Scholar
  70. 70.
    Sennino, B., & McDonald, D. M. (2012). Controlling escape from angiogenesis inhibitors. Nature Reviews. Cancer, 12, 699–709.CrossRefGoogle Scholar
  71. 71.
    Sennino, B., Ishiguro-Oonuma, T., Wei, Y., Naylor, R. M., Williamson, C. W., Bhagwandin, V., Tabruyn, S. P., You, W. K., Chapman, H. A., Christensen, J. G., Aftab, D. T., & McDonald, D. M. (2012). Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discovery, 2, 270–287.CrossRefGoogle Scholar
  72. 72.
    Rankin, E. B., & Giaccia, A. J. (2016). Hypoxic control of metastasis. Science, 352, 175–180.CrossRefGoogle Scholar
  73. 73.
    Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., Lee, C. T., Lopaschuk, G. D., Puttagunta, L., Harry, G., et al. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 11, 37–51.CrossRefGoogle Scholar
  74. 74.
    Michelakis, E. D., Sutendra, G., Dromparis, P., Webster, L., Haromy, A., Niven, E., Maguire, C., Gammer, T. L., Mackey, J. R., Fulton, D., et al. (2010). Metabolic modulation of glioblastoma with dichloroacetate. Science Translational Medicine, 2, 31ra34.CrossRefGoogle Scholar
  75. 75.
    Sottnik, J. L., Lori, J. C., Rose, B. J., & Thamm, D. H. (2011). Glycolysis inhibition by 2-deoxy-D-glucose reverts the metastatic phenotype in vitro and in vivo. Clinical & Experimental Metastasis, 28, 865–875.CrossRefGoogle Scholar
  76. 76.
    Sun, R. C., Fadia, M., Dahlstrom, J. E., Parish, C. R., Board, P. G., & Blackburn, A. C. (2010). Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Research and Treatment, 120, 253–260.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations