Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Pro- and antitumor effects of mitochondrial reactive oxygen species

Abstract

In cancer, mitochondrial functions are commonly altered. Directly involved in metabolic reprogramming, mitochondrial plasticity confers to cancer cells a high degree of adaptability to a wide range of stresses and to the harsh tumor microenvironment. Lack of nutrients or oxygen caused by altered perfusion, metabolic needs of proliferating cells, co-option of the microenvironment, control of the immune system, cell migration and metastasis, and evasion of exogenous stress (e.g., chemotherapy) are all, at least in part, influenced by mitochondria. Mitochondria are undoubtedly one of the key contributors to cancer development and progression. Understanding their protumoral (dys)functions may pave the way to therapeutic strategies capable of turning them into innocent entities. Here, we will focus on the production and detoxification of mitochondrial reactive oxygen species (mtROS), on their impact on tumorigenesis (genetic, prosurvival, and microenvironmental effects and their involvement in autophagy), and on tumor metastasis. We will also summarize the latest therapeutic approaches involving mtROS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Gaude, E., & Frezza, C. (2014). Defects in mitochondrial metabolism and cancer. Cancer & Metabolism, 2, 10. https://doi.org/10.1186/2049-3002-2-10.

  2. 2.

    Sabharwal, S. S., & Schumacker, P. T. (2014). Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nature Reviews. Cancer, 14(11), 709–721. https://doi.org/10.1038/nrc3803.

  3. 3.

    Corbet, C., & Feron, O. (2017). Tumour acidosis: from the passenger to the driver's seat. Nature Reviews. Cancer, 17(10), 577–593. https://doi.org/10.1038/nrc.2017.77.

  4. 4.

    Justus, C. R., Sanderlin, E. J., & Yang, L. V. (2015). Molecular connections between cancer cell metabolism and the tumor microenvironment. International Journal of Molecular Sciences, 16(5), 11055–11086. https://doi.org/10.3390/ijms160511055.

  5. 5.

    Corbet, C., Pinto, A., Martherus, R., Santiago de Jesus, J. P., Polet, F., & Feron, O. (2016). Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metabolism, 24(2), 311–323. https://doi.org/10.1016/j.cmet.2016.07.003.

  6. 6.

    Riemann, A., Schneider, B., Gundel, D., Stock, C., Gekle, M., & Thews, O. (2016). Acidosis promotes metastasis formation by enhancing tumor cell motility. Advances in Experimental Medicine and Biology, 876, 215–220. https://doi.org/10.1007/978-1-4939-3023-4_27.

  7. 7.

    Gupta, S. C., Singh, R., Pochampally, R., Watabe, K., & Mo, Y. Y. (2014). Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-kappaB pathway. Oncotarget, 5(23), 12070–12082. https://doi.org/10.18632/oncotarget.2514.

  8. 8.

    Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical Journal, 417(1), 1–13. https://doi.org/10.1042/bj20081386.

  9. 9.

    Sena, L. A., & Chandel, N. S. (2012). Physiological roles of mitochondrial reactive oxygen species. Molecular Cell, 48(2), 158–167. https://doi.org/10.1016/j.molcel.2012.09.025.

  10. 10.

    Muller, F. L., Liu, Y., & Van Remmen, H. (2004). Complex III releases superoxide to both sides of the inner mitochondrial membrane. The Journal of Biological Chemistry, 279(47), 49064–49073. https://doi.org/10.1074/jbc.M407715200.

  11. 11.

    Wellen, K. E., & Thompson, C. B. (2010). Cellular metabolic stress: considering how cells respond to nutrient excess. Molecular Cell, 40(2), 323–332. https://doi.org/10.1016/j.molcel.2010.10.004.

  12. 12.

    Khacho, M., Tarabay, M., Patten, D., Khacho, P., MacLaurin, J. G., Guadagno, J., et al. (2014). Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nature Communications, 5, 3550. https://doi.org/10.1038/ncomms4550.

  13. 13.

    Guzy, R. D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K. D., et al. (2005). Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metabolism, 1(6), 401–408. https://doi.org/10.1016/j.cmet.2005.05.001.

  14. 14.

    Chandel, N. S., McClintock, D. S., Feliciano, C. E., Wood, T. M., Melendez, J. A., Rodriguez, A. M., et al. (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. The Journal of Biological Chemistry, 275(33), 25130–25138. https://doi.org/10.1074/jbc.M001914200.

  15. 15.

    Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. The American Journal of Physiology, 271(5 Pt 1), C1424–C1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424.

  16. 16.

    Winterbourn, C. C., & Metodiewa, D. (1999). Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radical Biology & Medicine, 27(3–4), 322–328.

  17. 17.

    Quinlan, C. L., Goncalves, R. L., Hey-Mogensen, M., Yadava, N., Bunik, V. I., & Brand, M. D. (2014). The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. The Journal of Biological Chemistry, 289(12), 8312–8325. https://doi.org/10.1074/jbc.M113.545301.

  18. 18.

    Goncalves, R. L., Bunik, V. I., & Brand, M. D. (2016). Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex. Free Radical Biology & Medicine, 91, 247–255. https://doi.org/10.1016/j.freeradbiomed.2015.12.020.

  19. 19.

    Mari, M., Morales, A., Colell, A., Garcia-Ruiz, C., & Fernandez-Checa, J. C. (2009). Mitochondrial glutathione, a key survival antioxidant. Antioxidants & Redox Signaling, 11(11), 2685–2700. https://doi.org/10.1089/ars.2009.2695.

  20. 20.

    Chung, W. J., Lyons, S. A., Nelson, G. M., Hamza, H., Gladson, C. L., Gillespie, G. Y., et al. (2005). Inhibition of cystine uptake disrupts the growth of primary brain tumors. The Journal of Neuroscience, 25(31), 7101–7110. https://doi.org/10.1523/JNEUROSCI.5258-04.2005.

  21. 21.

    Zhang, W., Trachootham, D., Liu, J., Chen, G., Pelicano, H., Garcia-Prieto, C., et al. (2012). Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nature Cell Biology, 14(3), 276–286. https://doi.org/10.1038/ncb2432.

  22. 22.

    Cramer, S. L., Saha, A., Liu, J., Tadi, S., Tiziani, S., Yan, W., et al. (2017). Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nature Medicine, 23(1), 120–127. https://doi.org/10.1038/nm.4232.

  23. 23.

    Maddocks, O. D., Berkers, C. R., Mason, S. M., Zheng, L., Blyth, K., Gottlieb, E., et al. (2013). Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 493(7433), 542–546. https://doi.org/10.1038/nature11743.

  24. 24.

    Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320.

  25. 25.

    Szatrowski, T. P., & Nathan, C. F. (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Research, 51(3), 794–798.

  26. 26.

    Assi, M., & Rebillard, A. (2016). The Janus-faced role of antioxidants in cancer cachexia: new insights on the established concepts. Oxidative Medicine and Cellular Longevity, 2016, 9579868. https://doi.org/10.1155/2016/9579868.

  27. 27.

    Govindarajan, B., Sligh, J. E., Vincent, B. J., Li, M., Canter, J. A., Nickoloff, B. J., et al. (2007). Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. The Journal of Clinical Investigation, 117(3), 719–729. https://doi.org/10.1172/jci30102.

  28. 28.

    Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., et al. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene, 25(26), 3689–3698. https://doi.org/10.1038/sj.onc.1209409.

  29. 29.

    Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436(7047), 123–127. https://doi.org/10.1038/nature03688.

  30. 30.

    Girnun, G. D. (2012). The diverse role of the PPARgamma coactivator 1 family of transcriptional coactivators in cancer. Seminars in Cell & Developmental Biology, 23(4), 381–388. https://doi.org/10.1016/j.semcdb.2012.01.007.

  31. 31.

    LeBleu, V. S., O'Connell, J. T., Gonzalez Herrera, K. N., Wikman, H., Pantel, K., Haigis, M. C., et al. (2014). PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology, 16(10), 992–1003, 1001-1015. https://doi.org/10.1038/ncb3039.

  32. 32.

    Chen, E. I., Hewel, J., Krueger, J. S., Tiraby, C., Weber, M. R., Kralli, A., et al. (2007). Adaptation of energy metabolism in breast cancer brain metastases. Cancer Research, 67(4), 1472–1486. https://doi.org/10.1158/0008-5472.CAN-06-3137.

  33. 33.

    Torrano, V., Valcarcel-Jimenez, L., Cortazar, A. R., Liu, X., Urosevic, J., Castillo-Martin, M., et al. (2016). The metabolic co-regulator PGC1alpha suppresses prostate cancer metastasis. Nature Cell Biology, 18(6), 645–656. https://doi.org/10.1038/ncb3357.

  34. 34.

    Luo, C., Lim, J. H., Lee, Y., Granter, S. R., Thomas, A., Vazquez, F., et al. (2016). A PGC1alpha-mediated transcriptional axis suppresses melanoma metastasis. Nature, 537(7620), 422–426. https://doi.org/10.1038/nature19347.

  35. 35.

    St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jager, S., et al. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127(2), 397–408. https://doi.org/10.1016/j.cell.2006.09.024.

  36. 36.

    Ruas, J. L., White, J. P., Rao, R. R., Kleiner, S., Brannan, K. T., Harrison, B. C., et al. (2012). A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 151(6), 1319–1331. https://doi.org/10.1016/j.cell.2012.10.050.

  37. 37.

    Esparza-Molto, P. B., & Cuezva, J. M. (2018). The role of mitochondrial H(+)-ATP synthase in cancer. Frontiers in Oncology, 8, 53. https://doi.org/10.3389/fonc.2018.00053.

  38. 38.

    Santacatterina, F., Sanchez-Cenizo, L., Formentini, L., Mobasher, M. A., Casas, E., Rueda, C. B., et al. (2016). Down-regulation of oxidative phosphorylation in the liver by expression of the ATPase inhibitory factor 1 induces a tumor-promoter metabolic state. Oncotarget, 7(1), 490–508. https://doi.org/10.18632/oncotarget.6357.

  39. 39.

    Alexeyev, M., Shokolenko, I., Wilson, G., & LeDoux, S. (2013). The maintenance of mitochondrial DNA integrity—critical analysis and update. Cold Spring Harbor Perspectives in Biology, 5(5), a012641. https://doi.org/10.1101/cshperspect.a012641.

  40. 40.

    Canter, J. A., Kallianpur, A. R., Parl, F. F., & Millikan, R. C. (2005). Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women. Cancer Research, 65(17), 8028–8033. https://doi.org/10.1158/0008-5472.Can-05-1428.

  41. 41.

    Darvishi, K., Sharma, S., Bhat, A. K., Rai, E., & Bamezai, R. N. (2007). Mitochondrial DNA G10398A polymorphism imparts maternal Haplogroup N a risk for breast and esophageal cancer. Cancer Letters, 249(2), 249–255. https://doi.org/10.1016/j.canlet.2006.09.005.

  42. 42.

    Ebner, S., Lang, R., Mueller, E. E., Eder, W., Oeller, M., Moser, A., et al. (2011). Mitochondrial haplogroups, control region polymorphisms and malignant melanoma: a study in middle European Caucasians. PLoS One, 6(12), e27192. https://doi.org/10.1371/journal.pone.0027192.

  43. 43.

    Polyak, K., Li, Y., Zhu, H., Lengauer, C., Willson, J. K., Markowitz, S. D., et al. (1998). Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genetics, 20(3), 291–293. https://doi.org/10.1038/3108.

  44. 44.

    Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., et al. (2008). ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science, 320(5876), 661–664. https://doi.org/10.1126/science.1156906.

  45. 45.

    Ishikawa, K., Hashizume, O., Koshikawa, N., Fukuda, S., Nakada, K., Takenaga, K., et al. (2008). Enhanced glycolysis induced by mtDNA mutations does not regulate metastasis. FEBS Letters, 582(23–24), 3525–3530. https://doi.org/10.1016/j.febslet.2008.09.024.

  46. 46.

    Petros, J. A., Baumann, A. K., Ruiz-Pesini, E., Amin, M. B., Sun, C. Q., Hall, J., et al. (2005). mtDNA mutations increase tumorigenicity in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 719–724. https://doi.org/10.1073/pnas.0408894102.

  47. 47.

    Singh, R. K., Srivastava, A., Kalaiarasan, P., Manvati, S., Chopra, R., & Bamezai, R. N. (2014). mtDNA germ line variation mediated ROS generates retrograde signaling and induces pro-cancerous metabolic features. Science Reports, 4, 6571. https://doi.org/10.1038/srep06571.

  48. 48.

    Dasgupta, S., Hoque, M. O., Upadhyay, S., & Sidransky, D. (2008). Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer. Cancer Research, 68(3), 700–706. https://doi.org/10.1158/0008-5472.Can-07-5532.

  49. 49.

    Morais, R., Zinkewich-Peotti, K., Parent, M., Wang, H., Babai, F., & Zollinger, M. (1994). Tumor-forming ability in athymic nude mice of human cell lines devoid of mitochondrial DNA. Cancer Research, 54(14), 3889–3896.

  50. 50.

    Cavalli, L. R., Varella-Garcia, M., & Liang, B. C. (1997). Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth & Differentiation, 8(11), 1189–1198.

  51. 51.

    Gasparre, G., Hervouet, E., de Laplanche, E., Demont, J., Pennisi, L. F., Colombel, M., et al. (2008). Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Human Molecular Genetics, 17(7), 986–995. https://doi.org/10.1093/hmg/ddm371.

  52. 52.

    Gasparre, G., Romeo, G., Rugolo, M., & Porcelli, A. M. (2011). Learning from oncocytic tumors: why choose inefficient mitochondria? Biochimica et Biophysica Acta, 1807(6), 633–642. https://doi.org/10.1016/j.bbabio.2010.08.006.

  53. 53.

    Mayr, J. A., Meierhofer, D., Zimmermann, F., Feichtinger, R., Kogler, C., Ratschek, M., et al. (2008). Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clinical Cancer Research, 14(8), 2270–2275. https://doi.org/10.1158/1078-0432.Ccr-07-4131.

  54. 54.

    Tallini, G. (1998). Oncocytic tumours. Virchows Archiv, 433(1), 5–12.

  55. 55.

    Gasparre, G., Kurelac, I., Capristo, M., Iommarini, L., Ghelli, A., Ceccarelli, C., et al. (2011). A mutation threshold distinguishes the antitumorigenic effects of the mitochondrial gene MTND1, an oncojanus function. Cancer Research, 71(19), 6220–6229. https://doi.org/10.1158/0008-5472.Can-11-1042.

  56. 56.

    Oliva, C. R., Nozell, S. E., Diers, A., McClugage, S. G., 3rd, Sarkaria, J. N., Markert, J. M., et al. (2010). Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain. The Journal of Biological Chemistry, 285(51), 39759–39767. https://doi.org/10.1074/jbc.M110.147504.

  57. 57.

    Griguer, C. E., Cantor, A. B., Fathallah-Shaykh, H. M., Gillespie, G. Y., Gordon, A. S., Markert, J. M., et al. (2013). Prognostic relevance of cytochrome C oxidase in primary glioblastoma multiforme. PLoS One, 8(4), e61035. https://doi.org/10.1371/journal.pone.0061035.

  58. 58.

    Oliva, C. R., Moellering, D. R., Gillespie, G. Y., & Griguer, C. E. (2011). Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production. PLoS One, 6(9), e24665. https://doi.org/10.1371/journal.pone.0024665.

  59. 59.

    Bell, E. L., Klimova, T. A., Eisenbart, J., Moraes, C. T., Murphy, M. P., Budinger, G. R., et al. (2007). The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. The Journal of Cell Biology, 177(6), 1029–1036. https://doi.org/10.1083/jcb.200609074.

  60. 60.

    Brunelle, J. K., Bell, E. L., Quesada, N. M., Vercauteren, K., Tiranti, V., Zeviani, M., et al. (2005). Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metabolism, 1(6), 409–414. https://doi.org/10.1016/j.cmet.2005.05.002.

  61. 61.

    Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T., et al. (2005). Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metabolism, 1(6), 393–399. https://doi.org/10.1016/j.cmet.2005.05.003.

  62. 62.

    De Saedeleer, C. J., Porporato, P. E., Copetti, T., Perez-Escuredo, J., Payen, V. L., Brisson, L., et al. (2014). Glucose deprivation increases monocarboxylate transporter 1 (MCT1) expression and MCT1-dependent tumor cell migration. Oncogene, 33(31), 4060–4068. https://doi.org/10.1038/onc.2013.454.

  63. 63.

    Graham, N. A., Tahmasian, M., Kohli, B., Komisopoulou, E., Zhu, M., Vivanco, I., et al. (2012). Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Molecular Systems Biology, 8, 589. https://doi.org/10.1038/msb.2012.20.

  64. 64.

    Nazarewicz, R. R., Dikalova, A. E., Bikineyeva, A., & Dikalov, S. I. (2013). Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. American Journal of Physiology. Heart and Circulatory Physiology, 305(8), H1131–H1140. https://doi.org/10.1152/ajpheart.00063.2013.

  65. 65.

    Dikalova, A. E., Bikineyeva, A. T., Budzyn, K., Nazarewicz, R. R., McCann, L., Lewis, W., et al. (2010). Therapeutic targeting of mitochondrial superoxide in hypertension. Circulation Research, 107(1), 106–116. https://doi.org/10.1161/circresaha.109.214601.

  66. 66.

    Molognoni, F., de Melo, F. H., da Silva, C. T., & Jasiulionis, M. G. (2013). Ras and Rac1, frequently mutated in melanomas, are activated by superoxide anion, modulate Dnmt1 level and are causally related to melanocyte malignant transformation. PLoS One, 8(12), e81937. https://doi.org/10.1371/journal.pone.0081937.

  67. 67.

    Imhoff, B. R., & Hansen, J. M. (2009). Extracellular redox status regulates Nrf2 activation through mitochondrial reactive oxygen species. The Biochemical Journal, 424(3), 491–500. https://doi.org/10.1042/bj20091286.

  68. 68.

    Korshunov, S. S., Skulachev, V. P., & Starkov, A. A. (1997). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Letters, 416(1), 15–18.

  69. 69.

    Skulachev, V. P. (1998). Uncoupling: new approaches to an old problem of bioenergetics. Biochimica et Biophysica Acta, 1363(2), 100–124.

  70. 70.

    Checchetto, V., Azzolini, M., Peruzzo, R., Capitanio, P., & Leanza, L. (2018). Mitochondrial potassium channels in cell death. Biochemical and Biophysical Research Communications, 500(1), 51–58. https://doi.org/10.1016/j.bbrc.2017.06.095.

  71. 71.

    Malinska, D., Mirandola, S. R., & Kunz, W. S. (2010). Mitochondrial potassium channels and reactive oxygen species. FEBS Letters, 584(10), 2043–2048. https://doi.org/10.1016/j.febslet.2010.01.013.

  72. 72.

    Lluis, J. M., Buricchi, F., Chiarugi, P., Morales, A., & Fernandez-Checa, J. C. (2007). Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death. Cancer Research, 67(15), 7368–7377. https://doi.org/10.1158/0008-5472.Can-07-0515.

  73. 73.

    DeNicola, G. M., Karreth, F. A., Humpton, T. J., Gopinathan, A., Wei, C., Frese, K., et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475(7354), 106–109. https://doi.org/10.1038/nature10189.

  74. 74.

    Weinberg, F., Hamanaka, R., Wheaton, W. W., Weinberg, S., Joseph, J., Lopez, M., et al. (2010). Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8788–8793. https://doi.org/10.1073/pnas.1003428107.

  75. 75.

    Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J. K., Shen, M., et al. (2011). Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 334(6060), 1278–1283. https://doi.org/10.1126/science.1211485.

  76. 76.

    Kong, H., & Chandel, N. S. (2018). Regulation of redox balance in cancer and T cells. The Journal of Biological Chemistry, 293(20), 7499–7507. https://doi.org/10.1074/jbc.TM117.000257.

  77. 77.

    Di Marcantonio, D., Martinez, E., Sidoli, S., Vadaketh, J., Nieborowska-Skorska, M., Gupta, A., et al. (2018). Protein kinase C epsilon is a key regulator of mitochondrial redox homeostasis in acute myeloid leukemia. Clinical Cancer Research, 24(3), 608–618. https://doi.org/10.1158/1078-0432.Ccr-17-2684.

  78. 78.

    Karnati, S., Luers, G., Pfreimer, S., & Baumgart-Vogt, E. (2013). Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochemistry and Cell Biology, 140(2), 105–117. https://doi.org/10.1007/s00418-013-1099-4.

  79. 79.

    Sreevalsan, S., & Safe, S. (2013). Reactive oxygen species and colorectal cancer. Current Colorectal Cancer Reports, 9(4), 350–357. https://doi.org/10.1007/s11888-013-0190-5.

  80. 80.

    Assi, M. (2017). The differential role of reactive oxygen species in early and late stages of cancer. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 313(6), R646–r653. https://doi.org/10.1152/ajpregu.00247.2017.

  81. 81.

    Chen, P., Luo, X., Nie, P., Wu, B., Xu, W., Shi, X., et al. (2017). CQ synergistically sensitizes human colorectal cancer cells to SN-38/CPT-11 through lysosomal and mitochondrial apoptotic pathway via p53-ROS cross-talk. Free Radical Biology & Medicine, 104, 280–297. https://doi.org/10.1016/j.freeradbiomed.2017.01.033.

  82. 82.

    Kang, K. A., Zhang, R., Kim, G. Y., Bae, S. C., & Hyun, J. W. (2012). Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumour Biology, 33(2), 403–412. https://doi.org/10.1007/s13277-012-0322-6.

  83. 83.

    Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B., & Orrenius, S. (2002). Cytochrome c release from mitochondria proceeds by a two-step process. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1259–1263. https://doi.org/10.1073/pnas.241655498.

  84. 84.

    Zamzami, N., Marchetti, P., Castedo, M., Decaudin, D., Macho, A., Hirsch, T., et al. (1995). Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. The Journal of Experimental Medicine, 182(2), 367–377.

  85. 85.

    Thorpe, G. W., Reodica, M., Davies, M. J., Heeren, G., Jarolim, S., Pillay, B., et al. (2013). Superoxide radicals have a protective role during H2O2 stress. Molecular Biology of the Cell, 24(18), 2876–2884. https://doi.org/10.1091/mbc.E13-01-0052.

  86. 86.

    De Haes, W., Frooninckx, L., Van Assche, R., Smolders, A., Depuydt, G., Billen, J., et al. (2014). Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proceedings of the National Academy of Sciences of the United States of America, 111(24), E2501–E2509. https://doi.org/10.1073/pnas.1321776111.

  87. 87.

    Zarse, K., Schmeisser, S., Groth, M., Priebe, S., Beuster, G., Kuhlow, D., et al. (2012). Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metabolism, 15(4), 451–465. https://doi.org/10.1016/j.cmet.2012.02.013.

  88. 88.

    Dewaele, M., Maes, H., & Agostinis, P. (2010). ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy, 6(7), 838–854.

  89. 89.

    White, E. (2012). Deconvoluting the context-dependent role for autophagy in cancer. Nature Reviews. Cancer, 12(6), 401–410. https://doi.org/10.1038/nrc3262.

  90. 90.

    Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C., & Schumacker, P. T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences of the United States of America, 95(20), 11715–11720.

  91. 91.

    Chang, J., Jung, H. J., Jeong, S. H., Kim, H. K., Han, J., & Kwon, H. J. (2014). A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species. Biochemical and Biophysical Research Communications, 455(3–4), 290–297. https://doi.org/10.1016/j.bbrc.2014.11.005.

  92. 92.

    Masson, N., Singleton, R. S., Sekirnik, R., Trudgian, D. C., Ambrose, L. J., Miranda, M. X., et al. (2012). The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Reports, 13(3), 251–257. https://doi.org/10.1038/embor.2012.9.

  93. 93.

    Fukuda, R., Zhang, H., Kim, J. W., Shimoda, L., Dang, C. V., & Semenza, G. L. (2007). HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 129(1), 111–122. https://doi.org/10.1016/j.cell.2007.01.047.

  94. 94.

    Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185. https://doi.org/10.1016/j.cmet.2006.02.002.

  95. 95.

    Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. The Journal of Biological Chemistry, 269(38), 23757–23763.

  96. 96.

    Jurica, M. S., Mesecar, A., Heath, P. J., Shi, W., Nowak, T., & Stoddard, B. L. (1998). The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure, 6(2), 195–210.

  97. 97.

    Dombrauckas, J. D., Santarsiero, B. D., & Mesecar, A. D. (2005). Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry, 44(27), 9417–9429. https://doi.org/10.1021/bi0474923.

  98. 98.

    Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., Pouyssegur, J., et al. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Molecular and Cellular Biology, 29(10), 2570–2581. https://doi.org/10.1128/mcb.00166-09.

  99. 99.

    Zhang, H., Bosch-Marce, M., Shimoda, L. A., Tan, Y. S., Baek, J. H., Wesley, J. B., et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. The Journal of Biological Chemistry, 283(16), 10892–10903. https://doi.org/10.1074/jbc.M800102200.

  100. 100.

    Keith, B., Johnson, R. S., & Simon, M. C. (2011). HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nature Reviews. Cancer, 12(1), 9–22. https://doi.org/10.1038/nrc3183.

  101. 101.

    Wen, J., Wang, Y., Gao, C., Zhang, G., You, Q., Zhang, W., et al. (2018). Helicobacter pylori infection promotes Aquaporin 3 expression via the ROS-HIF-1alpha-AQP3-ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis. Oncogene, 37(26), 3549–3561. https://doi.org/10.1038/s41388-018-0208-1.

  102. 102.

    Zhao, X.-L., & Yu, C.-Z. (2018). Vosaroxin induces mitochondrial dysfunction and apoptosis in cervical cancer HeLa cells: involvement of AMPK/Sirt3/HIF-1 pathway. Chemico-Biological Interactions, 290, 57–63. https://doi.org/10.1016/j.cbi.2018.05.011.

  103. 103.

    Moeller, B. J., Richardson, R. A., & Dewhirst, M. W. (2007). Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Reviews, 26(2), 241–248. https://doi.org/10.1007/s10555-007-9056-0.

  104. 104.

    Rohwer, N., & Cramer, T. (2011). Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resistance Updates, 14(3), 191–201. https://doi.org/10.1016/j.drup.2011.03.001.

  105. 105.

    Semenza, G. L. (2012). Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends in Pharmacological Sciences, 33(4), 207–214. https://doi.org/10.1016/j.tips.2012.01.005.

  106. 106.

    Yu, T., Tang, B., & Sun, X. (2017). Development of inhibitors targeting hypoxia-inducible factor 1 and 2 for cancer therapy. Yonsei Medical Journal, 58(3), 489–496. https://doi.org/10.3349/ymj.2017.58.3.489.

  107. 107.

    Fiaschi, T., Marini, A., Giannoni, E., Taddei, M. L., Gandellini, P., De Donatis, A., et al. (2012). Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Research, 72(19), 5130–5140. https://doi.org/10.1158/0008-5472.Can-12-1949.

  108. 108.

    Sanita, P., Capulli, M., Teti, A., Galatioto, G. P., Vicentini, C., Chiarugi, P., et al. (2014). Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer, 14, 154. https://doi.org/10.1186/1471-2407-14-154.

  109. 109.

    Morselli, E., Galluzzi, L., Kepp, O., Vicencio, J. M., Criollo, A., Maiuri, M. C., et al. (2009). Anti- and pro-tumor functions of autophagy. Biochimica et Biophysica Acta, 1793(9), 1524–1532. https://doi.org/10.1016/j.bbamcr.2009.01.006.

  110. 110.

    Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., & Elazar, Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. The EMBO Journal, 26(7), 1749–1760. https://doi.org/10.1038/sj.emboj.7601623.

  111. 111.

    Poillet-Perez, L., Despouy, G., Delage-Mourroux, R., & Boyer-Guittaut, M. (2015). Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biology, 4, 184–192. https://doi.org/10.1016/j.redox.2014.12.003.

  112. 112.

    Tan, A. S., Baty, J. W., Dong, L. F., Bezawork-Geleta, A., Endaya, B., Goodwin, J., et al. (2015). Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metabolism, 21(1), 81–94. https://doi.org/10.1016/j.cmet.2014.12.003.

  113. 113.

    He, X., Zhou, A., Lu, H., Chen, Y., Huang, G., Yue, X., et al. (2013). Suppression of mitochondrial complex I influences cell metastatic properties. PLoS One, 8(4), e61677. https://doi.org/10.1371/journal.pone.0061677.

  114. 114.

    Comito, G., Calvani, M., Giannoni, E., Bianchini, F., Calorini, L., Torre, E., et al. (2011). HIF-1alpha stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radical Biology & Medicine, 51(4), 893–904. https://doi.org/10.1016/j.freeradbiomed.2011.05.042.

  115. 115.

    Arnold, R. S., Sun, C. Q., Richards, J. C., Grigoriev, G., Coleman, I. M., Nelson, P. S., et al. (2009). Mitochondrial DNA mutation stimulates prostate cancer growth in bone stromal environment. Prostate, 69(1), 1–11. https://doi.org/10.1002/pros.20854.

  116. 116.

    Porporato, P. E., Payen, V. L., Perez-Escuredo, J., De Saedeleer, C. J., Danhier, P., Copetti, T., et al. (2014). A mitochondrial switch promotes tumor metastasis. Cell Reports, 8(3), 754–766. https://doi.org/10.1016/j.celrep.2014.06.043.

  117. 117.

    Riemann, A., Schneider, B., Gundel, D., Stock, C., Thews, O., & Gekle, M. (2014). Acidic priming enhances metastatic potential of cancer cells. Pflügers Archiv, 466(11), 2127–2138. https://doi.org/10.1007/s00424-014-1458-6.

  118. 118.

    Paoli, P., Giannoni, E., & Chiarugi, P. (2013). Anoikis molecular pathways and its role in cancer progression. Biochimica et Biophysica Acta, 1833(12), 3481–3498. https://doi.org/10.1016/j.bbamcr.2013.06.026.

  119. 119.

    Piskounova, E., Agathocleous, M., Murphy, M. M., Hu, Z., Huddlestun, S. E., Zhao, Z., et al. (2015). Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 527(7577), 186–191. https://doi.org/10.1038/nature15726.

  120. 120.

    Kamarajugadda, S., Cai, Q., Chen, H., Nayak, S., Zhu, J., He, M., et al. (2013). Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis. Cell Death & Disease, 4, e504. https://doi.org/10.1038/cddis.2013.20.

  121. 121.

    Lu, X., Bennet, B., Mu, E., Rabinowitz, J., & Kang, Y. (2010). Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model. The Journal of Biological Chemistry, 285(13), 9317–9321. https://doi.org/10.1074/jbc.C110.104448.

  122. 122.

    Le Gal, K., Ibrahim, M. X., Wiel, C., Sayin, V. I., Akula, M. K., Karlsson, C., et al. (2015). Antioxidants can increase melanoma metastasis in mice. Science Translational Medicine, 7(308), 308re308. https://doi.org/10.1126/scitranslmed.aad3740.

  123. 123.

    Sayin, V. I., Ibrahim, M. X., Larsson, E., Nilsson, J. A., Lindahl, P., & Bergo, M. O. (2014). Antioxidants accelerate lung cancer progression in mice. Science Translational Medicine, 6(221), 221ra215. https://doi.org/10.1126/scitranslmed.3007653.

  124. 124.

    Gao, P., Zhang, H., Dinavahi, R., Li, F., Xiang, Y., Raman, V., et al. (2007). HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell, 12(3), 230–238. https://doi.org/10.1016/j.ccr.2007.08.004.

  125. 125.

    Klein, E. A., Thompson, I. M., Jr., Tangen, C. M., Crowley, J. J., Lucia, M. S., Goodman, P. J., et al. (2011). Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 306(14), 1549–1556. https://doi.org/10.1001/jama.2011.1437.

  126. 126.

    Hercberg, S., Galan, P., Preziosi, P., Bertrais, S., Mennen, L., Malvy, D., et al. (2004). The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Archives of Internal Medicine, 164(21), 2335–2342. https://doi.org/10.1001/archinte.164.21.2335.

  127. 127.

    Jacobs, C., Hutton, B., Ng, T., Shorr, R., & Clemons, M. (2015). Is there a role for oral or intravenous ascorbate (vitamin C) in treating patients with cancer? A systematic review. Oncologist, 20(2), 210–223. https://doi.org/10.1634/theoncologist.2014-0381.

  128. 128.

    Bairati, I., Meyer, F., Gelinas, M., Fortin, A., Nabid, A., Brochet, F., et al. (2005). Randomized trial of antioxidant vitamins to prevent acute adverse effects of radiation therapy in head and neck cancer patients. Journal of Clinical Oncology, 23(24), 5805–5813. https://doi.org/10.1200/jco.2005.05.514.

  129. 129.

    Lawenda, B. D., Kelly, K. M., Ladas, E. J., Sagar, S. M., Vickers, A., & Blumberg, J. B. (2008). Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? Journal of the National Cancer Institute, 100(11), 773–783. https://doi.org/10.1093/jnci/djn148.

  130. 130.

    Ozben, T. (2015). Antioxidant supplementation on cancer risk and during cancer therapy: an update. Current Topics in Medicinal Chemistry, 15(2), 170–178.

  131. 131.

    Bonner, M. Y., & Arbiser, J. L. (2014). The antioxidant paradox: what are antioxidants and how should they be used in a therapeutic context for cancer. Future Medicinal Chemistry, 6(12), 1413–1422. https://doi.org/10.4155/fmc.14.86.

  132. 132.

    Jin, H., Kanthasamy, A., Ghosh, A., Anantharam, V., Kalyanaraman, B., & Kanthasamy, A. G. (2014). Mitochondria-targeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes. Biochimica et Biophysica Acta, 1842(8), 1282–1294. https://doi.org/10.1016/j.bbadis.2013.09.007.

  133. 133.

    Chandel, N. S., & Tuveson, D. A. (2014). The promise and perils of antioxidants for cancer patients. The New England Journal of Medicine, 371(2), 177–178. https://doi.org/10.1056/NEJMcibr1405701.

  134. 134.

    Nazarewicz, R. R., Dikalova, A., Bikineyeva, A., Ivanov, S., Kirilyuk, I. A., Grigor'ev, I. A., et al. (2013). Does scavenging of mitochondrial superoxide attenuate cancer prosurvival signaling pathways? Antioxidants & Redox Signaling, 19(4), 344–349. https://doi.org/10.1089/ars.2013.5185.

  135. 135.

    Cheriyath, V., Kaur, J., Davenport, A., Khalel, A., Chowdhury, N., & Gaddipati, L. (2018). G1P3 (IFI6), a mitochondrial localised antiapoptotic protein, promotes metastatic potential of breast cancer cells through mtROS. British Journal of Cancer, 119(1), 52–64. https://doi.org/10.1038/s41416-018-0137-3.

  136. 136.

    Wang, B., Fu, J., Yu, T., Xu, A., Qin, W., Yang, Z., et al. (2017). Contradictory effects of mitochondria- and non-mitochondria-targeted antioxidants on hepatocarcinogenesis by altering DNA repair in mice. Hepatology. https://doi.org/10.1002/hep.29518.

  137. 137.

    Titova, E., Shagieva, G., Ivanova, O., Domnina, L., Domninskaya, M., Strelkova, O., et al. (2018). Mitochondria-targeted antioxidant SkQ1 suppresses fibrosarcoma and rhabdomyosarcoma tumour cell growth. Cell Cycle, 17(14), 1797–1811. https://doi.org/10.1080/15384101.2018.1496748.

  138. 138.

    Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122. https://doi.org/10.1016/j.cell.2014.07.013.

  139. 139.

    Verrax, J., Cadrobbi, J., Marques, C., Taper, H., Habraken, Y., Piette, J., et al. (2004). Ascorbate potentiates the cytotoxicity of menadione leading to an oxidative stress that kills cancer cells by a non-apoptotic caspase-3 independent form of cell death. Apoptosis, 9(2), 223–233. https://doi.org/10.1023/B:APPT.0000018804.26026.1a.

  140. 140.

    Verrax, J., Delvaux, M., Beghein, N., Taper, H., Gallez, B., & Buc Calderon, P. (2005). Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study. Free Radical Research, 39(6), 649–657. https://doi.org/10.1080/10715760500097906.

  141. 141.

    Verrax, J., Stockis, J., Tison, A., Taper, H. S., & Calderon, P. B. (2006). Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice. Biochemical Pharmacology, 72(6), 671–680. https://doi.org/10.1016/j.bcp.2006.05.025.

  142. 142.

    Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., et al. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell, 10(3), 241–252. https://doi.org/10.1016/j.ccr.2006.08.009.

  143. 143.

    Stacpoole, P. W. (2017). Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. Journal of the National Cancer Institute, 109(11). https://doi.org/10.1093/jnci/djx071.

  144. 144.

    Shaw, A. T., Winslow, M. M., Magendantz, M., Ouyang, C., Dowdle, J., Subramanian, A., et al. (2011). Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8773–8778. https://doi.org/10.1073/pnas.1105941108.

  145. 145.

    Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A. J., Yang, W. S., Fridman, D. J., et al. (2007). RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 447(7146), 864–868. https://doi.org/10.1038/nature05859.

  146. 146.

    Hou, X. S., Wang, H. S., Mugaka, B. P., Yang, G. J., & Ding, Y. (2018). Mitochondria: promising organelle targets for cancer diagnosis and treatment. Biomaterials Science, 6(11), 2786–2797. https://doi.org/10.1039/c8bm00673c.

  147. 147.

    Basit, F., van Oppen, L. M., Schockel, L., Bossenbroek, H. M., van Emst-de Vries, S. E., Hermeling, J. C., et al. (2017). Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death & Disease, 8(3), e2716. https://doi.org/10.1038/cddis.2017.133.

  148. 148.

    Hammerova, J., Uldrijan, S., Taborska, E., Vaculova, A. H., & Slaninova, I. (2012). Necroptosis modulated by autophagy is a predominant form of melanoma cell death induced by sanguilutine. Biological Chemistry, 393(7), 647–658. https://doi.org/10.1515/hsz-2011-0279.

  149. 149.

    Sonkusre, P., & Cameotra, S. S. (2017). Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. Journal of Nanobiotechnology, 15(1), 43. https://doi.org/10.1186/s12951-017-0276-3.

  150. 150.

    Jung, H. S., Lee, J. H., Kim, K., Koo, S., Verwilst, P., Sessler, J. L., et al. (2017). A mitochondria-targeted cryptocyanine-based photothermogenic photosensitizer. Journal of the American Chemical Society, 139(29), 9972–9978. https://doi.org/10.1021/jacs.7b04263.

  151. 151.

    Jung, H. S., Han, J., Lee, J. H., Lee, J. H., Choi, J. M., Kweon, H. S., et al. (2015). Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. Journal of the American Chemical Society, 137(8), 3017–3023. https://doi.org/10.1021/ja5122809.

  152. 152.

    Chakrabortty, S., Agrawalla, B. K., Stumper, A., Vegi, N. M., Fischer, S., Reichardt, C., et al. (2017). Mitochondria targeted protein-ruthenium photosensitizer for efficient photodynamic applications. Journal of the American Chemical Society, 139(6), 2512–2519. https://doi.org/10.1021/jacs.6b13399.

  153. 153.

    Guo, R., Peng, H., Tian, Y., Shen, S., & Yang, W. (2016). Mitochondria-targeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small, 12(33), 4541–4552. https://doi.org/10.1002/smll.201601094.

  154. 154.

    Stolik, S., Delgado, J. A., Perez, A., & Anasagasti, L. (2000). Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. Journal of Photochemistry and Photobiology. B, 57(2–3), 90–93.

Download references

Acknowledgements

Works at authors’ labs are supported by European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 642623 RADIATE and No. 722605 TRANSMIT, the Belgian Fonds National de la Recherche Scientifique (F.R.S.-FNRS), the Belgian Télévie and the Fondation Louvain (all to PS), and the Italian Ministry for University and Research (MIUR, Rita Levi-Montalcini program for young researchers 2014) to PEP. PS is a F.R.S.-FNRS Senior Research Associate. LXZ is a PhD Fellow of Marie Skłodowska-Curie grant No. 722605 TRANSMIT.

Author information

Correspondence to Pierre Sonveaux.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue:Acidosis Cancer - Robert Gillies, Guest Editor

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Payen, V.L., Zampieri, L.X., Porporato, P.E. et al. Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev 38, 189–203 (2019). https://doi.org/10.1007/s10555-019-09789-2

Download citation

Keywords

  • Cancer
  • Mitochondria
  • Mitochondrial reactive oxygen species (mtROS)
  • Antioxidants
  • Pro-oxidants
  • mitoQ