Advertisement

Na+,HCO3 cotransporter NBCn1 accelerates breast carcinogenesis

  • Ebbe BoedtkjerEmail author
Article

Abstract

Cell metabolism increases during carcinogenesis. Yet, intracellular pH in solid cancer tissue is typically maintained equal to or above that of normal tissue. This is achieved through accelerated cellular acid extrusion that compensates for the enhanced metabolic acid production. Upregulated Na+,HCO3 cotransport is the predominant mechanism of net acid extrusion in human and murine breast cancer tissue, and in congruence, the protein expression of the electroneutral Na+,HCO3 cotransporter NBCn1 is increased in primary breast carcinomas and lymph node metastases compared to matched normal breast tissue. The capacity for net acid extrusion and level of steady-state intracellular pH are lower in carcinogen- and ErbB2-induced breast cancer tissue from NBCn1 knockout mice compared to wild-type mice. Consistent with importance of intracellular pH control for breast cancer development, tumor-free survival is prolonged and tumor growth rate decelerated in NBCn1 knockout mice compared to wild-type mice. Glycolytic activity increases as function of tumor size and in areas of poor oxygenation. Because cell proliferation in NBCn1 knockout mice is particularly reduced in larger-sized breast carcinomas and central tumor regions with expected hypoxia, current evidence supports that NBCn1 facilitates cancer progression by eliminating intracellular acidic waste products derived from cancer cell metabolism. The present review explores the mechanisms and consequences of acid-base regulation in breast cancer tissue. Emphasis is on the Na+,HCO3 cotransporter NBCn1 that accelerates net acid extrusion from breast cancer tissue and thereby maintains intracellular pH in a range permissive for cell proliferation and development of breast cancer.

Keywords

Acid-base homeostasis Breast carcinogenesis Cancer metabolism Cell proliferation Sodium-bicarbonate cotransport Tumor perfusion 

Notes

Funding information

Related work in the author’s laboratory is financially supported by the Danish Cancer Society (grant no. R72-A4273), the Novo Nordisk Foundation (grants no. NNF15OC0017344, NNF13OC0007393, NNF12OC0002131), the Simon Fougner Hartmann Family Foundation, and the Independent Research Fund Denmark (grants no. 4183-00258A, 7025-00050A).

References

  1. 1.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.  https://doi.org/10.1016/j.cell.2011.02.013.CrossRefGoogle Scholar
  2. 2.
    Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(3), R502–R516.  https://doi.org/10.1152/ajpregu.00114.2004.CrossRefPubMedGoogle Scholar
  3. 3.
    Mookerjee, S. A., Goncalves, R. L., Gerencser, A. A., Nicholls, D. G., & Brand, M. D. (2015). The contributions of respiration and glycolysis to extracellular acid production. Biochimica et Biophysica Acta, 1847(2), 171–181.  https://doi.org/10.1016/j.bbabio.2014.10.005.CrossRefPubMedGoogle Scholar
  4. 4.
    Potter, M., Newport, E., & Morten, K. J. (2016). The Warburg effect: 80 years on. Biochemical Society Transactions, 44(5), 1499–1505.  https://doi.org/10.1042/BST20160094.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews. Cancer, 4(11), 891–899.  https://doi.org/10.1038/nrc1478.CrossRefPubMedGoogle Scholar
  6. 6.
    Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews. Cancer, 11(2), 85–95.  https://doi.org/10.1038/nrc2981.CrossRefPubMedGoogle Scholar
  7. 7.
    Vaupel, P., Kallinowski, F., & Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Research, 49(23), 6449–6465.PubMedGoogle Scholar
  8. 8.
    Junttila, M. R., & de Sauvage, F. J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 501, 346–354.  https://doi.org/10.1038/nature12626.CrossRefPubMedGoogle Scholar
  9. 9.
    Castañeda-Gill, J. M., & Vishwanatha, J. K. (2016). Antiangiogenic mechanisms and factors in breast cancer treatment. Journal of Carcinogenesis, 15, 1.  https://doi.org/10.4103/1477-3163.176223.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Froelunde, A. S., Ohlenbusch, M., Hansen, K. B., Jessen, N., Kim, S., & Boedtkjer, E. (2018). Murine breast cancer feed arteries are thin-walled with reduced α1A-adrenoceptor expression and attenuated sympathetic vasocontraction. Breast Cancer Research, 20(1), 20.  https://doi.org/10.1186/s13058-018-0952-8.CrossRefPubMedGoogle Scholar
  11. 11.
    Voss, N., Kold-Petersen, H., & Boedtkjer, E. (2018). Enhanced nitric oxide signaling amplifies vasorelaxation of human colon cancer feed arteries. American Journal of Physiology. Heart and Circulatory Physiology, 316, H245–H254.  https://doi.org/10.1152/ajpheart.00368.2018.CrossRefPubMedGoogle Scholar
  12. 12.
    Fidelman, M. L., Seeholzer, S. H., Walsh, K. B., & Moore, R. D. (1982). Intracellular pH mediates action of insulin on glycolysis in frog skeletal muscle. The American Journal of Physiology, 242(1), C87–C93.  https://doi.org/10.1152/ajpcell.1982.242.1.C87.CrossRefPubMedGoogle Scholar
  13. 13.
    Trivedi, B., & Danforth, W. H. (1966). Effect of pH on the kinetics of frog muscle phosphofructokinase. The Journal of Biological Chemistry, 241(17), 4110–4112.PubMedGoogle Scholar
  14. 14.
    Pedersen, S. F. (2006). The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death. Pflügers Archiv, 452(3), 249–259.  https://doi.org/10.1007/s00424-006-0044-y.CrossRefPubMedGoogle Scholar
  15. 15.
    Caldwell, P. (1958). Studies on the internal pH of large muscle and nerve fibres. The Journal of Physiology, 142(1), 22–62.  https://doi.org/10.1113/jphysiol.1958.sp005998.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Boedtkjer, E., Moreira, J. M., Mele, M., Vahl, P., Wielenga, V. T., Christiansen, P. M., et al. (2013). Contribution of Na+,HCO3 -cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). International Journal of Cancer, 132(6), 1288–1299.  https://doi.org/10.1002/ijc.27782.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee, S., Mele, M., Vahl, P., Christiansen, P. M., Jensen, V. E. D., & Boedtkjer, E. (2015). Na+,HCO3 -cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane. Pflügers Archiv, 467(2), 367–377.  https://doi.org/10.1007/s00424-014-1524-0.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee, S., Axelsen, T. V., Andersen, A. P., Vahl, P., Pedersen, S. F., & Boedtkjer, E. (2016). Disrupting Na+,HCO3 -cotransporter NBCn1 (Slc4a7) delays murine breast cancer development. Oncogene, 35(16), 2112–2122.  https://doi.org/10.1038/onc.2015.273.CrossRefPubMedGoogle Scholar
  19. 19.
    Bhujwalla, Z. M., Aboagye, E. O., Gillies, R. J., Chacko, V. P., Mendola, C. E., & Backer, J. M. (1999). Nm23-transfected MDA-mB-435 human breast carcinoma cells form tumors with altered phospholipid metabolism and pH: a 31P nuclear magnetic resonance study in vivo and in vitro. Magnetic Resonance in Medicine, 41(5), 897–903.  https://doi.org/10.1002/(SICI)1522-2594(199905)41:5<897::AID-MRM7>3.0.CO;2-T.CrossRefPubMedGoogle Scholar
  20. 20.
    Raghunand, N., Altbach, M. I., van Sluis, R., Baggett, B., Taylor, C. W., Bhujwalla, Z. M., & Gillies, R. J. (1999). Plasmalemmal pH-gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochemical Pharmacology, 57(3), 309–312.  https://doi.org/10.1016/S0006-2952(98)00306-2.CrossRefPubMedGoogle Scholar
  21. 21.
    De Milito, A., Marino, M. L., & Fais, S. (2012). A rationale for the use of proton pump inhibitors as antineoplastic agents. Current Pharmaceutical Design, 18(10), 1395–1406.  https://doi.org/10.2174/138161212799504911.CrossRefPubMedGoogle Scholar
  22. 22.
    Chiche, J., Le, F. Y., Vilmen, C., Frassineti, F., Daniel, L., Halestrap, A. P., et al. (2012). In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. International Journal of Cancer, 130(7), 1511–1520.  https://doi.org/10.1002/ijc.26125.CrossRefPubMedGoogle Scholar
  23. 23.
    Aalkjaer, C., Boedtkjer, E., Choi, I., & Lee, S. (2014). Cation-coupled bicarbonate transporters. Comprehensive Physiology, 4(4), 1605–1637.  https://doi.org/10.1002/cphy.c130005.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gorbatenko, A., Olesen, C. W., Boedtkjer, E., & Pedersen, S. F. (2014). Regulation and roles of bicarbonate transporters in cancer. Frontiers in Physiology, 5, 130.  https://doi.org/10.3389/fphys.2014.00130.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Choi, I., Aalkjaer, C., Boulpaep, E. L., & Boron, W. F. (2000). An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature, 405(6786), 571–575.  https://doi.org/10.1038/35014615.CrossRefPubMedGoogle Scholar
  26. 26.
    Gross, E., Hawkins, K., Abuladze, N., Pushkin, A., Cotton, C. U., Hopfer, U., & Kurtz, I. (2001). The stoichiometry of the electrogenic sodium bicarbonate cotransporter NBC1 is cell-type dependent. The Journal of Physiology, 531(Pt 3), 597–603.  https://doi.org/10.1111/j.1469-7793.2001.0597h.x.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Millar, I. D., & Brown, P. D. (2008). NBCe2 exhibits a 3 HCO3 :1 Na+ stoichiometry in mouse choroid plexus epithelial cells. Biochemical and Biophysical Research Communications, 373(4), 550–554.  https://doi.org/10.1016/j.bbrc.2008.06.053.CrossRefPubMedGoogle Scholar
  28. 28.
    Virkki, L. V., Wilson, D. A., Vaughan-Jones, R. D., & Boron, W. F. (2002). Functional characterization of human NBC4 as an electrogenic Na+-HCO3 cotransporter (NBCe2). American Journal of Physiology Cell Physiology, 282(6), C1278–C1289.  https://doi.org/10.1152/ajpcell.00589.2001.CrossRefPubMedGoogle Scholar
  29. 29.
    Gross, E., Fedotoff, O., Pushkin, A., Abuladze, N., Newman, D., & Kurtz, I. (2003). Phosphorylation-induced modulation of pNBC1 function: distinct roles for the amino- and carboxy-termini. The Journal of Physiology, 549(Pt 3), 673–682.  https://doi.org/10.1113/jphysiol.2003.042226.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gross, E., Hawkins, K., Pushkin, A., Sassani, P., Dukkipati, R., Abuladze, N., Hopfer, U., & Kurtz, I. (2001). Phosphorylation of Ser982 in the sodium bicarbonate cotransporter kNBC1 shifts the HCO3 : Na+ stoichiometry from 3:1 to 2:1 in murine proximal tubule cells. The Journal of Physiology, 537(Pt 3), 659–665.  https://doi.org/10.1111/j.1469-7793.2001.00659.x.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Virkki, L. V., Choi, I., Davis, B. A., & Boron, W. F. (2003). Cloning of a Na+-driven Cl/HCO3 exchanger from squid giant fiber lobe. American Journal of Physiology. Cell Physiology, 285(4), C771–C780.  https://doi.org/10.1152/ajpcell.00439.2002.CrossRefPubMedGoogle Scholar
  32. 32.
    Grichtchenko, I. I., Choi, I., Zhong, X., Bray-Ward, P., Russell, J. M., & Boron, W. F. (2001). Cloning, characterization, and chromosomal mapping of a human electroneutral Na+-driven Cl-HCO3 exchanger. The Journal of Biological Chemistry, 276(11), 8358–8363.  https://doi.org/10.1074/jbc.C000716200.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang, C. Z., Yano, H., Nagashima, K., & Seino, S. (2000). The Na+-driven Cl/HCO3 exchanger. Cloning, tissue distribution, and functional characterization. The Journal of Biological Chemistry, 275(45), 35486–35490.  https://doi.org/10.1074/jbc.C000456200.CrossRefPubMedGoogle Scholar
  34. 34.
    Damkier, H. H., Aalkjaer, C., & Praetorius, J. (2010). Na+-dependent HCO3 import by the slc4a10 gene product involves Cl export. The Journal of Biological Chemistry, 285(35), 26998–27007.  https://doi.org/10.1074/jbc.M110.108712.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Parker, M. D., Musa-Aziz, R., Rojas, J. D., Choi, I., Daly, C. M., & Boron, W. F. (2008). Characterization of human SLC4A10 as an electroneutral Na/HCO3 cotransporter (NBCn2) with Cl self-exchange activity. The Journal of Biological Chemistry, 283(19), 12777–12788.  https://doi.org/10.1074/jbc.M707829200.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Boron, W. F. (2010). Evaluating the role of carbonic anhydrases in the transport of HCO3 -related species. Biochimica et Biophysica Acta, 1804(2), 410–421.  https://doi.org/10.1016/j.bbapap.2009.10.021.CrossRefPubMedGoogle Scholar
  37. 37.
    Seki, G., Coppola, S., Yoshitomi, K., Burckhardt, B.-C., Samarzija, I., Müller-Berger, S., & Frömter, E. (1996). On the mechanism of bicarbonate exit from renal proximal tubular cells. Kidney International, 49(6), 1671–1677.  https://doi.org/10.1038/ki.1996.244.CrossRefPubMedGoogle Scholar
  38. 38.
    Boedtkjer, E., Bunch, L., & Pedersen, S. F. (2012). Physiology, pharmacology and pathophysiology of the pH regulatory transport proteins NHE1 and NBCn1: Similarities, differences and implications for cancer therapy. Current Pharmaceutical Design, 18(10), 1345–1371.  https://doi.org/10.2174/138161212799504830.CrossRefPubMedGoogle Scholar
  39. 39.
    Boedtkjer, E., & Aalkjaer, C. (2009). Insulin inhibits Na+/H+ exchange in vascular smooth muscle and endothelial cells in situ: involvement of H2O2 and tyrosine phosphatase SHP-2. American Journal of Physiology. Heart and Circulatory Physiology, 296(2), H247–H255.  https://doi.org/10.1152/ajpheart.00725.2008.CrossRefPubMedGoogle Scholar
  40. 40.
    Boedtkjer, E., Damkier, H. H., & Aalkjaer, C. (2012). NHE1 knockout reduces blood pressure and arterial media/lumen ratio with no effect on resting pHi in the vascular wall. The Journal of Physiology, 590(Pt 6), 1895–1906.  https://doi.org/10.1113/jphysiol.2011.227132.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen, Y., Choong, L. Y., Lin, Q., Philp, R., Wong, C. H., Ang, B. K., Tan, Y. L., Loh, M. C. S., Hew, C. L., Shah, N., Druker, B. J., Chong, P. K., & Lim, Y. P. (2007). Differential expression of novel tyrosine kinase substrates during breast cancer development. Molecular & Cellular Proteomics, 6(12), 2072–2087.  https://doi.org/10.1074/mcp.M700395-MCP200.CrossRefGoogle Scholar
  42. 42.
    Ahmed, S., Thomas, G., Ghoussaini, M., Healey, C. S., Humphreys, M. K., Platte, R., et al. (2009). Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nature Genetics, 41(5), 585–590.  https://doi.org/10.1038/ng.354.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Long, J., Shu, X. O., Cai, Q., Gao, Y. T., Zheng, Y., Li, G., Li, C., Gu, K., Wen, W., Xiang, Y. B., Lu, W., & Zheng, W. (2010). Evaluation of breast cancer susceptibility loci in chinese women. Cancer Epidemiology, Biomarkers & Prevention, 19(9), 2357–2365.  https://doi.org/10.1158/1055-9965.EPI-10-0054.CrossRefGoogle Scholar
  44. 44.
    Antoniou, A. C., Beesley, J., McGuffog, L., Sinilnikova, O. M., Healey, S., Neuhausen, S. L., Ding, Y. C., Rebbeck, T. R., Weitzel, J. N., Lynch, H. T., Isaacs, C., Ganz, P. A., Tomlinson, G., Olopade, O. I., Couch, F. J., Wang, X., Lindor, N. M., Pankratz, V. S., Radice, P., Manoukian, S., Peissel, B., Zaffaroni, D., Barile, M., Viel, A., Allavena, A., Dall’Olio, V., Peterlongo, P., Szabo, C. I., Zikan, M., Claes, K., Poppe, B., Foretova, L., Mai, P. L., Greene, M. H., Rennert, G., Lejbkowicz, F., Glendon, G., Ozcelik, H., Andrulis, I. L., for the Ontario Cancer Genetics Network, Thomassen, M., Gerdes, A. M., Sunde, L., Cruger, D., Birk Jensen, U., Caligo, M., Friedman, E., Kaufman, B., Laitman, Y., Milgrom, R., Dubrovsky, M., Cohen, S., Borg, A., Jernstrom, H., Lindblom, A., Rantala, J., Stenmark-Askmalm, M., Melin, B., for SWE-BRCA, Nathanson, K., Domchek, S., Jakubowska, A., Lubinski, J., Huzarski, T., Osorio, A., Lasa, A., Duran, M., Tejada, M. I., Godino, J., Benitez, J., Hamann, U., Kriege, M., Hoogerbrugge, N., van der Luijt, R. B., Asperen, C. J., Devilee, P., Meijers-Heijboer, E. J., Blok, M. J., Aalfs, C. M., Hogervorst, F., Rookus, M., for HEBON, Cook, M., Oliver, C., Frost, D., Conroy, D., Evans, D. G., Lalloo, F., Pichert, G., Davidson, R., Cole, T., Cook, J., Paterson, J., Hodgson, S., Morrison, P. J., Porteous, M. E., Walker, L., Kennedy, M. J., Dorkins, H., Peock, S., for EMBRACE, Godwin, A. K., Stoppa-Lyonnet, D., de Pauw, A., Mazoyer, S., Bonadona, V., Lasset, C., Dreyfus, H., Leroux, D., Hardouin, A., Berthet, P., Faivre, L., for GEMO, Loustalot, C., Noguchi, T., Sobol, H., Rouleau, E., Nogues, C., Frenay, M., Venat-Bouvet, L., for GEMO, Hopper, J. L., Daly, M. B., Terry, M. B., John, E. M., Buys, S. S., Yassin, Y., Miron, A., Goldgar, D., for the Breast Cancer Family Registry, Singer, C. F., Dressler, A. C., Gschwantler-Kaulich, D., Pfeiler, G., Hansen, T. V. O., Jonson, L., Agnarsson, B. A., Kirchhoff, T., Offit, K., Devlin, V., Dutra-Clarke, A., Piedmonte, M., Rodriguez, G. C., Wakeley, K., Boggess, J. F., Basil, J., Schwartz, P. E., Blank, S. V., Toland, A. E., Montagna, M., Casella, C., Imyanitov, E., Tihomirova, L., Blanco, I., Lazaro, C., Ramus, S. J., Sucheston, L., Karlan, B. Y., Gross, J., Schmutzler, R., Wappenschmidt, B., Engel, C., Meindl, A., Lochmann, M., Arnold, N., Heidemann, S., Varon-Mateeva, R., Niederacher, D., Sutter, C., Deissler, H., Gadzicki, D., Preisler-Adams, S., Kast, K., Schonbuchner, I., Caldes, T., de la Hoya, M., Aittomaki, K., Nevanlinna, H., Simard, J., Spurdle, A. B., Holland, H., Chen, X., for kConFab, Platte, R., Chenevix-Trench, G., Easton, D. F., & on behalf of CIMBA. (2010). Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Research, 70(23), 9742–9754.  https://doi.org/10.1158/0008-5472.can-10-1907.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Milne, R. L., Gaudet, M. M., Spurdle, A. B., Fasching, P. A., Couch, F. J., Benítez, J., et al. (2010). Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Research, 12(6), 1–11.  https://doi.org/10.1186/bcr2797.CrossRefGoogle Scholar
  46. 46.
    Han, W., Woo, J. H., Yu, J. H., Lee, M. J., Moon, H. G., Kang, D., & Noh, D. Y. (2011). Common genetic variants associated with breast cancer in Korean women and differential susceptibility according to intrinsic subtype. Cancer Epidemiology, Biomarkers & Prevention, 20(5), 793–798.  https://doi.org/10.1158/1055-9965.EPI-10-1282.CrossRefGoogle Scholar
  47. 47.
    Peng, S., Lü, B., Ruan, W., Zhu, Y., Sheng, H., & Lai, M. (2011). Genetic polymorphisms and breast cancer risk: evidence from meta-analyses, pooled analyses, and genome-wide association studies. Breast Cancer Research and Treatment, 127(2), 309–324.  https://doi.org/10.1007/s10549-011-1459-5.CrossRefPubMedGoogle Scholar
  48. 48.
    Campa, D., Kaaks, R., Le Marchand, L., Haiman, C. A., Travis, R. C., Berg, C. D., et al. (2011). Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. Journal of the National Cancer Institute, 103(16), 1252–1263.  https://doi.org/10.1093/jnci/djr265.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sueta, A., Ito, H., Kawase, T., Hirose, K., Hosono, S., Yatabe, Y., Tajima, K., Tanaka, H., Iwata, H., Iwase, H., & Matsuo, K. (2012). A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population. Breast Cancer Research and Treatment, 132(2), 711–721.  https://doi.org/10.1007/s10549-011-1904-5.CrossRefPubMedGoogle Scholar
  50. 50.
    Chen, W., Zhong, R., Ming, J., Zou, L., Zhu, B., Lu, X., Ke, J., Zhang, Y., Liu, L., Miao, X., & Huang, T. (2012). The SLC4A7 variant rs4973768 is associated with breast cancer risk: evidence from a case-control study and a meta-analysis. Breast Cancer Research and Treatment, 136(3), 847–857.  https://doi.org/10.1007/s10549-012-2309-9.CrossRefPubMedGoogle Scholar
  51. 51.
    Warren Andersen, S., Trentham-Dietz, A., Gangnon, R. E., Hampton, J. M., Figueroa, J. D., Skinner, H. G., Engelman, C. D., Klein, B. E., Titus, L. J., & Newcomb, P. A. (2013). The associations between a polygenic score, reproductive and menstrual risk factors and breast cancer risk. Breast Cancer Research and Treatment, 140(2), 427–434.  https://doi.org/10.1007/s10549-013-2646-3.CrossRefPubMedGoogle Scholar
  52. 52.
    Han, M.-R., Deming-Halverson, S., Cai, Q., Wen, W., Shrubsole, M. J., Shu, X.-O., Zheng, W., & Long, J. (2015). Evaluating 17 breast cancer susceptibility loci in the Nashville breast health study. Breast Cancer, 22(5), 544–551.  https://doi.org/10.1007/s12282-014-0518-2.CrossRefPubMedGoogle Scholar
  53. 53.
    Mulligan, A. M., Couch, F. J., Barrowdale, D., Domchek, S. M., Eccles, D., Nevanlinna, H., et al. (2011). Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators of modifiers of BRCA1/2. Breast Cancer Research, 13(6), R110.  https://doi.org/10.1186/bcr3052.CrossRefPubMedGoogle Scholar
  54. 54.
    Fernandez-Navarro, P., Pita, G., Santamarina, C., Moreno, M. P., Vidal, C., Miranda-Garcia, J., et al. (2013). Association analysis between breast cancer genetic variants and mammographic density in a large population-based study (Determinants of Density in Mammographies in Spain) identifies susceptibility loci in TOX3 gene. European Journal of Cancer, 49(2), 474–481.  https://doi.org/10.1016/j.ejca.2012.08.026.CrossRefPubMedGoogle Scholar
  55. 55.
    Fasching, P. A., Pharoah, P. D. P., Cox, A., Nevanlinna, H., Bojesen, S. E., Karn, T., Broeks, A., van Leeuwen, F. E., van ’t Veer, L. J., Udo, R., Dunning, A. M., Greco, D., Aittomäki, K., Blomqvist, C., Shah, M., Nordestgaard, B. G., Flyger, H., Hopper, J. L., Southey, M. C., Apicella, C., Garcia-Closas, M., Sherman, M., Lissowska, J., Seynaeve, C., Huijts, P. E. A., Tollenaar, R. A. E. M., Ziogas, A., Ekici, A. B., Rauh, C., Mannermaa, A., Kataja, V., Kosma, V. M., Hartikainen, J. M., Andrulis, I. L., Ozcelik, H., Mulligan, A. M., Glendon, G., Hall, P., Czene, K., Liu, J., Chang-Claude, J., Wang-Gohrke, S., Eilber, U., Nickels, S., Dörk, T., Schiekel, M., Bremer, M., Park-Simon, T. W., Giles, G. G., Severi, G., Baglietto, L., Hooning, M. J., Martens, J. W. M., Jager, A., Kriege, M., Lindblom, A., Margolin, S., Couch, F. J., Stevens, K. N., Olson, J. E., Kosel, M., Cross, S. S., Balasubramanian, S. P., Reed, M. W. R., Miron, A., John, E. M., Winqvist, R., Pylkäs, K., Jukkola-Vuorinen, A., Kauppila, S., Burwinkel, B., Marme, F., Schneeweiss, A., Sohn, C., Chenevix-Trench, G., kConFab Investigators, Lambrechts, D., Dieudonne, A. S., Hatse, S., van Limbergen, E., Benitez, J., Milne, R. L., Zamora, M. P., Pérez, J. I. A., Bonanni, B., Peissel, B., Loris, B., Peterlongo, P., Rajaraman, P., Schonfeld, S. J., Anton-Culver, H., Devilee, P., Beckmann, M. W., Slamon, D. J., Phillips, K. A., Figueroa, J. D., Humphreys, M. K., Easton, D. F., & Schmidt, M. K. (2012). The role of genetic breast cancer susceptibility variants as prognostic factors. Human Molecular Genetics, 21(17), 3926–3939.  https://doi.org/10.1093/hmg/dds159.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wang, L., Li, H., Yang, B., Guo, L., Han, X., Li, L., Li, M., Huang, J., & Gu, D. (2017). The hypertension risk variant rs820430 functions as an enhancer of SLC4A7. American Journal of Hypertension, 30(2), 202–208.  https://doi.org/10.1093/ajh/hpw127.CrossRefPubMedGoogle Scholar
  57. 57.
    Ng, F. L., Boedtkjer, E., Witkowska, K., Ren, M., Zhang, R., Tucker, A., Aalkjær, C., Caulfield, M. J., & Ye, S. (2017). Increased NBCn1 expression, Na+/HCO3 co-transport and intracellular pH in human vascular smooth muscle cells with a risk allele for hypertension. Human Molecular Genetics, 26(5), 989–1002.  https://doi.org/10.1093/hmg/ddx015.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lauritzen, G., Jensen, M. B., Boedtkjer, E., Dybboe, R., Aalkjaer, C., Nylandsted, J., et al. (2010). NBCn1 and NHE1 expression and activity in ΔNErbB2 receptor-expressing MCF-7 breast cancer cells: contributions to pHi regulation and chemotherapy resistance. Experimental Cell Research, 316(15), 2538–2553.  https://doi.org/10.1016/j.yexcr.2010.06.005.CrossRefPubMedGoogle Scholar
  59. 59.
    Scaltriti, M., Rojo, F., Ocaña, A., Anido, J., Guzman, M., Cortes, J., et al. (2007). Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. Journal of the National Cancer Institute, 99(8), 628–638.  https://doi.org/10.1093/jnci/djk134.CrossRefPubMedGoogle Scholar
  60. 60.
    Sáez, R., Molina, M. A., Ramsey, E. E., Rojo, F., Keenan, E. J., Albanell, J., Lluch, A., García-Conde, J., Baselga, J., & Clinton, G. M. (2006). p95HER-2 predicts worse outcome in patients with HER-2-positive breast cancer. Clinical Cancer Research, 12(2), 424–431.  https://doi.org/10.1158/1078-0432.ccr-05-1807.CrossRefPubMedGoogle Scholar
  61. 61.
    Andersen, A. P., Samsøe-Petersen, J., Oernbo, E. K., Boedtkjer, E., Moreira, J. M. A., Kveiborg, M., et al. (2018). The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. International Journal of Cancer, 142(12), 2529–2542.  https://doi.org/10.1002/ijc.31276.CrossRefPubMedGoogle Scholar
  62. 62.
    Larsen, A. M., Krogsgaard-Larsen, N., Lauritzen, G., Olesen, C. W., Honoré Hansen, S., Boedtkjer, E., et al. (2012). Gram-scale solution-phase synthesis of selective sodium bicarbonate co-transport inhibitor S0859: in vitro efficacy studies in breast cancer cells. ChemMedChem, 7(10), 1808–1814.  https://doi.org/10.1002/cmdc.201200335.CrossRefPubMedGoogle Scholar
  63. 63.
    Steinkamp, A.-D., Seling, N., Lee, S., Boedtkjer, E., & Bolm, C. (2015). Synthesis of N-cyano-substituted sulfilimine and sulfoximine derivatives of S0859 and their biological evaluation as sodium bicarbonate co-transport inhibitors. MedChemComm, 6(12), 2163–2169.  https://doi.org/10.1039/C5MD00367A.CrossRefGoogle Scholar
  64. 64.
    Lee, S., Axelsen, T. V., Jessen, N., Pedersen, S. F., Vahl, P., & Boedtkjer, E. (2018). Na+,HCO3 -cotransporter NBCn1 (Slc4a7) accelerates ErbB2-induced breast cancer development and tumor growth in mice. Oncogene, 37(41), 5569–5584.  https://doi.org/10.1038/s41388-018-0353-6.CrossRefPubMedGoogle Scholar
  65. 65.
    Rotin, D., Steele-Norwood, D., Grinstein, S., & Tannock, I. (1989). Requirement of the Na+/H+ exchanger for tumor growth. Cancer Research, 49(1), 205–211.PubMedGoogle Scholar
  66. 66.
    Pouyssegur, J., Franchi, A., & Pages, G. (2001). pHi, aerobic glycolysis and vascular endothelial growth factor in tumour growth. Novartis Foundation Symposium, 240, 186–196.PubMedGoogle Scholar
  67. 67.
    Busco, G., Cardone, R. A., Greco, M. R., Bellizzi, A., Colella, M., Antelmi, E., Mancini, M. T., Dell’Aquila, M. E., Casavola, V., Paradiso, A., & Reshkin, S. J. (2010). NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. The FASEB Journal, 24(10), 3903–3915.  https://doi.org/10.1096/fj.09-149518.CrossRefPubMedGoogle Scholar
  68. 68.
    Stüwe, L., Müller, M., Fabian, A., Waning, J., Mally, S., Noël, J., Schwab, A., & Stock, C. (2007). pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. The Journal of Physiology, 585(2), 351–360.  https://doi.org/10.1113/jphysiol.2007.145185.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Fais, S., De Milito, A., You, H., & Qin, W. (2007). Targeting vacuolar H+-ATPases as a new strategy against cancer. Cancer Research, 67(22), 10627–10630.  https://doi.org/10.1158/0008-5472.CAN-07-1805.CrossRefPubMedGoogle Scholar
  70. 70.
    Chiche, J., Ricci, J. E., & Pouyssegur, J. (2013). Tumor hypoxia and metabolism—towards novel anticancer approaches. Annales d'endocrinologie, 74(2), 111–114.  https://doi.org/10.1016/j.ando.2013.02.004.CrossRefPubMedGoogle Scholar
  71. 71.
    Morais-Santos, F., Granja, S., Miranda-Goncalves, V., Moreira, A. H. J., Queiros, S., Vilaca, J. L., et al. (2015). Targeting lactate transport suppresses in vivo breast tumour growth. Oncotarget, 6(22), 19177–19189.  https://doi.org/10.18632/oncotarget.3910.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Dovmark, T. H., Saccomano, M., Hulikova, A., Alves, F., & Swietach, P. (2017). Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells. Oncogene, 36, 4538–4550.  https://doi.org/10.1038/onc.2017.71.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Dovmark, T. H., Hulikova, A., Niederer, S. A., Vaughan-Jones, R. D., & Swietach, P. (2018). Normoxic cells remotely regulate the acid-base balance of cells at the hypoxic core of connexin-coupled tumor growths. The FASEB Journal, 32(1), 83–96.  https://doi.org/10.1096/fj.201700480R.CrossRefPubMedGoogle Scholar
  74. 74.
    Hulikova, A., Black, N., Hsia, L.-T., Wilding, J., Bodmer, W. F., & Swietach, P. (2016). Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid. Proceedings of the National Academy of Sciences of the United States of America, 113(36), E5344–E5353.  https://doi.org/10.1073/pnas.1610954113.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bonde, L., & Boedtkjer, E. (2017). Extracellular acidosis and very low [Na+] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells. Acta Physiologica (Oxford, England), 219, 227–238.  https://doi.org/10.1111/apha.12877.CrossRefGoogle Scholar
  76. 76.
    Hulikova, A., Vaughan-Jones, R. D., & Swietach, P. (2011). Dual role of CO2/HCO3 buffer in the regulation of intracellular pH of three-dimensional tumor growths. The Journal of Biological Chemistry, 286(16), 13815–13826.  https://doi.org/10.1074/jbc.M111.219899.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Swietach, P., Patiar, S., Supuran, C. T., Harris, A. L., & Vaughan-Jones, R. D. (2009). The role of carbonic anhydrase 9 in regulating extracellular and intracellular pH in three-dimensional tumor cell growths. The Journal of Biological Chemistry, 284(30), 20299–20310.  https://doi.org/10.1074/jbc.M109.006478.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Chiche, J., Ilc, K., Laferrière, J., Trottier, E., Dayan, F., Mazure, N. M., et al. (2009). Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Research, 69(1), 358–368.  https://doi.org/10.1158/0008-5472.can-08-2470.CrossRefPubMedGoogle Scholar
  79. 79.
    van Kuijk, S. J. A., Yaromina, A., Houben, R., Niemans, R., Lambin, P., & Dubois, L. J. (2016). Prognostic significance of carbonic anhydrase IX expression in cancer patients: a meta-analysis. Frontiers in Oncology, 6, 69.  https://doi.org/10.3389/fonc.2016.00069.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zhao, Z., Liao, G., Li, Y., Zhou, S., Zou, H., & Fernando, S. (2014). Prognostic value of carbonic anhydrase IX immunohistochemical expression in renal cell carcinoma: a meta-analysis of the literature. PLoS One, 9(11), e114096.  https://doi.org/10.1371/journal.pone.0114096.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Peridis, S., Pilgrim, G., Athanasopoulos, I., & Parpounas, K. (2011). Carbonic anhydrase-9 expression in head and neck cancer: a meta-analysis. European Archives of Oto-Rhino-Laryngology, 268(5), 661–670.  https://doi.org/10.1007/s00405-011-1488-z.CrossRefPubMedGoogle Scholar
  82. 82.
    Ilie, M. I., Hofman, V., Ortholan, C., Ammadi, R. E., Bonnetaud, C., Havet, K., Venissac, N., Mouroux, J., Mazure, N. M., Pouysségur, J., & Hofman, P. (2011). Overexpression of carbonic anhydrase XII in tissues from resectable non-small cell lung cancers is a biomarker of good prognosis. International Journal of Cancer, 128(7), 1614–1623.  https://doi.org/10.1002/ijc.25491.CrossRefPubMedGoogle Scholar
  83. 83.
    Deitmer, J. W., & Becker, H. M. (2013). Transport metabolons with carbonic anhydrases. Frontiers in Physiology, 4, 291.  https://doi.org/10.3389/fphys.2013.00291.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Loiselle, F. B., Morgan, P. E., Alvarez, B. V., & Casey, J. R. (2004). Regulation of the human NBC3 Na+/HCO3 cotransporter by carbonic anhydrase II and PKA. American Journal of Physiology Cell Physiology, 286(6), C1423–C1433.  https://doi.org/10.1152/ajpcell.00382.2003.CrossRefPubMedGoogle Scholar
  85. 85.
    Alvarez, B. V., Loiselle, F. B., Supuran, C. T., Schwartz, G. J., & Casey, J. R. (2003). Direct extracellular interaction between carbonic anhydrase IV and the human NBC1 sodium/bicarbonate co-transporter. Biochemistry, 42(42), 12321–12329.  https://doi.org/10.1021/bi0353124.CrossRefPubMedGoogle Scholar
  86. 86.
    Li, X., Alvarez, B., Casey, J. R., Reithmeier, R. A. F., & Fliegel, L. (2002). Carbonic anhydrase II binds to and enhances activity of the Na+/H+ exchanger. The Journal of Biological Chemistry, 277(39), 36085–36091.  https://doi.org/10.1074/jbc.M111952200.CrossRefPubMedGoogle Scholar
  87. 87.
    Klier, M., Andes, F. T., Deitmer, J. W., & Becker, H. M. (2014). Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters. The Journal of Biological Chemistry, 289(5), 2765–2775.  https://doi.org/10.1074/jbc.M113.537043.CrossRefPubMedGoogle Scholar
  88. 88.
    Piermarini, P. M., Kim, E. Y., & Boron, W. F. (2007). Evidence against a direct interaction between intracellular carbonic anhydrase II and pure C-terminal domains of SLC4 bicarbonate transporters. The Journal of Biological Chemistry, 282(2), 1409–1421.  https://doi.org/10.1074/jbc.M608261200.CrossRefPubMedGoogle Scholar
  89. 89.
    Reithmeier, R. A. F. (2001). A membrane metabolon linking carbonic anhydrase with chloride/bicarbonate anion exchangers. Blood Cells, Molecules & Diseases, 27(1), 85–89.  https://doi.org/10.1006/bcmd.2000.0353.CrossRefGoogle Scholar
  90. 90.
    Becker, H. M., Klier, M., & Deitmer, J. W. (2014). Carbonic anhydrases and their interplay with acid/base-coupled membrane transporters. In S. C. Frost & R. McKenna (Eds.), Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications (pp. 105–134). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  91. 91.
    Al-Samir, S., Papadopoulos, S., Scheibe, R. J., Meißner, J. D., Cartron, J.-P., Sly, W. S., et al. (2013). Activity and distribution of intracellular carbonic anhydrase II and their effects on the transport activity of anion exchanger AE1/SLC4A1. The Journal of Physiology, 591(20), 4963–4982.  https://doi.org/10.1113/jphysiol.2013.251181.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Villafuerte, F. C., Swietach, P., Youm, J.-B., Ford, K., Cardenas, R., Supuran, C. T., Cobden, P. M., Rohling, M., & Vaughan-Jones, R. D. (2014). Facilitation by intracellular carbonic anhydrase of Na+–HCO3 co-transport but not Na+/H+ exchange activity in the mammalian ventricular myocyte. The Journal of Physiology, 592(5), 991–1007.  https://doi.org/10.1113/jphysiol.2013.265439.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Junge, W., & McLaughlin, S. (1987). The role of fixed and mobile buffers in the kinetics of proton movement. Biochimica et Biophysica Acta, 890(1), 1–5.  https://doi.org/10.1016/0005-2728(87)90061-2.CrossRefPubMedGoogle Scholar
  94. 94.
    Spitzer, K. W., Skolnick, R. L., Peercy, B. E., Keener, J. P., & Vaughan-Jones, R. D. (2002). Facilitation of intracellular H+ ion mobility by CO2/HCO3 in rabbit ventricular myocytes is regulated by carbonic anhydrase. The Journal of Physiology, 541(Pt 1), 159–167.  https://doi.org/10.1113/jphysiol.2001.013268.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Cardone, R. A., Casavola, V., & Reshkin, S. J. (2005). The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nature Reviews. Cancer, 5(10), 786–795.  https://doi.org/10.1038/nrc1713.CrossRefPubMedGoogle Scholar
  96. 96.
    Domschke, C., Schneeweiss, A., Stefanovic, S., Wallwiener, M., Heil, J., Rom, J., Sohn, C., Beckhove, P., & Schuetz, F. (2016). Cellular immune responses and immune escape mechanisms in breast cancer: determinants of immunotherapy. Breast Care, 11(2), 102–107.  https://doi.org/10.1159/000446061.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Lardner, A. (2001). The effects of extracellular pH on immune function. Journal of Leukocyte Biology, 69(4), 522–530.  https://doi.org/10.1189/jlb.69.4.522.CrossRefPubMedGoogle Scholar
  98. 98.
    Huber, V., Camisaschi, C., Berzi, A., Ferro, S., Lugini, L., Triulzi, T., Tuccitto, A., Tagliabue, E., Castelli, C., & Rivoltini, L. (2017). Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars in Cancer Biology, 43, 74–89.  https://doi.org/10.1016/j.semcancer.2017.03.001.CrossRefPubMedGoogle Scholar
  99. 99.
    De Milito, A., & Fais, S. (2005). Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncology, 1(6), 779–786.  https://doi.org/10.2217/14796694.1.6.779.CrossRefPubMedGoogle Scholar
  100. 100.
    Robey, I. F., Baggett, B. K., Kirkpatrick, N. D., Roe, D. J., Dosescu, J., Sloane, B. F., Hashim, A. I., Morse, D. L., Raghunand, N., Gatenby, R. A., & Gillies, R. J. (2009). Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Research, 69(6), 2260–2268.  https://doi.org/10.1158/0008-5472.can-07-5575.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Silva, A. S., Yunes, J. A., Gillies, R. J., & Gatenby, R. A. (2009). The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Research, 69(6), 2677–2684.  https://doi.org/10.1158/0008-5472.CAN-08-2394.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Robey, I. F., & Nesbit, L. A. (2013). Investigating mechanisms of alkalinization for reducing primary breast tumor invasion. BioMed Research International, 2013, 485196–485110.  https://doi.org/10.1155/2013/485196.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Ibrahim-Hashim, A., Robertson-Tessi, M., Enriquez-Navas, P. M., Damaghi, M., Balagurunathan, Y., Wojtkowiak, J. W., Russell, S., Yoonseok, K., Lloyd, M. C., Bui, M. M., Brown, J. S., Anderson, A. R. A., Gillies, R. J., & Gatenby, R. A. (2017). Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution. Cancer Research, 77(9), 2242–2254.  https://doi.org/10.1158/0008-5472.can-16-2844.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Walker, R. A. (2001). The complexities of breast cancer desmoplasia. Breast Cancer Research, 3(3), 143.  https://doi.org/10.1186/bcr287.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Senthebane, D. A., Rowe, A., Thomford, N. E., Shipanga, H., Munro, D., Mazeedi, M. A. M. A., Almazyadi, H. A. M., Kallmeyer, K., Dandara, C., Pepper, M. S., Parker, M. I., & Dzobo, K. (2017). The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. International Journal of Molecular Sciences, 18(7), 1586.  https://doi.org/10.3390/ijms18071586.CrossRefPubMedCentralGoogle Scholar
  106. 106.
    Castells, M., Thibault, B., Delord, J.-P., & Couderc, B. (2012). Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. International Journal of Molecular Sciences, 13(8), 9545–9571.  https://doi.org/10.3390/ijms13089545.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Ferrero, E., Labalde, M., Fernández, N., Monge, L., Salcedo, A., Narvaez-Sanchez, R., Hidalgo, M., Dieguez, G., & García-Villalon, A. L. (2008). Response to endothelin-1 in arteries from human colorectal tumours: role of endothelin receptors. Experimental Biology and Medicine (Maywood, N.J.), 233(12), 1602–1607.  https://doi.org/10.3181/0802-rm-69.CrossRefGoogle Scholar
  108. 108.
    Aalkjaer, C., Boedtkjer, D., & Matchkov, V. (2011). Vasomotion—what is currently thought? Acta Physiologica (Oxford, England), 202(3), 253–269.  https://doi.org/10.1111/j.1748-1716.2011.02320.x.CrossRefGoogle Scholar
  109. 109.
    Thomsen, A. B. K., Kim, S., Aalbaek, F., Aalkjaer, C., & Boedtkjer, E. (2014). Intracellular acidification alters myogenic responsiveness and vasomotion of mouse middle cerebral arteries. Journal of Cerebral Blood Flow and Metabolism, 34(1), 161–168.  https://doi.org/10.1038/jcbfm.2013.192.CrossRefPubMedGoogle Scholar
  110. 110.
    Eigenbrodt, E., Kallinowski, F., Ott, M., Mazurek, S., & Vaupel, P. (1998). Pyruvate kinase and the interaction of amino acid and carbohydrate metabolism in solid tumors. Anticancer Research, 18(5A), 3267–3274.PubMedGoogle Scholar
  111. 111.
    Pouysségur, J., Franchi, A., L’Allemain, G., & Paris, S. (1985). Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Letters, 190(1), 115–119.  https://doi.org/10.1016/0014-5793(85)80439-7.CrossRefPubMedGoogle Scholar
  112. 112.
    Ober, S. S., & Pardee, A. B. (1987). Intracellular pH is increased after transformation of Chinese hamster embryo fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 84(9), 2766–2770.  https://doi.org/10.1073/pnas.84.9.2766.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Flinck, M., Kramer, S. H., Schnipper, J., Andersen, A. P., & Pedersen, S. F. (2018). The acid-base transport proteins NHE1 and NBCn1 regulate cell cycle progression in human breast cancer cells. Cell Cycle, 17(9), 1056–1067.  https://doi.org/10.1080/15384101.2018.1464850.CrossRefPubMedGoogle Scholar
  114. 114.
    Seuwen, K., Ludwig, M. G., & Wolf, R. M. (2006). Receptors for protons or lipid messengers or both? Journal of Receptor and Signal Transduction Research, 26(5–6), 599–610.  https://doi.org/10.1080/10799890600932220.CrossRefPubMedGoogle Scholar
  115. 115.
    Damaghi, M., Wojtkowiak, J., & Gillies, R. (2013). pH sensing and regulation in cancer. Frontiers in Physiology, 4, 370.  https://doi.org/10.3389/fphys.2013.00370.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Chen, Y., Cann, M. J., Litvin, T. N., Iourgenko, V., Sinclair, M. L., Levin, L. R., & Buck, J. (2000). Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science, 289(5479), 625–628.  https://doi.org/10.1126/science.289.5479.625.CrossRefPubMedGoogle Scholar
  117. 117.
    Zhou, Y., Zhao, J., Bouyer, P., & Boron, W. F. (2005). Evidence from renal proximal tubules that HCO3 and solute reabsorption are acutely regulated not by pH but by basolateral HCO3 and CO2. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3875–3880.  https://doi.org/10.1073/pnas.0500423102.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Boedtkjer, E., Hansen, K. B., Boedtkjer, D. M., Aalkjaer, C., & Boron, W. F. (2016). Extracellular HCO3 is sensed by mouse cerebral arteries: regulation of tone by receptor protein tyrosine phosphatase γ. Journal of Cerebral Blood Flow and Metabolism, 36, 965–980.  https://doi.org/10.1177/0271678x15610787.CrossRefPubMedGoogle Scholar
  119. 119.
    Stock, C., Cardone, R. A., Busco, G., Krahling, H., Schwab, A., & Reshkin, S. J. (2008). Protons extruded by NHE1: digestive or glue? European Journal of Cell Biology, 87(8–9), 591–599.  https://doi.org/10.1016/j.ejcb.2008.01.007.CrossRefPubMedGoogle Scholar
  120. 120.
    Boedtkjer, E., Bentzon, J. F., Dam, V. S., & Aalkjaer, C. (2016). Na+,HCO3 -cotransporter NBCn1 increases pHi gradients, filopodia and migration of smooth muscle cells and promotes arterial remodeling. Cardiovascular Research, 111(3), 227–239.  https://doi.org/10.1093/cvr/cvw079.CrossRefPubMedGoogle Scholar
  121. 121.
    Grinstein, S., Woodside, M., Waddell, T. K., Downey, G. P., Orlowski, J., Pouyssegur, J., Wong, D. C., & Foskett, J. K. (1993). Focal localization of the NHE-1 isoform of the Na+/H+ antiport: assessment of effects on intracellular pH. The EMBO Journal, 12(13), 5209–5218.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Stock, C., Mueller, M., Kraehling, H., Mally, S., Noel, J., Eder, C., et al. (2007). pH nanoenvironment at the surface of single melanoma cells. Cellular Physiology and Biochemistry, 20(5), 679–686.  https://doi.org/10.1159/000107550.CrossRefPubMedGoogle Scholar
  123. 123.
    Rofstad, E. K., Mathiesen, B., Kindem, K., & Galappathi, K. (2006). Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Research, 66(13), 6699–6707.  https://doi.org/10.1158/0008-5472.can-06-0983.CrossRefPubMedGoogle Scholar
  124. 124.
    Stock, C., Gassner, B., Hauck, C. R., Arnold, H., Mally, S., Eble, J. A., Dieterich, P., & Schwab, A. (2005). Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. The Journal of Physiology, 567(Pt 1), 225–238.  https://doi.org/10.1113/jphysiol.2005.088344.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Lauritzen, G., Stock, C. M., Lemaire, J., Lund, S. F., Jensen, M. F., Damsgaard, B., Petersen, K. S., Wiwel, M., Rønnov-Jessen, L., Schwab, A., & Pedersen, S. F. (2012). The Na+/H+ exchanger NHE1, but not the Na+,HCO3 cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2. Cancer Letters, 317(2), 172–183.  https://doi.org/10.1016/j.canlet.2011.11.023.CrossRefPubMedGoogle Scholar
  126. 126.
    Svastova, E., Witarski, W., Csaderova, L., Kosik, I., Skvarkova, L., Hulikova, A., Zatovicova, M., Barathova, M., Kopacek, J., Pastorek, J., & Pastorekova, S. (2012). Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. The Journal of Biological Chemistry, 287(5), 3392–3402.  https://doi.org/10.1074/jbc.M111.286062.CrossRefPubMedGoogle Scholar
  127. 127.
    Parks, S. K., & Pouyssegur, J. (2015). The Na+/HCO3 co-transporter SLC4A4 plays a role in growth and migration of colon and breast cancer cells. Journal of Cellular Physiology, 230(8), 1954–1963.  https://doi.org/10.1002/jcp.24930.CrossRefPubMedGoogle Scholar
  128. 128.
    McIntyre, A., Hulikova, A., Ledaki, I., Snell, C., Singleton, D., Steers, G., Seden, P., Jones, D., Bridges, E., Wigfield, S., Li, J. L., Russell, A., Swietach, P., & Harris, A. L. (2016). Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Cancer Research, 76(13), 3744–3755.  https://doi.org/10.1158/0008-5472.can-15-1862.CrossRefPubMedGoogle Scholar
  129. 129.
    Kaluz, S., Kaluzová, M., Liao, S.-Y., Lerman, M., & Stanbridge, E. J. (2009). Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show? Biochimica et Biophysica Acta, 1795(2), 162–172.  https://doi.org/10.1016/j.bbcan.2009.01.001.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Dayan, F., Roux, D., Brahimi-Horn, M. C., Pouyssegur, J., & Mazure, N. M. (2006). The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1α. Cancer Research, 66(7), 3688–3698.  https://doi.org/10.1158/0008-5472.can-05-4564.CrossRefPubMedGoogle Scholar
  131. 131.
    Mrowiec, A. (2007). Localization and regulation of expression of the Na + ,HCO 3 -cotransporter NBCn1. PhD dissertation, Aarhus University, Denmark.Google Scholar
  132. 132.
    Gorbatenko, A., Olesen, C. W., Morup, N., Thiel, G., Kallunki, T., Valen, E., et al. (2014). ErbB2 upregulates the Na+,HCO3 -cotransporter NBCn1/SLC4A7 in human breast cancer cells via Akt, ERK, Src, and Kruppel-like factor 4. The FASEB Journal, 28(1), 350–363.  https://doi.org/10.1096/fj.13-233288.CrossRefPubMedGoogle Scholar
  133. 133.
    Orlowski, J., & Grinstein, S. (2011). Na+/H+ exchangers. Compr Physiol, 1(4), 2083–2100.PubMedGoogle Scholar
  134. 134.
    Parker, M. D., & Boron, W. F. (2013). The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiological Reviews, 93(2), 803–959.  https://doi.org/10.1152/physrev.00023.2012.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiomedicineAarhus UniversityAarhusDenmark

Personalised recommendations