Advertisement

Tackling tumor heterogeneity and phenotypic plasticity in cancer precision medicine: our experience and a literature review

  • Shijie ShengEmail author
  • M. Margarida Bernardo
  • Sijana H. Dzinic
  • Kang Chen
  • Elisabeth I. Heath
  • Wael A. Sakr
Article

Abstract

The predominant cause of cancer mortality is metastasis. The major impediment to cancer cure is the intrinsic or acquired resistance to currently available therapies. Cancer is heterogeneous at the genetic, epigenetic, and metabolic levels. And, while a molecular-targeted drug may be pathway-precise, it can still fail to achieve wholesome cancer-precise toxicity. In the current review, we discuss the strategic differences between targeting the strengths of cancer cells in phenotypic plasticity and heterogeneity and targeting shared vulnerabilities of cancer cells such as the compromised integrity of membranous organelles. To better recapitulate subpopulations of cancer cells in different phenotypic and functional states, we developed a schematic combination of 2-dimensional culture (2D), 3-dimmensional culture in collagen I (3D), and mammosphere culture for stem cells (mammosphere), designated as Scheme 2D/3D/mammosphere. We investigated how the tumor suppressor maspin may limit carcinoma cell plasticity and affect their context-dependent response to drugs of different mechanisms including docetaxel, histone deacetylase (HDAC) inhibitor MS-275, and ionophore antibiotic salinomycin. We showed that tumor cell phenotypic plasticity is not an exclusive attribute to cancer stem cells. Nonetheless, three subpopulations of prostate cancer cells, enriched through Scheme 2D/3D/mammosphere, show qualitatively different drug responses. Interestingly, salinomycin was the only drug that effectively killed all three cancer cell subpopulations, irrespective of their capacity of stemness. Further, Scheme 2D/3D/mammosphere may be a useful model to accelerate the screening for curative cancer drugs while avoiding costly characterization of compounds that may have only selective toxicity to some, but not all, cancer cell subpopulations.

Keywords

Drug resistance Heterogeneity Cancer stem cells Proliferation Transient quiescence Epithelial-to-mesenchymal transition (EMT) Integrity of membranous subcellular structures Drug screening strategy Cell death Cell survival Cancer strength Cancer vulnerability Maspin Scheme 2D/3D/mammosphere Docetaxel MS-275 Salinomycin 

Notes

Financial support

This work was supported by the NIH Grant P30CA022453 (to the Karmanos Cancer Institute (KCI) with Sheng, S. as a program leader), the Ruth Sager Memorial Fund (to Sheng, S.), the KCI Pilot Project Grant 25S5Z (to Sheng, S.), the KCI Prostate Cancer Research Pilot Project Grant (to Sheng, S.), and the KCI Tumor Biology and Microenvironment Program Pilot Project (to Sheng, S).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest

References

  1. 1.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: a Cancer Journal for Clinicians, 68(1), 7–30.  https://doi.org/10.3322/caac.21442.CrossRefGoogle Scholar
  2. 2.
    Global Burden of Disease Cancer, Fitzmaurice, C., Akinyemiju, T. F., Al Lami, F. H., Alam, T., Alizadeh-Navaei, R., et al. (2018). Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncology.  https://doi.org/10.1001/jamaoncol.2018.2706.
  3. 3.
    Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer, 13(10), 714–726.  https://doi.org/10.1038/nrc3599.CrossRefPubMedGoogle Scholar
  4. 4.
    Maugeri-Sacca, M., Vigneri, P., & De Maria, R. (2011). Cancer stem cells and chemosensitivity. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17(15), 4942–4947.  https://doi.org/10.1158/1078-0432.CCR-10-2538.CrossRefGoogle Scholar
  5. 5.
    McMillin, D. W., Negri, J. M., & Mitsiades, C. S. (2013). The role of tumor-stromal interactions in modifying drug response: challenges and opportunities. Nature Reviews. Drug Discovery, 12(3), 217–228.  https://doi.org/10.1038/nrd3870.CrossRefPubMedGoogle Scholar
  6. 6.
    Maertens, O., McCurrach, M. E., Braun, B. S., De Raedt, T., Epstein, I., Huang, T. Q., et al. (2017). A collaborative model for accelerating the discovery and translation of cancer therapies. Cancer Research, 77(21), 5706–5711.  https://doi.org/10.1158/0008-5472.CAN-17-1789.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Plowright, A. T., Ottmann, C., Arkin, M., Auberson, Y. P., Timmerman, H., & Waldmann, H. (2017). Joining forces: the Chemical Biology-Medicinal Chemistry Continuum. Cell Chemical Biology, 24(9), 1058–1065.  https://doi.org/10.1016/j.chembiol.2017.05.019.CrossRefPubMedGoogle Scholar
  8. 8.
    Liu, R., Li, X., & Lam, K. S. (2017). Combinatorial chemistry in drug discovery. Current Opinion in Chemical Biology, 38, 117–126.  https://doi.org/10.1016/j.cbpa.2017.03.017.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Erickson, B. K., Rose, C. M., Braun, C. R., Erickson, A. R., Knott, J., McAlister, G. C., et al. (2017). A strategy to combine sample multiplexing with targeted proteomics assays for high-throughput protein signature characterization. Molecular Cell, 65(2), 361–370.  https://doi.org/10.1016/j.molcel.2016.12.005.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Weeber, F., Ooft, S. N., Dijkstra, K. K., & Voest, E. E. (2017). Tumor organoids as a preclinical cancer model for drug discovery. Cell Chemical Biology, 24(9), 1092–1100.  https://doi.org/10.1016/j.chembiol.2017.06.012.CrossRefPubMedGoogle Scholar
  11. 11.
    Rashid, O. M., & Takabe, K. (2015). Animal models for exploring the pharmacokinetics of breast cancer therapies. Expert Opinion on Drug Metabolism & Toxicology, 11(2), 221–230.  https://doi.org/10.1517/17425255.2015.983073.CrossRefGoogle Scholar
  12. 12.
    Wolf, C. R., & Henderson, C. J. (1998). Use of transgenic animals in understanding molecular mechanisms of toxicity. The Journal of Pharmacy and Pharmacology, 50(6), 567–574.CrossRefGoogle Scholar
  13. 13.
    Ho, B. X., Pek, N. M. Q., & Soh, B. S. (2018). Disease modeling using 3D organoids derived from human induced pluripotent stem cells. International Journal of Molecular Sciences, 19(4).  https://doi.org/10.3390/ijms19040936.CrossRefGoogle Scholar
  14. 14.
    Ozcelikkale, A., Moon, H. R., Linnes, M., & Han, B. (2017). In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 9(5).  https://doi.org/10.1002/wnan.1460.Google Scholar
  15. 15.
    Goel, S., England, C. G., Chen, F., & Cai, W. (2017). Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Advanced Drug Delivery Reviews, 113, 157–176.  https://doi.org/10.1016/j.addr.2016.08.001.CrossRefPubMedGoogle Scholar
  16. 16.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.  https://doi.org/10.1016/j.cell.2011.02.013.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dawson, M. A. (2017). The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science, 355(6330), 1147–1152.  https://doi.org/10.1126/science.aam7304.CrossRefPubMedGoogle Scholar
  18. 18.
    Ricciuti, B., De Giglio, A., Mecca, C., Arcuri, C., Marini, S., Metro, G., et al. (2018). Precision medicine against ALK-positive non-small cell lung cancer: beyond crizotinib. Medical Oncology, 35(5), 72.  https://doi.org/10.1007/s12032-018-1133-4.CrossRefPubMedGoogle Scholar
  19. 19.
    Hyman, D. M., Taylor, B. S., & Baselga, J. (2017). Implementing genome-driven oncology. Cell, 168(4), 584–599.  https://doi.org/10.1016/j.cell.2016.12.015.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fusco, N., & Bosari, S. (2016). HER2 aberrations and heterogeneity in cancers of the digestive system: implications for pathologists and gastroenterologists. World Journal of Gastroenterology, 22(35), 7926–7937.  https://doi.org/10.3748/wjg.v22.i35.7926.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Piulats, J. M., Guerra, E., Gil-Martin, M., Roman-Canal, B., Gatius, S., Sanz-Pamplona, R., et al. (2017). Molecular approaches for classifying endometrial carcinoma. Gynecologic Oncology, 145(1), 200–207.  https://doi.org/10.1016/j.ygyno.2016.12.015.CrossRefPubMedGoogle Scholar
  22. 22.
    Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews. Cancer, 12(4), 252–264.  https://doi.org/10.1038/nrc3239.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Patel, A., & Fong, L. (2018). Immunotherapy for prostate cancer: where do we go from here?-PART 1: prostate cancer vaccines. Oncology (Williston Park), 32(3), 112–120.Google Scholar
  24. 24.
    Kubben, N., & Misteli, T. (2017). Shared molecular and cellular mechanisms of premature aging and aging-associated diseases. Nature Reviews. Molecular Cell Biology, 18(10), 595–609.  https://doi.org/10.1038/nrm.2017.68.CrossRefPubMedGoogle Scholar
  25. 25.
    Simabuco, F. M., Morale, M. G., Pavan, I. C. B., Morelli, A. P., Silva, F. R., & Tamura, R. E. (2018). p53 and metabolism: from mechanism to therapeutics. Oncotarget, 9(34), 2,378,023,823.  https://doi.org/10.18632/oncotarget.25267.CrossRefGoogle Scholar
  26. 26.
    Proia, D. A., & Bates, R. C. (2014). Ganetespib and HSP90: translating preclinical hypotheses into clinical promise. Cancer Research, 74(5), 1294–1300.  https://doi.org/10.1158/00085472.CAN-13-3263.CrossRefPubMedGoogle Scholar
  27. 27.
    Thakur, M. K., Heilbrun, L. K., Sheng, S., Stein, M., Liu, G., Antonarakis, E. S., et al. (2016). A phase II trial of ganetespib, a heat shock protein 90 Hsp90 inhibitor, in patients with docetaxel-pretreated metastatic castrate-resistant prostate cancer (CRPC)-a prostate cancer clinical trials consortium (PCCTC) study. Investigational New Drugs, 34(1), 112–118.  https://doi.org/10.1007/s10637-015-0307-6.CrossRefPubMedGoogle Scholar
  28. 28.
    Heath, E. I., Hillman, D. W., Vaishampayan, U., Sheng, S., Sarkar, F., Harper, F., et al. (2008). A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clinical Cancer Research, 14(23), 7940–7946.  https://doi.org/10.1158/1078-0432.CCR-08-0221.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stratikopoulos, E. E., & Parsons, R. E. (2016). Molecular pathways: targeting the PI3K Pathway in Cancer-BET Inhibitors to the rescue. Clinical Cancer Research, 22(11), 2605–2610.  https://doi.org/10.1158/1078-0432.CCR-15-2389.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Medvetz, D., Priolo, C., & Henske, E. P. (2015). Therapeutic targeting of cellular metabolism in cells with hyperactive mTORC1: a paradigm shift. Molecular Cancer Research, 13(1), 3–8.  https://doi.org/10.1158/1541-7786.MCR-14-0343.CrossRefPubMedGoogle Scholar
  31. 31.
    Green, D. R., Galluzzi, L., & Kroemer, G. (2014). Cell biology. Metabolic control of cell death. Science, 345(6203), 1,250,256.  https://doi.org/10.1126/science.1250256.CrossRefGoogle Scholar
  32. 32.
    Bissell, M. J., & Hines, W. C. (2011). Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine, 17(3), 320–329.  https://doi.org/10.1038/nm.2328.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bissell, M. J., Weaver, V. M., Lelievre, S. A., Wang, F., Petersen, O. W., & Schmeichel, K. L. (1999). Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Research, 59(7 Suppl), 1757–1763s discussion 1763s–1764s.PubMedGoogle Scholar
  34. 34.
    Bezecny, P. (2014). Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience. Medical Oncology, 31(6), 985.  https://doi.org/10.1007/s12032-014-0985-5.CrossRefPubMedGoogle Scholar
  35. 35.
    Fabregat, I., Fernando, J., Mainez, J., & Sancho, P. (2014). TGF-beta signaling in cancer treatment. Current Pharmaceutical Design, 20(17), 2934–2947.CrossRefGoogle Scholar
  36. 36.
    Moustakas, A., Pardali, K., Gaal, A., & Heldin, C. H. (2002). Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunology Letters, 82(1–2), 85–91.CrossRefGoogle Scholar
  37. 37.
    Del Re, M., Arrigoni, E., Restante, G., Passaro, A., Rofi, E., Crucitta, S., et al. (2018). Concise review: resistance to tyrosine kinase inhibitors in non-small Cell lkung cancer: the role of cancer stem cells. Stem Cells, 36(5), 633–640.  https://doi.org/10.1002/stem.2787.CrossRefPubMedGoogle Scholar
  38. 38.
    Melzer, C., von der Ohe, J., & Hass, R. (2018). Concise review: crosstalk of mesenchymal stroma/stem-like cells with cancer cells provides therapeutic potential. Stem Cells.  https://doi.org/10.1002/stem.2829.CrossRefGoogle Scholar
  39. 39.
    Pattabiraman, D. R., & Weinberg, R. A. (2014). Tackling the cancer stem cells - what challenges do they pose. Nature Reviews. Drug Discovery, 13(7), 497–512.  https://doi.org/10.1038/nrd4253.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    D’Angelo, R. C., & Wicha, M. S. (2010). Stem cells in normal development and cancer. Progress in Molecular Biology and Translational Science, 95, 113–158.  https://doi.org/10.1016/B978-0-12-385,071-3.00006-X.CrossRefPubMedGoogle Scholar
  41. 41.
    Ferri, K. F., & Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nature Cell Biology, 3(11), E255–E263.  https://doi.org/10.1038/ncb1101-e255.CrossRefPubMedGoogle Scholar
  42. 42.
    Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., et al. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 25(3), 486–541.  https://doi.org/10.1038/s41418-017-0012-4.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tsoi, J., Robert, L., Paraiso, K., Galvan, C., Sheu, K. M., Lay, J., et al. (2018). Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell, 33(5), 890–904 e895.  https://doi.org/10.1016/j.ccell.2018.03.017.CrossRefPubMedGoogle Scholar
  44. 44.
    Galluzzi, L., Bravo-San Pedro, J. M., & Kroemer, G. (2015). Ferroptosis in p53-dependent oncosuppression and organismal homeostasis. Cell Death and Differentiation, 22(8), 1237–1238.  https://doi.org/10.1038/cdd.2015.54.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Garg, A. D., & Agostinis, P. (2017). Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunological Reviews, 280(1), 126–148.  https://doi.org/10.1111/imr.12574.CrossRefPubMedGoogle Scholar
  46. 46.
    Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072.  https://doi.org/10.1016/j.cell.2012.03.042.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138(4), 645–659.  https://doi.org/10.1016/j.cell.2009.06.034.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mai, T. T., Hamai, A., Hienzsch, A., Caneque, T., Muller, S., Wicinski, J., et al. (2017). Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nature Chemistry, 9(10), 1025–1033.  https://doi.org/10.1038/nchem.2778.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bernardo, M. M., Kaplun, A., Dzinic, S. H., Li, X., Irish, J., Mujagic, A., et al. (2015). Maspin expression in prostate tumor cells averts stemness and stratifies drug sensitivity. Cancer Research.  https://doi.org/10.1158/0008-5472.CAN-15-0234.CrossRefGoogle Scholar
  50. 50.
    Ohkubo, S., Dalla Via, L., Grancara, S., Kanamori, Y., Garcia-Argaez, A. N., Canettieri, G., et al. (2018). The antioxidant, aged garlic extract, exerts cytotoxic effects on wild-type and multidrug-resistant human cancer cells by altering mitochondrial permeability. International Journal of Oncology, 53(3), 1257–1268.  https://doi.org/10.3892/ijo.2018.4452.CrossRefPubMedGoogle Scholar
  51. 51.
    Ogita, A., Fujita, K., & Tanaka, T. (2012). Enhancing effects on vacuole-targeting fungicidal activity of amphotericin B. Frontiers in Microbiology, 3, 100.  https://doi.org/10.3389/fmicb.2012.00100.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143), 433–440.  https://doi.org/10.1038/nature05919.CrossRefPubMedGoogle Scholar
  53. 53.
    Holzel, M., Bovier, A., & Tuting, T. (2013). Plasticity of tumor and immune cells: a source of heterogeneity and a cause for therapy resistance. Nature Reviews. Cancer, 13(5), 365–376.  https://doi.org/10.1038/nrc3498.CrossRefPubMedGoogle Scholar
  54. 54.
    Jia, D., Jolly, M. K., Kulkarni, P., & Levine, H. (2017). Phenotypic plasticity and cell fate decisions in cancer: insights from dynamical systems theory. Cancers (Basel), 9(7).  https://doi.org/10.3390/cancers9070070.CrossRefGoogle Scholar
  55. 55.
    Bernardo, M. M., Meng, Y., Lockett, J., Dyson, G., Dombkowski, A., Kaplun, A., et al. (2011). Maspin reprograms the gene expression profile of prostate carcinoma cells for differentiation. Genes & Cancer, 2(11), 1009–1022.  https://doi.org/10.1177/1947601912440170.CrossRefGoogle Scholar
  56. 56.
    Zou, Z., Anisowicz, A., Hendrix, M. J., Thor, A., Neveu, M., Sheng, S., et al. (1994). Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science, 263(5146), 526–529.CrossRefGoogle Scholar
  57. 57.
    Dzinic, S. H., Bernardo, M. M., Li, X., Fernandez-Valdivia, R., Ho, Y. S., Mi, Q. S., et al. (2017). An essential role of maspin in embryogenesis and tumor suppression. Cancer Research, 77(4), 886–896.  https://doi.org/10.1158/0008-5472.CAN-16-2219.CrossRefPubMedGoogle Scholar
  58. 58.
    Lockett, J., Yin, S., Li, X., Meng, Y., & Sheng, S. (2006). Tumor suppressive maspin and epithelial homeostasis. [Review]. Journal of Cellular Biochemistry, 97(4), 651–660.  https://doi.org/10.1002/jcb.20721.CrossRefPubMedGoogle Scholar
  59. 59.
    Bernardo, M. M., Dzinic, S. H., Matta, M. J., Dean, I., Saker, L., & Sheng, S. (2017). The Opportunity of precision medicine for breast cancer with context-sensitive tumor suppressor maspin. Journal of Cellular Biochemistry, 118(7), 1639–1647.  https://doi.org/10.1002/jcb.25969.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kaplun, A., Dzinic, S., Bernardo, M., & Sheng, S. (2012). Tumor suppressor maspin as a rheostat in HDAC regulation to achieve the fine-tuning of epithelial homeostasis. Critical Reviews in Eukaryotic Gene Expression, 22(3), 249–258.CrossRefGoogle Scholar
  61. 61.
    Li, X., Yin, S., Meng, Y., Sakr, W., & Sheng, S. (2006). Endogenous inhibition of histone deacetylase 1 by tumor-suppressive maspin. Cancer Research, 66(18), 9323–9329.  https://doi.org/10.1158/0008-5472.CAN-06-1578.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang, M., Hendrix, M. J. C., Pemberton, P. A., Sakr, W. A., & Sheng, S. (2017). An Essential Role of Maspin in Embryogenesis and Tumor Suppression-Response. Cancer Research, 77(18), 5208–5210.  https://doi.org/10.1158/0008-5472.CAN-17-1254.CrossRefPubMedGoogle Scholar
  63. 63.
    Biliran Jr., H., & Sheng, S. (2001). Pleiotrophic inhibition of pericellular urokinase-type plasminogen activator system by endogenous tumor suppressive maspin. Cancer Research, 61(24), 8676–8682.PubMedGoogle Scholar
  64. 64.
    Jiang, N., Meng, Y. H., Zhang, S. L., Mensah-Osman, E., & Sheng, S. J. (2002). Maspin sensitizes breast carcinoma cells to induced apoptosis. Oncogene, 21(26), 4089–4098.  https://doi.org/10.1038/sj.onc.1205507.CrossRefPubMedGoogle Scholar
  65. 65.
    Cher, M. L., Biliran, H. R., Bhagat, S., Meng, Y. H., Che, M. X., Lockett, J., et al. (2003). Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7847–7852.  https://doi.org/10.1073/pnas.1331360100.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Domingo-Domenech, J., Vidal, S. J., Rodriguez-Bravo, V., Castillo-Martin, M., Quinn, S. A., Rodriguez-Barrueco, R., et al. (2012). Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell, 22(3), 373–388.  https://doi.org/10.1016/j.ccr.2012.07.016.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hwang, C. (2012). Overcoming docetaxel resistance in prostate cancer: a perspective review. Therapeutic Advances in Medical Oncology, 4(6), 329–340.  https://doi.org/10.1177/1758834012449685.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    O’Neill, A. J., Prencipe, M., Dowling, C., Fan, Y., Mulrane, L., Gallagher, W. M., et al. (2011). Characterization and manipulation of docetaxel resistant prostate cancer cell lines. Molecular Cancer, 10, 126.  https://doi.org/10.1186/1476-4598-10-126.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Li, X. H., Chen, D., Yin, S. P., Meng, Y. H., Yang, H. J., Landis-Piwowar, K. R., et al. (2007). Maspin augments proteasome inhibitor-induced apoptosis in prostate cancer cells. Journal of Cellular Physiology, 212(2), 298–306.  https://doi.org/10.1002/Jcp.21102.CrossRefPubMedGoogle Scholar
  70. 70.
    Tahmatzopoulos, A., Sheng, S., & Kyprianou, N. (2005). Maspin sensitizes prostate cancer cells to doxazosin-induced apoptosis. Oncogene, 24(34), 5375–5383.  https://doi.org/10.1038/sj.onc.1208684.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhang, Y., Liu, L., Li, F., Wu, T., Jiang, H., Jiang, X., et al. (2017). Salinomycin Exerts Anticancer Effects on PC-3 Cells and PC-3-Derived Cancer Stem Cells In Vitro and In Vivo. BioMed Research International, 4, 101–653.  https://doi.org/10.1155/2017/4101653.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shijie Sheng
    • 1
    • 2
    • 3
    Email author
  • M. Margarida Bernardo
    • 1
    • 3
  • Sijana H. Dzinic
    • 2
    • 3
    • 4
  • Kang Chen
    • 2
    • 4
    • 5
  • Elisabeth I. Heath
    • 2
    • 4
  • Wael A. Sakr
    • 2
    • 3
  1. 1.Department of PathologyWayne State University School of MedicineDetroitUSA
  2. 2.Department of OncologyWayne State University School of MedicineDetroitUSA
  3. 3.Tumor Biology and Microenvironment ProgramWayne State University School of MedicineDetroitUSA
  4. 4.Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA
  5. 5.Department of Obstetrics and GynecologyWayne State University School of MedicineDetroitUSA

Personalised recommendations