Advertisement

Triumph and tumult of matrix metalloproteinases and their crosstalk with eicosanoids in cancer

  • Kasturi Chatterjee
  • Sayantan Jana
  • Preety Choudhary
  • Snehasikta Swarnakar
Article
  • 33 Downloads

Abstract

Cancer development and metastasis are associated to perturbation in metabolic functions of tumor cells and surrounding inflammatory and stromal cell responses. Eicosanoids and lipid mediators, in this regard, attract potential attention during cancer development. Eicosanoids, which include prostaglandin, prostacyclin, thromboxane, and leukotriene, are synthesized from arachidonic acid when cells are stimulated by stress, cytokines, or other growth factors. However, the underlying mechanism of eicosanoids in cancer development, specially their interactions with proto-oncogene factors in tumor microenvironment, remain unexplored. On the other hand, matrix metalloproteinases (MMPs) are a group of zinc-dependent endopeptidases which are involved in degradation of different extracellular matrix (ECM) proteins. MMPs are associated with different physiological responses, including embryogenesis, vasculogenesis, and cellular remodeling, as well as different disease pathogenesis. Induced MMP responses are especially associated with cancer metastasis and secondary tumor development through proteolytic cleavage of several ECM and non-ECM proteins. Although both eicosanoids and MMPs are involved with cancer progression and metastasis, the interrelation between these two molecules are less explored. The present review discusses relevant studies that connect eicosanoids and MMPs and highlight the crosstalk between them offering novel therapeutic approach in cancer treatment.

Keywords

Eicosanoid Matrix metalloproteinase Cancer Metastasis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.  https://doi.org/10.1038/nrc2809.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Wallace, J. M. (2002). Nutritional and botanical modulation of the inflammatory cascade--eicosanoids, cyclooxygenases, and lipoxygenases--as an adjunct in cancer therapy. Integrative Cancer Therapies, 1(1), 7–37; discussion 37.  https://doi.org/10.1177/153473540200100102.PubMedGoogle Scholar
  3. 3.
    Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 141(1), 52–67.  https://doi.org/10.1016/j.cell.2010.03.015.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Swarnakar, S., Paul, S., Singh, L. P., & Reiter, R. J. (2011). Matrix metalloproteinases in health and disease: regulation by melatonin. Journal of Pineal Research, 50(1), 8–20.  https://doi.org/10.1111/j.1600-079X.2010.00812.x.PubMedGoogle Scholar
  5. 5.
    Smyth, E. M., Grosser, T., Wang, M., Yu, Y., & FitzGerald, G. A. (2009). Prostanoids in health and disease. Journal of Lipid Research, 50(Suppl), S423–S428.  https://doi.org/10.1194/jlr.R800094-JLR200.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang, D., & Dubois, R. N. (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29(6), 781–788.  https://doi.org/10.1038/onc.2009.421.PubMedGoogle Scholar
  7. 7.
    Schneider, C., & Pozzi, A. (2011). Cyclooxygenases and lipoxygenases in cancer. Cancer Metastasis Reviews, 30(3–4), 277–294.  https://doi.org/10.1007/s10555-011-9310-3.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Funk, C. D. (2001). rostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294(5548), 1871–1875.  https://doi.org/10.1126/science.294.5548.1871.PubMedGoogle Scholar
  9. 9.
    Serhan, C. N. (2011). The resolution of inflammation: the devil in the flask and in the details. The FASEB Journal, 25(5), 1441–1448.  https://doi.org/10.1096/fj.11-0502ufm.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Krishnamoorthy, S., & Honn, K. V. (2008). Eicosanoids in tumor progression and metastasis. Sub-Cellular Biochemistry, 49, 145–168.  https://doi.org/10.1007/978-1-4020-8831-5_6.PubMedGoogle Scholar
  11. 11.
    Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498.  https://doi.org/10.1073/pnas.0601807103.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang, D., Wang, H., Shi, Q., Katkuri, S., Walhi, W., Desvergne, B., et al. (2004). Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell, 6(3), 285–295.  https://doi.org/10.1016/j.ccr.2004.08.011.PubMedGoogle Scholar
  13. 13.
    Chizzolini, C., Chicheportiche, R., Alvarez, M., de Rham, C., Roux-Lombard, P., Ferrari-Lacraz, S., et al. (2008). Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood, 112(9), 3696–3703.  https://doi.org/10.1182/blood-2008-05-155408.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Boniface, K., Bak-Jensen, K. S., Li, Y., Blumenschein, W. M., McGeachy, M. J., McClanahan, T. K., et al. (2009). Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. The Journal of Experimental Medicine, 206(3), 535–548.  https://doi.org/10.1084/jem.20082293.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Scandella, E., Men, Y., Gillessen, S., Forster, R., & Groettrup, M. (2002). Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood, 100(4), 1354–1361.  https://doi.org/10.1182/blood-2001-11-0017.PubMedGoogle Scholar
  16. 16.
    Wang, D., Buchanan, F. G., Wang, H., Dey, S. K., & DuBois, R. N. (2005). Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Research, 65(5), 1822–1829.  https://doi.org/10.1158/0008-5472.Can-04-3671.PubMedGoogle Scholar
  17. 17.
    Krysan, K., Reckamp, K. L., Dalwadi, H., Sharma, S., Rozengurt, E., Dohadwala, M., et al. (2005). Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Research, 65(14), 6275–6281.  https://doi.org/10.1158/0008-5472.Can-05-0216.PubMedGoogle Scholar
  18. 18.
    Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M., & Gutkind, J. S. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 310(5753), 1504–1510.  https://doi.org/10.1126/science.1116221.PubMedGoogle Scholar
  19. 19.
    Liou, J. Y., Ellent, D. P., Lee, S., Goldsby, J., Ko, B. S., Matijevic, N., et al. (2007). Cyclooxygenase-2-derived prostaglandin e2 protects mouse embryonic stem cells from apoptosis. Stem Cells, 25(5), 1096–1103.  https://doi.org/10.1634/stemcells.2006-0505.PubMedGoogle Scholar
  20. 20.
    Ihara, A., Wada, K., Yoneda, M., Fujisawa, N., Takahashi, H., & Nakajima, A. (2007). Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. Journal of Pharmacological Sciences, 103(1), 24–32.PubMedGoogle Scholar
  21. 21.
    Tong, W. G., Ding, X. Z., Talamonti, M. S., Bell, R. H., & Adrian, T. E. (2005). LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways. Biochemical and Biophysical Research Communications, 335(3), 949–956.  https://doi.org/10.1016/j.bbrc.2005.07.166.PubMedGoogle Scholar
  22. 22.
    Buchanan, F. G., Gorden, D. L., Matta, P., Shi, Q., Matrisian, L. M., & DuBois, R. N. (2006). Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1492–1497.  https://doi.org/10.1073/pnas.0510562103.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ito, H., Duxbury, M., Benoit, E., Clancy, T. E., Zinner, M. J., Ashley, S. W., et al. (2004). Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2. Cancer Research, 64(20), 7439–7446.  https://doi.org/10.1158/0008-5472.Can-04-1177.PubMedGoogle Scholar
  24. 24.
    Qualtrough, D., Kaidi, A., Chell, S., Jabbour, H. N., Williams, A. C., & Paraskeva, C. (2007). Prostaglandin F(2alpha) stimulates motility and invasion in colorectal tumor cells. International Journal of Cancer, 121(4), 734–740.  https://doi.org/10.1002/ijc.22755.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Del Prete, A., Shao, W. H., Mitola, S., Santoro, G., Sozzani, S., & Haribabu, B. (2007). Regulation of dendritic cell migration and adaptive immune response by leukotriene B4 receptors: a role for LTB4 in up-regulation of CCR7 expression and function. Blood, 109(2), 626–631.  https://doi.org/10.1182/blood-2006-02-003665.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Woo, C. H., You, H. J., Cho, S. H., Eom, Y. W., Chun, J. S., Yoo, Y. J., et al. (2002). Leukotriene B(4) stimulates Rac-ERK cascade to generate reactive oxygen species that mediates chemotaxis. The Journal of Biological Chemistry, 277(10), 8572–8578.  https://doi.org/10.1074/jbc.M104766200.PubMedGoogle Scholar
  27. 27.
    Kamiyama, M., Pozzi, A., Yang, L., DeBusk, L. M., Breyer, R. M., & Lin, P. C. (2006). EP2, a receptor for PGE2, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene, 25(53), 7019–7028.  https://doi.org/10.1038/sj.onc.1209694.PubMedGoogle Scholar
  28. 28.
    Chang, S. H., Liu, C. H., Conway, R., Han, D. K., Nithipatikom, K., Trifan, O. C., et al. (2004). Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 591–596.  https://doi.org/10.1073/pnas.2535911100.PubMedGoogle Scholar
  29. 29.
    Jana, S., Chatterjee, K., Ray, A. K., DasMahapatra, P., & Swarnakar, S. (2016). Regulation of matrix metalloproteinase-2 activity by COX-2-PGE2-pAKT axis promotes angiogenesis in endometriosis. PLoS One, 11(10), e0163540.  https://doi.org/10.1371/journal.pone.0163540.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Jain, S., Chakraborty, G., Raja, R., Kale, S., & Kundu, G. C. (2008). Prostaglandin E2 regulates tumor angiogenesis in prostate cancer. Cancer Research, 68(19), 7750–7759.  https://doi.org/10.1158/0008-5472.Can-07-6689.PubMedGoogle Scholar
  31. 31.
    Spinella, F., Rosano, L., Di Castro, V., Natali, P. G., & Bagnato, A. (2004). Endothelin-1-induced prostaglandin E2-EP2, EP4 signaling regulates vascular endothelial growth factor production and ovarian carcinoma cell invasion. The Journal of Biological Chemistry, 279(45), 46700–46705.  https://doi.org/10.1074/jbc.M408584200.PubMedGoogle Scholar
  32. 32.
    Wang, D., Wang, H., Brown, J., Daikoku, T., Ning, W., Shi, Q., et al. (2006). CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. The Journal of Experimental Medicine, 203(4), 941–951.  https://doi.org/10.1084/jem.20052124.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Dormond, O., Bezzi, M., Mariotti, A., & Ruegg, C. (2002). Prostaglandin E2 promotes integrin alpha Vbeta 3-dependent endothelial cell adhesion, rac-activation, and spreading through cAMP/PKA-dependent signaling. The Journal of Biological Chemistry, 277(48), 45838–45846.  https://doi.org/10.1074/jbc.M209213200.PubMedGoogle Scholar
  34. 34.
    Salcedo, R., Zhang, X., Young, H. A., Michael, N., Wasserman, K., Ma, W. H., et al. (2003). Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. Blood, 102(6), 1966–1977.  https://doi.org/10.1182/blood-2002-11-3400.PubMedGoogle Scholar
  35. 35.
    Sales, K. J., List, T., Boddy, S. C., Williams, A. R., Anderson, R. A., Naor, Z., et al. (2005). A novel angiogenic role for prostaglandin F2alpha-FP receptor interaction in human endometrial adenocarcinomas. Cancer Research, 65(17), 7707–7716.  https://doi.org/10.1158/0008-5472.Can-05-0101.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Daniel, T. O., Liu, H., Morrow, J. D., Crews, B. C., & Marnett, L. J. (1999). Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Research, 59(18), 4574–4577.PubMedGoogle Scholar
  37. 37.
    Zeddou, M., Greimers, R., de Valensart, N., Nayjib, B., Tasken, K., Boniver, J., et al. (2005). Prostaglandin E2 induces the expression of functional inhibitory CD94/NKG2A receptors in human CD8+ T lymphocytes by a cAMP-dependent protein kinase A type I pathway. Biochemical Pharmacology, 70(5), 714–724.  https://doi.org/10.1016/j.bcp.2005.05.015.PubMedGoogle Scholar
  38. 38.
    Baratelli, F., Lin, Y., Zhu, L., Yang, S. C., Heuze-Vourc'h, N., Zeng, G., et al. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. Journal of Immunology, 175(3), 1483–1490.Google Scholar
  39. 39.
    Verma, S., Kesh, K., Ganguly, N., Jana, S., & Swarnakar, S. (2014). Matrix metalloproteinases and gastrointestinal cancers: impacts of dietary antioxidants. World Journal of Biological Chemistry, 5(3), 355–376.  https://doi.org/10.4331/wjbc.v5.i3.355.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Swarnakar, S., & Jana, S. (2018). Matrix metalloproteinase. In S. Choi (Ed.), Encyclopedia of Signaling Molecules (2nd ed., pp. 3162–3162). Cham: Springer International Publishing.Google Scholar
  41. 41.
    Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69(3), 562–573.  https://doi.org/10.1016/j.cardiores.2005.12.002.PubMedGoogle Scholar
  42. 42.
    Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2(3), 161–174.  https://doi.org/10.1038/nrc745.PubMedGoogle Scholar
  43. 43.
    Ha, H. Y., Moon, H. B., Nam, M. S., Lee, J. W., Ryoo, Z. Y., Lee, T. H., et al. (2001). Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Research, 61(3), 984–990.PubMedGoogle Scholar
  44. 44.
    Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98(2), 137–146.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Sternlicht, M. D., & Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annual Review of Cell and Developmental Biology, 17, 463–516.  https://doi.org/10.1146/annurev.cellbio.17.1.463.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Reviews, 25(1), 9–34.  https://doi.org/10.1007/s10555-006-7886-9.PubMedGoogle Scholar
  47. 47.
    Ichikawa, Y., Ishikawa, T., Momiyama, N., Kamiyama, M., Sakurada, H., Matsuyama, R., et al. (2006). Matrilysin (MMP-7) degrades VE-cadherin and accelerates accumulation of beta-catenin in the nucleus of human umbilical vein endothelial cells. Oncology Reports, 15(2), 311–315.PubMedGoogle Scholar
  48. 48.
    Zheng, G., Lyons, J. G., Tan, T. K., Wang, Y., Hsu, T.-T., Min, D., et al. (2009). Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-β1 in renal tubular epithelial cells. The American Journal of Pathology, 175(2), 580–591.  https://doi.org/10.2353/ajpath.2009.080983.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Chatterjee, K., Jana, S., DasMahapatra, P., & Swarnakar, S. (2018). EGFR-mediated matrix metalloproteinase-7 up-regulation promotes epithelial-mesenchymal transition via ERK1-AP1 axis during ovarian endometriosis progression. The FASEB Journal, fj201701382RR.  https://doi.org/10.1096/fj.201701382RR.
  50. 50.
    Suzuki, M., Raab, G., Moses, M. A., Fernandez, C. A., & Klagsbrun, M. (1997). Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. The Journal of Biological Chemistry, 272(50), 31730–31737.PubMedGoogle Scholar
  51. 51.
    Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., et al. (1998). An essential role for ectodomain shedding in mammalian development. Science, 282(5392), 1281–1284.PubMedGoogle Scholar
  52. 52.
    Vargo-Gogola, T., Crawford, H. C., Fingleton, B., & Matrisian, L. M. (2002). Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand. Archives of Biochemistry and Biophysics, 408(2), 155–161.PubMedGoogle Scholar
  53. 53.
    Jana, S., Paul, S., & Swarnakar, S. (2012). Curcumin as anti-endometriotic agent: implication of MMP-3 and intrinsic apoptotic pathway. Biochemical Pharmacology, 83(6), 797–804.  https://doi.org/10.1016/j.bcp.2011.12.030.PubMedGoogle Scholar
  54. 54.
    Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2(10), 737–744.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Lee, S., Jilani, S. M., Nikolova, G. V., Carpizo, D., & Iruela-Arispe, M. L. (2005). Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. The Journal of Cell Biology, 169(4), 681–691.  https://doi.org/10.1083/jcb.200409115.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Sheu, B. C., Hsu, S. M., Ho, H. N., Lien, H. C., Huang, S. C., & Lin, R. H. (2001). A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Research, 61(1), 237–242.PubMedGoogle Scholar
  57. 57.
    Yu, Q., & Stamenkovic, I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes & Development, 14(2), 163–176.Google Scholar
  58. 58.
    Gorelik, L., & Flavell, R. A. (2001). Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nature Medicine, 7(10), 1118–1122.PubMedGoogle Scholar
  59. 59.
    O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79(2), 315–328.PubMedGoogle Scholar
  60. 60.
    Patterson, B. C., & Sang, Q. A. (1997). Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). Journal of Biological Chemistry, 272(46), 28823–28825.  https://doi.org/10.1074/jbc.272.46.28823.PubMedGoogle Scholar
  61. 61.
    Heljasvaara, R., Nyberg, P., Luostarinen, J., Parikka, M., Heikkila, P., Rehn, M., et al. (2005). Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Experimental Cell Research, 307(2), 292–304.  https://doi.org/10.1016/j.yexcr.2005.03.021.PubMedGoogle Scholar
  62. 62.
    Hamano, Y. (2003). Physiological levels of tumstatin, a fragment of collagen IV [alpha]3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via [alpha]V [beta]3 integrin. Cancer Cell, 3, 589–601.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Derynck, R., Akhurst, R. J., & Balmain, A. (2001). TGF-beta signaling in tumor suppression and cancer progression. Nature Genetics, 29(2), 117–129.  https://doi.org/10.1038/ng1001-117.PubMedGoogle Scholar
  64. 64.
    Wang, X., & Lin, Y. (2008). Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacologica Sinica, 29(11), 1275–1288.  https://doi.org/10.1111/j.1745-7254.2008.00889.x.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Overall, C. M., & Lopez-Otin, C. (2002). Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Reviews. Cancer, 2(9), 657–672.  https://doi.org/10.1038/nrc884.PubMedGoogle Scholar
  66. 66.
    Bramhall, S. R., Rosemurgy, A., Brown, P. D., Bowry, C., & Buckels, J. A. (2001). Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. Journal of Clinical Oncology, 19(15), 3447–3455.  https://doi.org/10.1200/jco.2001.19.15.3447.PubMedGoogle Scholar
  67. 67.
    Cathcart, J., Pulkoski-Gross, A., & Cao, J. (2015). Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes & Diseases, 2(1), 26–34.  https://doi.org/10.1016/j.gendis.2014.12.002.Google Scholar
  68. 68.
    Hu, J., Van den Steen, P. E., Sang, Q. X., & Opdenakker, G. (2007). Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature Reviews. Drug Discovery, 6(6), 480–498.  https://doi.org/10.1038/nrd2308.PubMedGoogle Scholar
  69. 69.
    Greene, E. R., Huang, S., Serhan, C. N., & Panigrahy, D. (2011). Regulation of inflammation in cancer by eicosanoids. Prostaglandins & Other Lipid Mediators, 96(1–4), 27–36.  https://doi.org/10.1016/j.prostaglandins.2011.08.004.Google Scholar
  70. 70.
    Ishikawa, T. O., & Herschman, H. R. (2010). Tumor formation in a mouse model of colitis-associated colon cancer does not require COX-1 or COX-2 expression. Carcinogenesis, 31(4), 729–736.  https://doi.org/10.1093/carcin/bgq002.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Pavlovic, S., Du, B., Sakamoto, K., Khan, K. M., Natarajan, C., Breyer, R. M., et al. (2006). Targeting prostaglandin E2 receptors as an alternative strategy to block cyclooxygenase-2-dependent extracellular matrix-induced matrix metalloproteinase-9 expression by macrophages. The Journal of Biological Chemistry, 281(6), 3321–3328.  https://doi.org/10.1074/jbc.M506846200.PubMedGoogle Scholar
  72. 72.
    Itatsu, K., Sasaki, M., Yamaguchi, J., Ohira, S., Ishikawa, A., Ikeda, H., et al. (2009). Cyclooxygenase-2 is involved in the up-regulation of matrix metalloproteinase-9 in cholangiocarcinoma induced by tumor necrosis factor-alpha. The American Journal of Pathology, 174(3), 829–841.  https://doi.org/10.2353/ajpath.2009.080012.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Yen, J. H., Kocieda, V. P., Jing, H., & Ganea, D. (2011). Prostaglandin E2 induces matrix metalloproteinase 9 expression in dendritic cells through two independent signaling pathways leading to activator protein 1 (AP-1) activation. The Journal of Biological Chemistry, 286(45), 38913–38923.  https://doi.org/10.1074/jbc.M111.252932.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Hsu, H. H., Hu, W. S., Lin, Y. M., Kuo, W. W., Chen, L. M., Chen, W. K., et al. (2011). JNK suppression is essential for 17beta-estradiol inhibits prostaglandin E2-induced uPA and MMP-9 expressions and cell migration in human LoVo colon cancer cells. Journal of Biomedical Science, 18, 61.  https://doi.org/10.1186/1423-0127-18-61.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Zahner, G., Harendza, S., Muller, E., Wolf, G., Thaiss, F., & Stahl, R. A. (1997). Prostaglandin E2 stimulates expression of matrix metalloproteinase 2 in cultured rat mesangial cells. Kidney International, 51(4), 1116–1123.PubMedGoogle Scholar
  76. 76.
    Choi, Y. A., Lee, D. J., Lim, H. K., Jeong, J. H., Sonn, J. K., Kang, S. S., et al. (2004). Interleukin-1beta stimulates matrix metalloproteinase-2 expression via a prostaglandin E2-dependent mechanism in human chondrocytes. Experimental & Molecular Medicine, 36(3), 226–232.  https://doi.org/10.1038/emm.2004.31.Google Scholar
  77. 77.
    Sato, T., Konomi, K., Fujii, R., Aono, H., Aratani, S., Yagishita, N., et al. (2011). Prostaglandin EP2 receptor signalling inhibits the expression of matrix metalloproteinase 13 in human osteoarthritic chondrocytes. Annals of the Rheumatic Diseases, 70(1), 221–226.  https://doi.org/10.1136/ard.2009.118620.PubMedGoogle Scholar
  78. 78.
    Fernandez-Patron, C., & Leung, D. (2015). Emergence of a metalloproteinase/phospholipase A2 axis of systemic inflammation. Metalloproteinases in Medicine, 2, 29–38.  https://doi.org/10.2147/mnm.S48748.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Hernandez-Anzaldo, S., Berry, E., Brglez, V., Leung, D., Yun, T. J., Lee, J. S., et al. (2015). Identification of a novel heart-liver axis: matrix metalloproteinase-2 negatively regulates cardiac secreted phospholipase A2 to modulate lipid metabolism and inflammation in the liver. Journal of the American Heart Association, 4(11).  https://doi.org/10.1161/jaha.115.002553.
  80. 80.
    Weinreb, R. N., Kashiwagi, K., Kashiwagi, F., Tsukahara, S., & Lindsey, J. D. (1997). Prostaglandins increase matrix metalloproteinase release from human ciliary smooth muscle cells. Investigative Ophthalmology & Visual Science, 38(13), 2772–2780.Google Scholar
  81. 81.
    Li, X., & Tai, H. H. (2012). Increased expression of matrix metalloproteinases mediates thromboxane A2-induced invasion in lung cancer cells. Current Cancer Drug Targets, 12(6), 703–715.PubMedGoogle Scholar
  82. 82.
    Hartney, J. M., Gustafson, C. E., Bowler, R. P., Pelanda, R., & Torres, R. M. (2011). Thromboxane receptor signaling is required for fibronectin-induced matrix metalloproteinase 9 production by human and murine macrophages and is attenuated by the Arhgef1 molecule. The Journal of Biological Chemistry, 286(52), 44521–44531.  https://doi.org/10.1074/jbc.M111.282772.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Kummer, N. T., Nowicki, T. S., Azzi, J. P., Reyes, I., Iacob, C., Xie, S., et al. (2012). Arachidonate 5 lipoxygenase expression in papillary thyroid carcinoma promotes invasion via MMP-9 induction. Journal of Cellular Biochemistry, 113(6), 1998–2008.  https://doi.org/10.1002/jcb.24069.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Hennig, R., Kehl, T., Noor, S., Ding, X. Z., Rao, S. M., Bergmann, F., et al. (2007). 15-lipoxygenase-1 production is lost in pancreatic cancer and overexpression of the gene inhibits tumor cell growth. Neoplasia, 9(11), 917–926.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Ichiyama, T., Kajimoto, M., Hasegawa, M., Hashimoto, K., Matsubara, T., & Furukawa, S. (2007). Cysteinyl leukotrienes enhance tumour necrosis factor-alpha-induced matrix metalloproteinase-9 in human monocytes/macrophages. Clinical and Experimental Allergy, 37(4), 608–614.  https://doi.org/10.1111/j.1365-2222.2007.02692.x.PubMedGoogle Scholar
  86. 86.
    Rajah, R., Nunn, S. E., Herrick, D. J., Grunstein, M. M., & Cohen, P. (1996). Leukotriene D4 induces MMP-1, which functions as an IGFBP protease in human airway smooth muscle cells. The American Journal of Physiology, 271(6 Pt 1), L1014–L1022.  https://doi.org/10.1152/ajplung.1996.271.6.L1014.PubMedGoogle Scholar
  87. 87.
    Piromkraipak, P., Sangpairoj, K., Tirakotai, W., Chaithirayanon, K., Unchern, S., Supavilai, P., et al. (2018). Cysteinyl leukotriene receptor antagonists inhibit migration, invasion, and expression of MMP-2/9 in human glioblastoma. Cellular and Molecular Neurobiology, 38(2), 559–573.  https://doi.org/10.1007/s10571-017-0507-z.PubMedGoogle Scholar
  88. 88.
    Chandrasekharan, J. A., & Sharma-Walia, N. (2015). Lipoxins: nature’s way to resolve inflammation. Journal of Inflammation Research, 8, 181–192.  https://doi.org/10.2147/jir.S90380.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Zong, L., Li, J., Chen, X., Chen, K., Li, W., Li, X., et al. (2016). Lipoxin A4 attenuates cell invasion by inhibiting ROS/ERK/MMP pathway in pancreatic cancer. Oxidative Medicine and Cellular Longevity, 2016, 6815727.  https://doi.org/10.1155/2016/6815727.PubMedGoogle Scholar
  90. 90.
    Chen, Q. H., Zhou, W. D., Pu, D. M., Huang, Q. S., Li, T., & Chen, Q. X. (2010). 15-Epi-lipoxin A(4) inhibits the progression of endometriosis in a murine model. Fertility and Sterility, 93(5), 1440–1447.  https://doi.org/10.1016/j.fertnstert.2009.01.107.PubMedGoogle Scholar
  91. 91.
    Leppert, D., Hauser, S. L., Kishiyama, J. L., An, S., Zeng, L., & Goetzl, E. J. (1995). Stimulation of matrix metalloproteinase-dependent migration of T cells by eicosanoids. The FASEB Journal, 9(14), 1473–1481.PubMedGoogle Scholar
  92. 92.
    Yu, W., Chen, L., Yang, Y. Q., Falck, J. R., Guo, A. M., Li, Y., et al. (2011). Cytochrome P450 omega-hydroxylase promotes angiogenesis and metastasis by upregulation of VEGF and MMP-9 in non-small cell lung cancer. Cancer Chemotherapy and Pharmacology, 68(3), 619–629.  https://doi.org/10.1007/s00280-010-1521-8.PubMedGoogle Scholar
  93. 93.
    Moshal, K. S., Zeldin, D. C., Sithu, S. D., Sen, U., Tyagi, N., Kumar, M., et al. (2008). Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMP-9 via inhibition of NF-kappabeta in hyperhomocysteinemia. Journal of Cellular Physiology, 215(3), 771–781.  https://doi.org/10.1002/jcp.21356.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Michaelis, U. R., Fisslthaler, B., Barbosa-Sicard, E., Falck, J. R., Fleming, I., & Busse, R. (2005). Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. Journal of Cell Science, 118(Pt 23), 5489–5498.  https://doi.org/10.1242/jcs.02674.PubMedGoogle Scholar
  95. 95.
    Calder, P. C. (2013). Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? British Journal of Clinical Pharmacology, 75(3), 645–662.  https://doi.org/10.1111/j.1365-2125.2012.04374.x.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Taguchi, A., Kawana, K., Tomio, K., Yamashita, A., Isobe, Y., Nagasaka, K., et al. (2014). Matrix metalloproteinase (MMP)-9 in cancer-associated fibroblasts (CAFs) is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo. PLoS One, 9(2), e89605.  https://doi.org/10.1371/journal.pone.0089605.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kasturi Chatterjee
    • 1
  • Sayantan Jana
    • 1
  • Preety Choudhary
    • 1
  • Snehasikta Swarnakar
    • 1
  1. 1.Cancer Biology & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyKolkataIndia

Personalised recommendations