Advertisement

Cancer and Metastasis Reviews

, Volume 37, Issue 2–3, pp 279–288 | Cite as

Triumph and tumult of matrix metalloproteinases and their crosstalk with eicosanoids in cancer

  • Kasturi Chatterjee
  • Sayantan Jana
  • Preety Choudhary
  • Snehasikta Swarnakar
Article
  • 74 Downloads

Abstract

Cancer development and metastasis are associated to perturbation in metabolic functions of tumor cells and surrounding inflammatory and stromal cell responses. Eicosanoids and lipid mediators, in this regard, attract potential attention during cancer development. Eicosanoids, which include prostaglandin, prostacyclin, thromboxane, and leukotriene, are synthesized from arachidonic acid when cells are stimulated by stress, cytokines, or other growth factors. However, the underlying mechanism of eicosanoids in cancer development, specially their interactions with proto-oncogene factors in tumor microenvironment, remain unexplored. On the other hand, matrix metalloproteinases (MMPs) are a group of zinc-dependent endopeptidases which are involved in degradation of different extracellular matrix (ECM) proteins. MMPs are associated with different physiological responses, including embryogenesis, vasculogenesis, and cellular remodeling, as well as different disease pathogenesis. Induced MMP responses are especially associated with cancer metastasis and secondary tumor development through proteolytic cleavage of several ECM and non-ECM proteins. Although both eicosanoids and MMPs are involved with cancer progression and metastasis, the interrelation between these two molecules are less explored. The present review discusses relevant studies that connect eicosanoids and MMPs and highlight the crosstalk between them offering novel therapeutic approach in cancer treatment.

Keywords

Eicosanoid Matrix metalloproteinase Cancer Metastasis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.  https://doi.org/10.1038/nrc2809.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wallace, J. M. (2002). Nutritional and botanical modulation of the inflammatory cascade--eicosanoids, cyclooxygenases, and lipoxygenases--as an adjunct in cancer therapy. Integrative Cancer Therapies, 1(1), 7–37; discussion 37.  https://doi.org/10.1177/153473540200100102.PubMedCrossRefGoogle Scholar
  3. 3.
    Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 141(1), 52–67.  https://doi.org/10.1016/j.cell.2010.03.015.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Swarnakar, S., Paul, S., Singh, L. P., & Reiter, R. J. (2011). Matrix metalloproteinases in health and disease: regulation by melatonin. Journal of Pineal Research, 50(1), 8–20.  https://doi.org/10.1111/j.1600-079X.2010.00812.x.PubMedCrossRefGoogle Scholar
  5. 5.
    Smyth, E. M., Grosser, T., Wang, M., Yu, Y., & FitzGerald, G. A. (2009). Prostanoids in health and disease. Journal of Lipid Research, 50(Suppl), S423–S428.  https://doi.org/10.1194/jlr.R800094-JLR200.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wang, D., & Dubois, R. N. (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29(6), 781–788.  https://doi.org/10.1038/onc.2009.421.PubMedCrossRefGoogle Scholar
  7. 7.
    Schneider, C., & Pozzi, A. (2011). Cyclooxygenases and lipoxygenases in cancer. Cancer Metastasis Reviews, 30(3–4), 277–294.  https://doi.org/10.1007/s10555-011-9310-3.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Funk, C. D. (2001). rostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294(5548), 1871–1875.  https://doi.org/10.1126/science.294.5548.1871.PubMedCrossRefGoogle Scholar
  9. 9.
    Serhan, C. N. (2011). The resolution of inflammation: the devil in the flask and in the details. The FASEB Journal, 25(5), 1441–1448.  https://doi.org/10.1096/fj.11-0502ufm.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Krishnamoorthy, S., & Honn, K. V. (2008). Eicosanoids in tumor progression and metastasis. Sub-Cellular Biochemistry, 49, 145–168.  https://doi.org/10.1007/978-1-4020-8831-5_6.PubMedCrossRefGoogle Scholar
  11. 11.
    Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498.  https://doi.org/10.1073/pnas.0601807103.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wang, D., Wang, H., Shi, Q., Katkuri, S., Walhi, W., Desvergne, B., et al. (2004). Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell, 6(3), 285–295.  https://doi.org/10.1016/j.ccr.2004.08.011.PubMedCrossRefGoogle Scholar
  13. 13.
    Chizzolini, C., Chicheportiche, R., Alvarez, M., de Rham, C., Roux-Lombard, P., Ferrari-Lacraz, S., et al. (2008). Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood, 112(9), 3696–3703.  https://doi.org/10.1182/blood-2008-05-155408.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Boniface, K., Bak-Jensen, K. S., Li, Y., Blumenschein, W. M., McGeachy, M. J., McClanahan, T. K., et al. (2009). Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. The Journal of Experimental Medicine, 206(3), 535–548.  https://doi.org/10.1084/jem.20082293.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Scandella, E., Men, Y., Gillessen, S., Forster, R., & Groettrup, M. (2002). Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood, 100(4), 1354–1361.  https://doi.org/10.1182/blood-2001-11-0017.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang, D., Buchanan, F. G., Wang, H., Dey, S. K., & DuBois, R. N. (2005). Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Research, 65(5), 1822–1829.  https://doi.org/10.1158/0008-5472.Can-04-3671.PubMedCrossRefGoogle Scholar
  17. 17.
    Krysan, K., Reckamp, K. L., Dalwadi, H., Sharma, S., Rozengurt, E., Dohadwala, M., et al. (2005). Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Research, 65(14), 6275–6281.  https://doi.org/10.1158/0008-5472.Can-05-0216.PubMedCrossRefGoogle Scholar
  18. 18.
    Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M., & Gutkind, J. S. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 310(5753), 1504–1510.  https://doi.org/10.1126/science.1116221.PubMedCrossRefGoogle Scholar
  19. 19.
    Liou, J. Y., Ellent, D. P., Lee, S., Goldsby, J., Ko, B. S., Matijevic, N., et al. (2007). Cyclooxygenase-2-derived prostaglandin e2 protects mouse embryonic stem cells from apoptosis. Stem Cells, 25(5), 1096–1103.  https://doi.org/10.1634/stemcells.2006-0505.PubMedCrossRefGoogle Scholar
  20. 20.
    Ihara, A., Wada, K., Yoneda, M., Fujisawa, N., Takahashi, H., & Nakajima, A. (2007). Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. Journal of Pharmacological Sciences, 103(1), 24–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Tong, W. G., Ding, X. Z., Talamonti, M. S., Bell, R. H., & Adrian, T. E. (2005). LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways. Biochemical and Biophysical Research Communications, 335(3), 949–956.  https://doi.org/10.1016/j.bbrc.2005.07.166.PubMedCrossRefGoogle Scholar
  22. 22.
    Buchanan, F. G., Gorden, D. L., Matta, P., Shi, Q., Matrisian, L. M., & DuBois, R. N. (2006). Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1492–1497.  https://doi.org/10.1073/pnas.0510562103.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ito, H., Duxbury, M., Benoit, E., Clancy, T. E., Zinner, M. J., Ashley, S. W., et al. (2004). Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2. Cancer Research, 64(20), 7439–7446.  https://doi.org/10.1158/0008-5472.Can-04-1177.PubMedCrossRefGoogle Scholar
  24. 24.
    Qualtrough, D., Kaidi, A., Chell, S., Jabbour, H. N., Williams, A. C., & Paraskeva, C. (2007). Prostaglandin F(2alpha) stimulates motility and invasion in colorectal tumor cells. International Journal of Cancer, 121(4), 734–740.  https://doi.org/10.1002/ijc.22755.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Del Prete, A., Shao, W. H., Mitola, S., Santoro, G., Sozzani, S., & Haribabu, B. (2007). Regulation of dendritic cell migration and adaptive immune response by leukotriene B4 receptors: a role for LTB4 in up-regulation of CCR7 expression and function. Blood, 109(2), 626–631.  https://doi.org/10.1182/blood-2006-02-003665.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Woo, C. H., You, H. J., Cho, S. H., Eom, Y. W., Chun, J. S., Yoo, Y. J., et al. (2002). Leukotriene B(4) stimulates Rac-ERK cascade to generate reactive oxygen species that mediates chemotaxis. The Journal of Biological Chemistry, 277(10), 8572–8578.  https://doi.org/10.1074/jbc.M104766200.PubMedCrossRefGoogle Scholar
  27. 27.
    Kamiyama, M., Pozzi, A., Yang, L., DeBusk, L. M., Breyer, R. M., & Lin, P. C. (2006). EP2, a receptor for PGE2, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene, 25(53), 7019–7028.  https://doi.org/10.1038/sj.onc.1209694.PubMedCrossRefGoogle Scholar
  28. 28.
    Chang, S. H., Liu, C. H., Conway, R., Han, D. K., Nithipatikom, K., Trifan, O. C., et al. (2004). Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 591–596.  https://doi.org/10.1073/pnas.2535911100.PubMedCrossRefGoogle Scholar
  29. 29.
    Jana, S., Chatterjee, K., Ray, A. K., DasMahapatra, P., & Swarnakar, S. (2016). Regulation of matrix metalloproteinase-2 activity by COX-2-PGE2-pAKT axis promotes angiogenesis in endometriosis. PLoS One, 11(10), e0163540.  https://doi.org/10.1371/journal.pone.0163540.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jain, S., Chakraborty, G., Raja, R., Kale, S., & Kundu, G. C. (2008). Prostaglandin E2 regulates tumor angiogenesis in prostate cancer. Cancer Research, 68(19), 7750–7759.  https://doi.org/10.1158/0008-5472.Can-07-6689.PubMedCrossRefGoogle Scholar
  31. 31.
    Spinella, F., Rosano, L., Di Castro, V., Natali, P. G., & Bagnato, A. (2004). Endothelin-1-induced prostaglandin E2-EP2, EP4 signaling regulates vascular endothelial growth factor production and ovarian carcinoma cell invasion. The Journal of Biological Chemistry, 279(45), 46700–46705.  https://doi.org/10.1074/jbc.M408584200.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang, D., Wang, H., Brown, J., Daikoku, T., Ning, W., Shi, Q., et al. (2006). CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. The Journal of Experimental Medicine, 203(4), 941–951.  https://doi.org/10.1084/jem.20052124.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Dormond, O., Bezzi, M., Mariotti, A., & Ruegg, C. (2002). Prostaglandin E2 promotes integrin alpha Vbeta 3-dependent endothelial cell adhesion, rac-activation, and spreading through cAMP/PKA-dependent signaling. The Journal of Biological Chemistry, 277(48), 45838–45846.  https://doi.org/10.1074/jbc.M209213200.PubMedCrossRefGoogle Scholar
  34. 34.
    Salcedo, R., Zhang, X., Young, H. A., Michael, N., Wasserman, K., Ma, W. H., et al. (2003). Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. Blood, 102(6), 1966–1977.  https://doi.org/10.1182/blood-2002-11-3400.PubMedCrossRefGoogle Scholar
  35. 35.
    Sales, K. J., List, T., Boddy, S. C., Williams, A. R., Anderson, R. A., Naor, Z., et al. (2005). A novel angiogenic role for prostaglandin F2alpha-FP receptor interaction in human endometrial adenocarcinomas. Cancer Research, 65(17), 7707–7716.  https://doi.org/10.1158/0008-5472.Can-05-0101.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Daniel, T. O., Liu, H., Morrow, J. D., Crews, B. C., & Marnett, L. J. (1999). Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Research, 59(18), 4574–4577.PubMedGoogle Scholar
  37. 37.
    Zeddou, M., Greimers, R., de Valensart, N., Nayjib, B., Tasken, K., Boniver, J., et al. (2005). Prostaglandin E2 induces the expression of functional inhibitory CD94/NKG2A receptors in human CD8+ T lymphocytes by a cAMP-dependent protein kinase A type I pathway. Biochemical Pharmacology, 70(5), 714–724.  https://doi.org/10.1016/j.bcp.2005.05.015.PubMedCrossRefGoogle Scholar
  38. 38.
    Baratelli, F., Lin, Y., Zhu, L., Yang, S. C., Heuze-Vourc'h, N., Zeng, G., et al. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. Journal of Immunology, 175(3), 1483–1490.CrossRefGoogle Scholar
  39. 39.
    Verma, S., Kesh, K., Ganguly, N., Jana, S., & Swarnakar, S. (2014). Matrix metalloproteinases and gastrointestinal cancers: impacts of dietary antioxidants. World Journal of Biological Chemistry, 5(3), 355–376.  https://doi.org/10.4331/wjbc.v5.i3.355.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Swarnakar, S., & Jana, S. (2018). Matrix metalloproteinase. In S. Choi (Ed.), Encyclopedia of Signaling Molecules (2nd ed., pp. 3162–3162). Cham: Springer International Publishing.Google Scholar
  41. 41.
    Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69(3), 562–573.  https://doi.org/10.1016/j.cardiores.2005.12.002.PubMedCrossRefGoogle Scholar
  42. 42.
    Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2(3), 161–174.  https://doi.org/10.1038/nrc745.PubMedCrossRefGoogle Scholar
  43. 43.
    Ha, H. Y., Moon, H. B., Nam, M. S., Lee, J. W., Ryoo, Z. Y., Lee, T. H., et al. (2001). Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Research, 61(3), 984–990.PubMedGoogle Scholar
  44. 44.
    Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98(2), 137–146.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sternlicht, M. D., & Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annual Review of Cell and Developmental Biology, 17, 463–516.  https://doi.org/10.1146/annurev.cellbio.17.1.463.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Reviews, 25(1), 9–34.  https://doi.org/10.1007/s10555-006-7886-9.PubMedCrossRefGoogle Scholar
  47. 47.
    Ichikawa, Y., Ishikawa, T., Momiyama, N., Kamiyama, M., Sakurada, H., Matsuyama, R., et al. (2006). Matrilysin (MMP-7) degrades VE-cadherin and accelerates accumulation of beta-catenin in the nucleus of human umbilical vein endothelial cells. Oncology Reports, 15(2), 311–315.PubMedGoogle Scholar
  48. 48.
    Zheng, G., Lyons, J. G., Tan, T. K., Wang, Y., Hsu, T.-T., Min, D., et al. (2009). Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-β1 in renal tubular epithelial cells. The American Journal of Pathology, 175(2), 580–591.  https://doi.org/10.2353/ajpath.2009.080983.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Chatterjee, K., Jana, S., DasMahapatra, P., & Swarnakar, S. (2018). EGFR-mediated matrix metalloproteinase-7 up-regulation promotes epithelial-mesenchymal transition via ERK1-AP1 axis during ovarian endometriosis progression. The FASEB Journal, fj201701382RR.  https://doi.org/10.1096/fj.201701382RR.
  50. 50.
    Suzuki, M., Raab, G., Moses, M. A., Fernandez, C. A., & Klagsbrun, M. (1997). Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. The Journal of Biological Chemistry, 272(50), 31730–31737.PubMedCrossRefGoogle Scholar
  51. 51.
    Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., et al. (1998). An essential role for ectodomain shedding in mammalian development. Science, 282(5392), 1281–1284.PubMedCrossRefGoogle Scholar
  52. 52.
    Vargo-Gogola, T., Crawford, H. C., Fingleton, B., & Matrisian, L. M. (2002). Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand. Archives of Biochemistry and Biophysics, 408(2), 155–161.PubMedCrossRefGoogle Scholar
  53. 53.
    Jana, S., Paul, S., & Swarnakar, S. (2012). Curcumin as anti-endometriotic agent: implication of MMP-3 and intrinsic apoptotic pathway. Biochemical Pharmacology, 83(6), 797–804.  https://doi.org/10.1016/j.bcp.2011.12.030.PubMedCrossRefGoogle Scholar
  54. 54.
    Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2(10), 737–744.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lee, S., Jilani, S. M., Nikolova, G. V., Carpizo, D., & Iruela-Arispe, M. L. (2005). Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. The Journal of Cell Biology, 169(4), 681–691.  https://doi.org/10.1083/jcb.200409115.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sheu, B. C., Hsu, S. M., Ho, H. N., Lien, H. C., Huang, S. C., & Lin, R. H. (2001). A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Research, 61(1), 237–242.PubMedGoogle Scholar
  57. 57.
    Yu, Q., & Stamenkovic, I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes & Development, 14(2), 163–176.Google Scholar
  58. 58.
    Gorelik, L., & Flavell, R. A. (2001). Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nature Medicine, 7(10), 1118–1122.PubMedCrossRefGoogle Scholar
  59. 59.
    O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79(2), 315–328.PubMedCrossRefGoogle Scholar
  60. 60.
    Patterson, B. C., & Sang, Q. A. (1997). Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). Journal of Biological Chemistry, 272(46), 28823–28825.  https://doi.org/10.1074/jbc.272.46.28823.PubMedCrossRefGoogle Scholar
  61. 61.
    Heljasvaara, R., Nyberg, P., Luostarinen, J., Parikka, M., Heikkila, P., Rehn, M., et al. (2005). Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Experimental Cell Research, 307(2), 292–304.  https://doi.org/10.1016/j.yexcr.2005.03.021.PubMedCrossRefGoogle Scholar
  62. 62.
    Hamano, Y. (2003). Physiological levels of tumstatin, a fragment of collagen IV [alpha]3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via [alpha]V [beta]3 integrin. Cancer Cell, 3, 589–601.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Derynck, R., Akhurst, R. J., & Balmain, A. (2001). TGF-beta signaling in tumor suppression and cancer progression. Nature Genetics, 29(2), 117–129.  https://doi.org/10.1038/ng1001-117.PubMedCrossRefGoogle Scholar
  64. 64.
    Wang, X., & Lin, Y. (2008). Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacologica Sinica, 29(11), 1275–1288.  https://doi.org/10.1111/j.1745-7254.2008.00889.x.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Overall, C. M., & Lopez-Otin, C. (2002). Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Reviews. Cancer, 2(9), 657–672.  https://doi.org/10.1038/nrc884.PubMedCrossRefGoogle Scholar
  66. 66.
    Bramhall, S. R., Rosemurgy, A., Brown, P. D., Bowry, C., & Buckels, J. A. (2001). Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. Journal of Clinical Oncology, 19(15), 3447–3455.  https://doi.org/10.1200/jco.2001.19.15.3447.PubMedCrossRefGoogle Scholar
  67. 67.
    Cathcart, J., Pulkoski-Gross, A., & Cao, J. (2015). Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes & Diseases, 2(1), 26–34.  https://doi.org/10.1016/j.gendis.2014.12.002.CrossRefGoogle Scholar
  68. 68.
    Hu, J., Van den Steen, P. E., Sang, Q. X., & Opdenakker, G. (2007). Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature Reviews. Drug Discovery, 6(6), 480–498.  https://doi.org/10.1038/nrd2308.PubMedCrossRefGoogle Scholar
  69. 69.
    Greene, E. R., Huang, S., Serhan, C. N., & Panigrahy, D. (2011). Regulation of inflammation in cancer by eicosanoids. Prostaglandins & Other Lipid Mediators, 96(1–4), 27–36.  https://doi.org/10.1016/j.prostaglandins.2011.08.004.CrossRefGoogle Scholar
  70. 70.
    Ishikawa, T. O., & Herschman, H. R. (2010). Tumor formation in a mouse model of colitis-associated colon cancer does not require COX-1 or COX-2 expression. Carcinogenesis, 31(4), 729–736.  https://doi.org/10.1093/carcin/bgq002.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Pavlovic, S., Du, B., Sakamoto, K., Khan, K. M., Natarajan, C., Breyer, R. M., et al. (2006). Targeting prostaglandin E2 receptors as an alternative strategy to block cyclooxygenase-2-dependent extracellular matrix-induced matrix metalloproteinase-9 expression by macrophages. The Journal of Biological Chemistry, 281(6), 3321–3328.  https://doi.org/10.1074/jbc.M506846200.PubMedCrossRefGoogle Scholar
  72. 72.
    Itatsu, K., Sasaki, M., Yamaguchi, J., Ohira, S., Ishikawa, A., Ikeda, H., et al. (2009). Cyclooxygenase-2 is involved in the up-regulation of matrix metalloproteinase-9 in cholangiocarcinoma induced by tumor necrosis factor-alpha. The American Journal of Pathology, 174(3), 829–841.  https://doi.org/10.2353/ajpath.2009.080012.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yen, J. H., Kocieda, V. P., Jing, H., & Ganea, D. (2011). Prostaglandin E2 induces matrix metalloproteinase 9 expression in dendritic cells through two independent signaling pathways leading to activator protein 1 (AP-1) activation. The Journal of Biological Chemistry, 286(45), 38913–38923.  https://doi.org/10.1074/jbc.M111.252932.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hsu, H. H., Hu, W. S., Lin, Y. M., Kuo, W. W., Chen, L. M., Chen, W. K., et al. (2011). JNK suppression is essential for 17beta-estradiol inhibits prostaglandin E2-induced uPA and MMP-9 expressions and cell migration in human LoVo colon cancer cells. Journal of Biomedical Science, 18, 61.  https://doi.org/10.1186/1423-0127-18-61.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zahner, G., Harendza, S., Muller, E., Wolf, G., Thaiss, F., & Stahl, R. A. (1997). Prostaglandin E2 stimulates expression of matrix metalloproteinase 2 in cultured rat mesangial cells. Kidney International, 51(4), 1116–1123.PubMedCrossRefGoogle Scholar
  76. 76.
    Choi, Y. A., Lee, D. J., Lim, H. K., Jeong, J. H., Sonn, J. K., Kang, S. S., et al. (2004). Interleukin-1beta stimulates matrix metalloproteinase-2 expression via a prostaglandin E2-dependent mechanism in human chondrocytes. Experimental & Molecular Medicine, 36(3), 226–232.  https://doi.org/10.1038/emm.2004.31.CrossRefGoogle Scholar
  77. 77.
    Sato, T., Konomi, K., Fujii, R., Aono, H., Aratani, S., Yagishita, N., et al. (2011). Prostaglandin EP2 receptor signalling inhibits the expression of matrix metalloproteinase 13 in human osteoarthritic chondrocytes. Annals of the Rheumatic Diseases, 70(1), 221–226.  https://doi.org/10.1136/ard.2009.118620.PubMedCrossRefGoogle Scholar
  78. 78.
    Fernandez-Patron, C., & Leung, D. (2015). Emergence of a metalloproteinase/phospholipase A2 axis of systemic inflammation. Metalloproteinases in Medicine, 2, 29–38.  https://doi.org/10.2147/mnm.S48748.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hernandez-Anzaldo, S., Berry, E., Brglez, V., Leung, D., Yun, T. J., Lee, J. S., et al. (2015). Identification of a novel heart-liver axis: matrix metalloproteinase-2 negatively regulates cardiac secreted phospholipase A2 to modulate lipid metabolism and inflammation in the liver. Journal of the American Heart Association, 4(11).  https://doi.org/10.1161/jaha.115.002553.
  80. 80.
    Weinreb, R. N., Kashiwagi, K., Kashiwagi, F., Tsukahara, S., & Lindsey, J. D. (1997). Prostaglandins increase matrix metalloproteinase release from human ciliary smooth muscle cells. Investigative Ophthalmology & Visual Science, 38(13), 2772–2780.Google Scholar
  81. 81.
    Li, X., & Tai, H. H. (2012). Increased expression of matrix metalloproteinases mediates thromboxane A2-induced invasion in lung cancer cells. Current Cancer Drug Targets, 12(6), 703–715.PubMedCrossRefGoogle Scholar
  82. 82.
    Hartney, J. M., Gustafson, C. E., Bowler, R. P., Pelanda, R., & Torres, R. M. (2011). Thromboxane receptor signaling is required for fibronectin-induced matrix metalloproteinase 9 production by human and murine macrophages and is attenuated by the Arhgef1 molecule. The Journal of Biological Chemistry, 286(52), 44521–44531.  https://doi.org/10.1074/jbc.M111.282772.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kummer, N. T., Nowicki, T. S., Azzi, J. P., Reyes, I., Iacob, C., Xie, S., et al. (2012). Arachidonate 5 lipoxygenase expression in papillary thyroid carcinoma promotes invasion via MMP-9 induction. Journal of Cellular Biochemistry, 113(6), 1998–2008.  https://doi.org/10.1002/jcb.24069.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hennig, R., Kehl, T., Noor, S., Ding, X. Z., Rao, S. M., Bergmann, F., et al. (2007). 15-lipoxygenase-1 production is lost in pancreatic cancer and overexpression of the gene inhibits tumor cell growth. Neoplasia, 9(11), 917–926.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ichiyama, T., Kajimoto, M., Hasegawa, M., Hashimoto, K., Matsubara, T., & Furukawa, S. (2007). Cysteinyl leukotrienes enhance tumour necrosis factor-alpha-induced matrix metalloproteinase-9 in human monocytes/macrophages. Clinical and Experimental Allergy, 37(4), 608–614.  https://doi.org/10.1111/j.1365-2222.2007.02692.x.PubMedCrossRefGoogle Scholar
  86. 86.
    Rajah, R., Nunn, S. E., Herrick, D. J., Grunstein, M. M., & Cohen, P. (1996). Leukotriene D4 induces MMP-1, which functions as an IGFBP protease in human airway smooth muscle cells. The American Journal of Physiology, 271(6 Pt 1), L1014–L1022.  https://doi.org/10.1152/ajplung.1996.271.6.L1014.PubMedCrossRefGoogle Scholar
  87. 87.
    Piromkraipak, P., Sangpairoj, K., Tirakotai, W., Chaithirayanon, K., Unchern, S., Supavilai, P., et al. (2018). Cysteinyl leukotriene receptor antagonists inhibit migration, invasion, and expression of MMP-2/9 in human glioblastoma. Cellular and Molecular Neurobiology, 38(2), 559–573.  https://doi.org/10.1007/s10571-017-0507-z.PubMedCrossRefGoogle Scholar
  88. 88.
    Chandrasekharan, J. A., & Sharma-Walia, N. (2015). Lipoxins: nature’s way to resolve inflammation. Journal of Inflammation Research, 8, 181–192.  https://doi.org/10.2147/jir.S90380.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zong, L., Li, J., Chen, X., Chen, K., Li, W., Li, X., et al. (2016). Lipoxin A4 attenuates cell invasion by inhibiting ROS/ERK/MMP pathway in pancreatic cancer. Oxidative Medicine and Cellular Longevity, 2016, 6815727.  https://doi.org/10.1155/2016/6815727.PubMedCrossRefGoogle Scholar
  90. 90.
    Chen, Q. H., Zhou, W. D., Pu, D. M., Huang, Q. S., Li, T., & Chen, Q. X. (2010). 15-Epi-lipoxin A(4) inhibits the progression of endometriosis in a murine model. Fertility and Sterility, 93(5), 1440–1447.  https://doi.org/10.1016/j.fertnstert.2009.01.107.PubMedCrossRefGoogle Scholar
  91. 91.
    Leppert, D., Hauser, S. L., Kishiyama, J. L., An, S., Zeng, L., & Goetzl, E. J. (1995). Stimulation of matrix metalloproteinase-dependent migration of T cells by eicosanoids. The FASEB Journal, 9(14), 1473–1481.PubMedCrossRefGoogle Scholar
  92. 92.
    Yu, W., Chen, L., Yang, Y. Q., Falck, J. R., Guo, A. M., Li, Y., et al. (2011). Cytochrome P450 omega-hydroxylase promotes angiogenesis and metastasis by upregulation of VEGF and MMP-9 in non-small cell lung cancer. Cancer Chemotherapy and Pharmacology, 68(3), 619–629.  https://doi.org/10.1007/s00280-010-1521-8.PubMedCrossRefGoogle Scholar
  93. 93.
    Moshal, K. S., Zeldin, D. C., Sithu, S. D., Sen, U., Tyagi, N., Kumar, M., et al. (2008). Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMP-9 via inhibition of NF-kappabeta in hyperhomocysteinemia. Journal of Cellular Physiology, 215(3), 771–781.  https://doi.org/10.1002/jcp.21356.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Michaelis, U. R., Fisslthaler, B., Barbosa-Sicard, E., Falck, J. R., Fleming, I., & Busse, R. (2005). Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. Journal of Cell Science, 118(Pt 23), 5489–5498.  https://doi.org/10.1242/jcs.02674.PubMedCrossRefGoogle Scholar
  95. 95.
    Calder, P. C. (2013). Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? British Journal of Clinical Pharmacology, 75(3), 645–662.  https://doi.org/10.1111/j.1365-2125.2012.04374.x.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Taguchi, A., Kawana, K., Tomio, K., Yamashita, A., Isobe, Y., Nagasaka, K., et al. (2014). Matrix metalloproteinase (MMP)-9 in cancer-associated fibroblasts (CAFs) is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo. PLoS One, 9(2), e89605.  https://doi.org/10.1371/journal.pone.0089605.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kasturi Chatterjee
    • 1
  • Sayantan Jana
    • 1
  • Preety Choudhary
    • 1
  • Snehasikta Swarnakar
    • 1
  1. 1.Cancer Biology & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyKolkataIndia

Personalised recommendations