Advertisement

Cancer and Metastasis Reviews

, Volume 37, Issue 2–3, pp 439–454 | Cite as

Bioactive lipid metabolism in platelet “first responder” and cancer biology

  • Preeti Kanikarla-Marie
  • Scott Kopetz
  • Ernest T. Hawk
  • Steven W. Millward
  • Anil K. Sood
  • Paolo Gresele
  • Michael Overman
  • Kenneth Honn
  • David G. MenterEmail author
Article

Abstract

Platelets can serve as “first responders” in cancer and metastasis. This is partly due to bioactive lipid metabolism that drives both platelet and cancer biology. The two primary eicosanoid metabolites that maintain platelet rapid response homeostasis are prostacyclin made by endothelial cells that inhibits platelet function, which is counterbalanced by thromboxane produced by platelets during activation, aggregation, and platelet recruitment. Both of these arachidonic acid metabolites are inherently unstable due to their chemical structure. Tumor cells by contrast predominantly make more chemically stable prostaglandin E2, which is the primary bioactive lipid associated with inflammation and oncogenesis. Pharmacological, clinical, and epidemiologic studies demonstrate that non-steroidal anti-inflammatory drugs (NSAIDs), which target cyclooxygenases, can help prevent cancer. Much of the molecular and biological impact of these drugs is generally accepted in the field. Cyclooxygenases catalyze the rate-limiting production of substrate used by all synthase molecules, including those that produce prostaglandins along with prostacyclin and thromboxane. Additional eicosanoid metabolites include lipoxygenases, leukotrienes, and resolvins that can also influence platelets, inflammation, and carcinogenesis. Our knowledge base and technology are now progressing toward identifying newer molecular and cellular interactions that are leading to revealing additional targets. This review endeavors to summarize new developments in the field.

Keywords

Platelets Cancer Metastasis Thromboxane Prostacyclin Prostaglandin Cyclooxygenase NSAID COXIB Aspirin 

Abbreviations

15-PGDH

15-Hydroxyprostaglandin Dehydrogenase

AP

Activating Protein

Apc

Adenomatous polyposis coli

AA

Arachidonic Acid

ABC

ATP-Binding Cassette

CCL2

C-C motif Ligand 2

CVD

Cardiovascular disease

CRC

Colorectal cancer

CI

Confidence interval (95%)

COXIBs

Cyclooxygenase inhibitors

COX-1

Cyclooxygenase-1

COX-2

Cyclooxygenase-2

DC

Dendritic Cells

DNMT1

DNA methyl transferase

DHA

Docosahexaenoic acid

EPA

Eicosapentaenoic acid

ERK

Extracellular signal regulated kinase

FAP

Familial adenomatous polyposis

Gs

G-stimulatory

HK

Hexokinase

HR

Hazard Ratio

HETE

Hydroxyeicosatetraenoic acid

IκB

Inhibitor of nuclear factor of kappa light chain in B-cells

LTB4

Leukotriene B4

LOX

Lipoxygenase

MSI

Microsatellite instability

MDSCs

Myeloid-derived suppressor cells

NK

Natural killer

NSAIDs

Non-steroidal anti-inflammatory drugs

OR

Odds ratio

OATP

Organic ion transporter protein expression

PGT

PG transporter

cPGES/ mPGES

PGE2 synthases, cytosolic/microsomal

PGIS

PGI2 synthase

PI3K

Phosphatidylinositol-3-kinase

PDK1

Phosphoinositide-dependent kinase-1

PLA2

Phospholipase A2

PMNs

Polymorphonuclear cells

PGI2

Prostacyclin

EP

Prostaglandin (prostanoid) E receptors

PGEM

Prostaglandin E metabolite

PGE2

Prostaglandin E2

PGH2

Prostaglandin H2

RCT

Randomized controlled trial

RR

Relative risk

TCR

T-cell receptor

TXS/TBXAS1

Thromboxane synthase

TxA2

Thromboxane

TLR

Toll-like receptors

TNF

Tumor necrosis factor

VDAC

Voltage-dependent anion channels

Notes

Acknowledgements

Grant and Other Support: Boone Pickens Distinguished Chair for Early Prevention of Cancer, Duncan Family Institute, Colorectal Cancer Moon Shot, 1R01CA187238-01, 5R01CA172670-03 and 1R01CA184843-01A1, CA177909, and the American Cancer Society Research Professor Award, Cancer Center Support Grant (P30 CA016672).

References

  1. 1.
    Menter, D. G., Kopetz, S., Hawk, E., Sood, A. K., Loree, J. M., Gresele, P., & Honn, K. V. (2017). Platelet “first responders” in wound response, cancer, and metastasis. Cancer Metastasis Reviews, 36(2), 199–213.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lam, M., Roszik, J., Kanikarla-Marie, P., Davis, J. S., Morris, J., Kopetz, S., & Menter, D. G. (2017). The potential role of platelets in the consensus molecular subtypes of colorectal cancer. Cancer Metastasis Reviews, 36(2), 273–288.PubMedCrossRefGoogle Scholar
  3. 3.
    Kanikarla-Marie, P., Lam, M., Sorokin, A. V., Overman, M. J., Kopetz, S., & Menter, D. G. (2018). Platelet metabolism and other targeted drugs; potential impact on immunotherapy. Frontiers in Oncology, 8, 107.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Haemmerle, M., Stone, R. L., Menter, D. G., Afshar-Kharghan, V., & Sood, A. K. (2018). The platelet lifeline to cancer: challenges and opportunities. Cancer Cell, 33, 965–983.PubMedCrossRefGoogle Scholar
  5. 5.
    Leunissen, T. C., Wisman, P. P., van Holten, T. C., de Groot, P. G., Korporaal, S. J., Koekman, A. C., et al. (2016). The effect of P2Y12 inhibition on platelet activation assessed with aggregation- and flow cytometry-based assays. Platelets, 1–9.Google Scholar
  6. 6.
    Liu, X., Li, Y., Zhu, H., Zhao, Z., Zhou, Y., Zaske, A. M., Liu, L., Li, M., Lu, H., Liu, W., Dong, J. F., Zhang, J., & Zhang, Y. (2015). Use of non-contact hopping probe ion conductance microscopy to investigate dynamic morphology of live platelets. Platelets, 26(5), 480–485.PubMedCrossRefGoogle Scholar
  7. 7.
    Lof, A., Muller, J. P., Benoit, M., & Brehm, M. A. (2017). Biophysical approaches promote advances in the understanding of von Willebrand factor processing and function. Advances in Biological Regulation, 63, 81–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Heijnen, H., & Korporaal, S. (2017). Platelet morphology and ultrastructure. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 21–37). Basel: Springer International Publishing.CrossRefGoogle Scholar
  9. 9.
    O'Brien, S., Kent, N. J., Lucitt, M., Ricco, A. J., McAtamney, C., Kenny, D., & Meade, G. (2012). Effective hydrodynamic shaping of sample streams in a microfluidic parallel-plate flow-assay device: matching whole blood dynamic viscosity. IEEE Transactions on Biomedical Engineering, 59(2), 374–382.PubMedCrossRefGoogle Scholar
  10. 10.
    Jen, C. J., & Tai, Y. W. (1992). Morphological study of platelet adhesion dynamics under whole blood flow conditions. Platelets, 3(3), 145–153.PubMedCrossRefGoogle Scholar
  11. 11.
    Folie, B. J., & McIntire, L. V. (1989). Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophysical Journal, 56(6), 1121–1141.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Fedosov, D. A., Noguchi, H., & Gompper, G. (2014). Multiscale modeling of blood flow: from single cells to blood rheology. Biomechanics and Modeling in Mechanobiology, 13(2), 239–258.PubMedCrossRefGoogle Scholar
  13. 13.
    Kumar, A., & Graham, M. D. (2012). Mechanism of margination in confined flows of blood and other multicomponent suspensions. Physical Review Letters, 109(10), 108102.PubMedCrossRefGoogle Scholar
  14. 14.
    Tokarev, A. A., Butylin, A. A., & Ataullakhanov, F. I. (2011). Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophysical Journal, 100(4), 799–808.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Tokarev, A. A., Butylin, A. A., Ermakova, E. A., Shnol, E. E., Panasenko, G. P., & Ataullakhanov, F. I. (2011). Finite platelet size could be responsible for platelet margination effect. Biophysical Journal, 101(8), 1835–1843.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lee, S. Y., Ferrari, M., & Decuzzi, P. (2009). Design of bio-mimetic particles with enhanced vascular interaction. Journal of Biomechanics, 42(12), 1885–1890.PubMedCrossRefGoogle Scholar
  17. 17.
    Stukelj, R., Schara, K., Bedina-Zavec, A., Sustar, V., Pajnic, M., Paden, L., et al. (2017). Effect of shear stress in the flow through the sampling needle on concentration of nanovesicles isolated from blood. European Journal of Pharmaceutical Sciences, 98, 17–29.PubMedCrossRefGoogle Scholar
  18. 18.
    De Gruttola, S., Boomsma, K., & Poulikakos, D. (2005). Computational simulation of a non-newtonian model of the blood separation process. Artificial Organs, 29(12), 949–959.PubMedCrossRefGoogle Scholar
  19. 19.
    Nesbitt, W. S., Westein, E., Tovar-Lopez, F. J., Tolouei, E., Mitchell, A., Fu, J., Carberry, J., Fouras, A., & Jackson, S. P. (2009). A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 15(6), 665–673.PubMedCrossRefGoogle Scholar
  20. 20.
    Honn, K. V., Cicone, B., & Skoff, A. (1981). Prostacyclin: a potent antimetastatic agent. Science, 212(4500), 1270–1272.PubMedCrossRefGoogle Scholar
  21. 21.
    Lopp, M. I., Miuraus, A. I., Parve, O. V., Vialimiae, T. K., & Lopp, A. (1988). Synthesis and antiaggregation activity of prostacyclin analogs. 1. Bicyclo [3.2.0] heptane analogs. Bioorganicheskaia Khimiia, 14(2), 222–231.PubMedGoogle Scholar
  22. 22.
    Dix, T. A., Buck, J. R., & Marnett, L. J. (1986). Hydroperoxide-dependent epoxidation of 3,4-dihydroxy-3,4-dihydrobenzo[a]anthracene by ram seminal vesicle microsomes and by hematin. Biochemical and Biophysical Research Communications, 140(1), 181–187.PubMedCrossRefGoogle Scholar
  23. 23.
    Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 2994–2998.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Meninno, S., & Lattanzi, A. (2016). Organocatalytic asymmetric reactions of epoxides: recent progress. Chemistry, 22(11), 3632–3642.PubMedCrossRefGoogle Scholar
  25. 25.
    Gorman, R. R., Bundy, G. L., Peterson, D. C., Sun, F. F., Miller, O. V., & Fitzpatrick, F. A. (1977). Inhibition of human platelet thromboxane synthetase by 9,11-azoprosta-5,13-dienoic acid. Proceedings of the National Academy of Sciences of the United States of America, 74(9), 4007–4011.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Schror, K. (1985). Prostaglandins and endothelial cells. Z Kardiol, 74(Suppl 7), 93–97.PubMedGoogle Scholar
  27. 27.
    El Tahir, K. E., Williams, K. I., & Betteridge, D. J. (1983). Differences in the stability of prostacyclin in human, rabbit and rat plasma. Prostaglandins, Leukotrienes, and Medicine, 10(2), 109–114.PubMedCrossRefGoogle Scholar
  28. 28.
    Lawson, J. A., Patrono, C., Ciabattoni, G., & Fitzgerald, G. A. (1986). Long-lived enzymatic metabolites of thromboxane B2 in the human circulation. Analytical Biochemistry, 155(1), 198–205.PubMedCrossRefGoogle Scholar
  29. 29.
    Menter, D. G., Neagos, G., Dunn, J., Palazzo, R., Tchen, T. T., Taylor, J. D., et al. (1982). Tumor cell induced platelet aggregation: inhibition by prostacyclin, thromboxane A2 and phosphodiesterase inhibitors. In T. J. Powles, R. S. Bockman, K. V. Honn, & P. Ramwell (Eds.), Prostaglandins and cancer: first international conference (pp. 809–813). New York: Alan R. Liss.Google Scholar
  30. 30.
    Honn, K. V., Menter, D. G., Onoda, J. M., Taylor, J. D., & Sloane, B. F. (1983). Role of prostacyclin as a natural deterrent to hematogenous tumor metastasis. Symposium on Fundamental Cancer Research, 36, 361–388.PubMedGoogle Scholar
  31. 31.
    Menter, D. G., Onoda, J. M., Taylor, J. D., & Honn, K. V. (1984). Effects of prostacyclin on tumor cell-induced platelet aggregation. Cancer Research, 44(2), 450–456.PubMedGoogle Scholar
  32. 32.
    Menter, D. G., Harkins, C., Onoda, J., Riorden, W., Sloane, B. F., Taylor, J. D., & Honn, K. V. (1987). Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: an ultrastructural study. Invasion & Metastasis, 7(2), 109–128.Google Scholar
  33. 33.
    Murata, T., Murai, T., Kanai, T., Ogaki, Y., Sanai, K., Kanda, H., Sato, S., Kajikawa, N., Umetsu, T., & Matsuura, H. (1989). General pharmacology of beraprost sodium. 2nd communication: effect on the autonomic, cardiovascular and gastrointestinal systems, and other effects. Arzneimittelforschung, 39(8), 867–876.PubMedGoogle Scholar
  34. 34.
    Kashiwagi, H., Yuhki, K., Kojima, F., Kumei, S., Takahata, O., Sakai, Y., Narumiya, S., & Ushikubi, F. (2015). The novel prostaglandin I2 mimetic ONO-1301 escapes desensitization in an antiplatelet effect due to its inhibitory action on thromboxane A2 synthesis in mice. The Journal of Pharmacology and Experimental Therapeutics, 353(2), 269–278.PubMedCrossRefGoogle Scholar
  35. 35.
    Takaki, A., Morikawa, K., Murayama, Y., Yamagishi, H., Hosoya, M., Ohashi, J., & Shimokawa, H. (2008). Roles of endothelial oxidases in endothelium-derived hyperpolarizing factor responses in mice. Journal of Cardiovascular Pharmacology, 52(6), 510–517.PubMedCrossRefGoogle Scholar
  36. 36.
    Brandes, R. P., Schmitz-Winnenthal, F. H., Feletou, M., Godecke, A., Huang, P. L., Vanhoutte, P. M., Fleming, I., & Busse, R. (2000). An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild-type and endothelial NO synthase knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 97(17), 9747–9752.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Eberhart, C. E., Coffey, R. J., Radhika, A., Giardiello, F. M., Ferrenbach, S., & DuBois, R. N. (1994). Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 107(4), 1183–1188.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Blobaum, A. L., & Marnett, L. J. (2007). Structural and functional basis of cyclooxygenase inhibition. Journal of Medicinal Chemistry, 50(7), 1425–1441.PubMedCrossRefGoogle Scholar
  40. 40.
    Dovizio, M., Bruno, A., Tacconelli, S., & Patrignani, P. (2013). Mode of action of aspirin as a chemopreventive agent. Recent Results in Cancer Research, 191, 39–65.PubMedCrossRefGoogle Scholar
  41. 41.
    Ornelas, A., Zacharias-Millward, N., Menter, D. G., Davis, J. S., Lichtenberger, L., Hawke, D., Hawk, E., Vilar, E., Bhattacharya, P., & Millward, S. (2017). Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Reviews, 36(2), 289–303.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Alfonso, L. F., Srivenugopal, K. S., & Bhat, G. J. (2009). Does aspirin acetylate multiple cellular proteins? (review). Molecular Medicine Reports, 2(4), 533–537.PubMedGoogle Scholar
  43. 43.
    Baber, S. R., Deng, W., Rodriguez, J., Master, R. G., Bivalacqua, T. J., Hyman, A. L., & Kadowitz, P. J. (2005). Vasoactive prostanoids are generated from arachidonic acid by COX-1 and COX-2 in the mouse. American Journal of Physiology. Heart and Circulatory Physiology, 289(4), H1476–H1487.PubMedCrossRefGoogle Scholar
  44. 44.
    Oshima, M., Dinchuk, J. E., Kargman, S. L., Oshima, H., Hancock, B., Kwong, E., Trzaskos, J. M., Evans, J. F., & Taketo, M. M. (1996). Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 87(5), 803–809.PubMedCrossRefGoogle Scholar
  45. 45.
    Williams, C. S., Luongo, C., Radhika, A., Zhang, T., Lamps, L. W., Nanney, L. B., Beauchamp, R. D., & DuBois, R. (1996). Elevated cyclooxygenase-2 levels in min mouse adenomas. Gastroenterology, 111(4), 1134–1140.PubMedCrossRefGoogle Scholar
  46. 46.
    Fischer, S. M., Hawk, E. T., & Lubet, R. A. (2011). Coxibs and other nonsteroidal anti-inflammatory drugs in animal models of cancer chemoprevention. Cancer Prevention Research (Philadelphia, Pa.), 4(11), 1728–1735.CrossRefGoogle Scholar
  47. 47.
    Phillips, R. K., Wallace, M. H., Lynch, P. M., Hawk, E., Gordon, G. B., Saunders, B. P., Wakabayashi, N., Shen, Y., Zimmerman, S., Godio, L., Rodrigues-Bigas, M., Su, L. K., Sherman, J., Kelloff, G., Levin, B., Steinbach, G., & FAP Study Group. (2002). A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut, 50(6), 857–860.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bertagnolli, M. M. (2003). Colorectal cancer prevention studies: the importance of defining disease risk. Annals of Surgical Oncology, 10(8), 829–830.PubMedCrossRefGoogle Scholar
  49. 49.
    Bertagnolli, M. M., Eagle, C. J., Zauber, A. G., Redston, M., Solomon, S. D., Kim, K., Tang, J., Rosenstein, R. B., Wittes, J., Corle, D., Hess, T. M., Woloj, G. M., Boisserie, F., Anderson, W. F., Viner, J. L., Bagheri, D., Burn, J., Chung, D. C., Dewar, T., Foley, T. R., Hoffman, N., Macrae, F., Pruitt, R. E., Saltzman, J. R., Salzberg, B., Sylwestrowicz, T., Gordon, G. B., Hawk, E. T., & APC Study Investigators. (2006). Celecoxib for the prevention of sporadic colorectal adenomas. The New England Journal of Medicine, 355(9), 873–884.PubMedCrossRefGoogle Scholar
  50. 50.
    Bresalier, R. S., Sandler, R. S., Quan, H., Bolognese, J. A., Oxenius, B., Horgan, K., Lines, C., Riddell, R., Morton, D., Lanas, A., Konstam, M. A., Baron, J. A., & Adenomatous Polyp Prevention on Vioxx (APPROVe) Trial Investigators. (2005). Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. The New England Journal of Medicine, 352(11), 1092–1102.PubMedCrossRefGoogle Scholar
  51. 51.
    Milde, M., Werthmann, R. C., von Hayn, K., & Bunemann, M. (2014). Dynamics of adenylate cyclase regulation via heterotrimeric G-proteins. Biochemical Society Transactions, 42(2), 239–243.PubMedCrossRefGoogle Scholar
  52. 52.
    Brummett, A. M., Navratil, A. R., Bryan, J. D., & Woolard, M. D. (2014). Janus kinase 3 activity is necessary for phosphorylation of cytosolic phospholipase A2 and prostaglandin E2 synthesis by macrophages infected with Francisella tularensis live vaccine strain. Infection and Immunity, 82(3), 970–982.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Elimam, H., Papillon, J., Takano, T., & Cybulsky, A. V. (2013). Complement-mediated activation of calcium-independent phospholipase A2gamma: role of protein kinases and phosphorylation. The Journal of Biological Chemistry, 288(6), 3871–3885.PubMedCrossRefGoogle Scholar
  54. 54.
    Flower, R. J., & Blackwell, G. J. (1976). The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochemical Pharmacology, 25(3), 285–291.PubMedCrossRefGoogle Scholar
  55. 55.
    Loll, P. J., Picot, D., & Garavito, R. M. (1995). The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nature Structural Biology, 2(8), 637–643.PubMedCrossRefGoogle Scholar
  56. 56.
    Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Reviews, 33(1), 231–269.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lichtenberger, L. M., Zhou, Y., Jayaraman, V., Doyen, J. R., O'Neil, R. G., Dial, E. J., Volk, D. E., Gorenstein, D. G., Boggara, M. B., & Krishnamoorti, R. (2012). Insight into NSAID-induced membrane alterations, pathogenesis and therapeutics: characterization of interaction of NSAIDs with phosphatidylcholine. Biochimica et Biophysica Acta, 1821(7), 994–1002.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Patrignani, P., Sciulli, M. G., Manarini, S., Santini, G., Cerletti, C., & Evangelista, V. (1999). COX-2 is not involved in thromboxane biosynthesis by activated human platelets. Journal of Physiology and Pharmacology, 50(4), 661–667.PubMedGoogle Scholar
  59. 59.
    Fitzpatrick, F. A., & Gorman, R. R. (1977). Platelet rich plasma transforms exogenous prostaglandin endoperoxide H2 into thromboxane A2. Prostaglandins, 14(5), 881–889.PubMedCrossRefGoogle Scholar
  60. 60.
    Alusy, U. D., & Hammarstrom, S. (1977). Inhibitors of thromboxane synthase in human platelets. FEBS Letters, 82(1), 107–110.PubMedCrossRefGoogle Scholar
  61. 61.
    Steinert, B. W., Tang, D. G., Grossi, I. M., Umbarger, L. A., & Honn, K. V. (1993). Studies on the role of platelet eicosanoid metabolism and integrin alpha IIb beta 3 in tumor-cell-induced platelet aggregation. International Journal of Cancer, 54(1), 92–101.PubMedCrossRefGoogle Scholar
  62. 62.
    Dogne, J. M., de Leval, X., Kolh, P., Sanna, V., Rolin, S., Michaux, C., et al. (2003). Pharmacological evaluation of the novel thromboxane modulator BM-567 (I/II). Effects of BM-567 on platelet function. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68(1), 49–54.PubMedCrossRefGoogle Scholar
  63. 63.
    de Leval, X., Benoit, V., Delarge, J., Julemont, F., Masereel, B., Pirotte, B., et al. (2003). Pharmacological evaluation of the novel thromboxane modulator BM-567 (II/II). Effects of BM-567 on osteogenic sarcoma-cell-induced platelet aggregation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68(1), 55–59.PubMedCrossRefGoogle Scholar
  64. 64.
    Iizuka, K., Akahane, K., Momose, D., Nakazawa, M., Tanouchi, T., Kawamura, M., Ohyama, I., Kajiwara, I., Iguchi, Y., Okada, T., Taniguchi, K., Miyamoto, T., & Hayashi, M. (1981). Highly selective inhibitors of thromboxane synthetase. 1. Imidazole derivatives. Journal of Medicinal Chemistry, 24(10), 1139–1148.PubMedCrossRefGoogle Scholar
  65. 65.
    Uyama, O., Nagatsuka, K., Nakabayashi, S., Isaka, Y., Yoneda, S., Kimura, K., & Abe, H. (1985). The effect of a thromboxane synthetase inhibitor, OKY-046, on urinary excretion of immunoreactive thromboxane B2 and 6-keto-prostaglandin F1 alpha in patients with ischemic cerebrovascular disease. Stroke, 16(2), 241–244.PubMedCrossRefGoogle Scholar
  66. 66.
    Kosugi, T., Nakamura, M., Saitoh, S., Noguchi, S., Shimoji, T., & Minei, S. (1991). Changes in parameters of the coagulation-fibrinolysis system and platelet function after OKY-046 administration to patients with ruptured aneurysm of the cerebral artery. International Journal of Tissue Reactions, 13(1), 51–57.PubMedGoogle Scholar
  67. 67.
    Mehta, P., Lawson, D., Ward, M. B., Lee-Ambrose, L., & Kimura, A. (1986). Effects of thromboxane A2 inhibition on osteogenic sarcoma cell-induced platelet aggregation. Cancer Research, 46(10), 5061–5063.PubMedGoogle Scholar
  68. 68.
    Hoshino, M., Koyama, Y., Igarashi, W., Ono, T., Sato, N., Hatakeyama, Y., & Abe, R. (1993). An experimental study evaluating the efficacy of platelet aggregation inhibitory (OKY-046) for hepatic metastasis of VX2 carcinoma. Gan to Kagaku Ryoho, 20(11), 1578–1581.PubMedGoogle Scholar
  69. 69.
    Koyama, Y., Hoshino, M., Yamaki, T., Igarashi, W., Ono, T., Sato, N., Hatakeyama, Y., & Abe, R. (1994). An experimental study of the efficacy of platelet aggregating inhibitor on hepatic metastasis. Gan to Kagaku Ryoho, 21(13), 2124–2127.PubMedGoogle Scholar
  70. 70.
    Aoki, N., Johnson 3rd, G., Siegfried, M. R., & Lefer, A. M. (1989). Protective effects of a combination thromboxane synthesis inhibitor-receptor antagonist, R-68070, during murine traumatic shock. Eicosanoids, 2(3), 169–174.PubMedGoogle Scholar
  71. 71.
    Janssens, W. J., Cools, F. J., Hoskens, L. A., & Van Nueten, J. M. (1990). Effect of ridogrel on vascular contractions caused by vasoactive substances released during platelet activation. Thrombosis and Haemostasis, 64(1), 91–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Applova, L., Karlickova, J., Riha, M., Filipsky, T., Macakova, K., Spilkova, J., et al. (2017). The isoflavonoid tectorigenin has better antiplatelet potential than acetylsalicylic acid. Phytomedicine, 35, 11–17.PubMedCrossRefGoogle Scholar
  73. 73.
    Lonsdorf, A. S., Kramer, B. F., Fahrleitner, M., Schonberger, T., Gnerlich, S., Ring, S., et al. (2012). Engagement of alphaIIbbeta3 (GPIIb/IIIa) with alphanubeta3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. The Journal of Biological Chemistry, 287(3), 2168–2178.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang, C., Liu, Y., Gao, Y., Shen, J., Zheng, S., Wei, M., & Zeng, X. L. (2009). Modified heparins inhibit integrin alpha(IIb)beta(3) mediated adhesion of melanoma cells to platelets in vitro and in vivo. International Journal of Cancer, 125(9), 2058–2065.PubMedCrossRefGoogle Scholar
  75. 75.
    Cha, Y. I., Kim, S. H., Sepich, D., Buchanan, F. G., Solnica-Krezel, L., & DuBois, R. N. (2006). Cyclooxygenase-1-derived PGE2 promotes cell motility via the G-protein-coupled EP4 receptor during vertebrate gastrulation. Genes & Development, 20(1), 77–86.CrossRefGoogle Scholar
  76. 76.
    Friedman, E. A., Ogletree, M. L., Haddad, E. V., & Boutaud, O. (2015). Understanding the role of prostaglandin E2 in regulating human platelet activity in health and disease. Thrombosis Research, 136(3), 493–503.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kerr, D. J., Dunn, J. A., Langman, M. J., Smith, J. L., Midgley, R. S., Stanley, A., Stokes, J. C., Julier, P., Iveson, C., Duvvuri, R., McConkey, C., & VICTOR Trial Group. (2007). Rofecoxib and cardiovascular adverse events in adjuvant treatment of colorectal cancer. The New England Journal of Medicine, 357(4), 360–369.PubMedCrossRefGoogle Scholar
  78. 78.
    Solomon, S. D., Pfeffer, M. A., McMurray, J. J., Fowler, R., Finn, P., Levin, B., et al. (2006). Effect of celecoxib on cardiovascular events and blood pressure in two trials for the prevention of colorectal adenomas. Circulation, 114(10), 1028–1035.PubMedCrossRefGoogle Scholar
  79. 79.
    Jakobsson, P. J., Thoren, S., Morgenstern, R., & Samuelsson, B. (1999). Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7220–7225.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Prage, E. B., Pawelzik, S. C., Busenlehner, L. S., Kim, K., Morgenstern, R., Jakobsson, P. J., & Armstrong, R. N. (2011). Location of inhibitor binding sites in the human inducible prostaglandin E synthase, MPGES1. Biochemistry, 50(35), 7684–7693.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Fournier, T., Fadok, V., & Henson, P. M. (1997). Tumor necrosis factor-alpha inversely regulates prostaglandin D2 and prostaglandin E2 production in murine macrophages. Synergistic action of cyclic AMP on cyclooxygenase-2 expression and prostaglandin E2 synthesis. The Journal of Biological Chemistry, 272(49), 31065–31072.PubMedCrossRefGoogle Scholar
  82. 82.
    Chell, S., Kadi, A., Caroline Williams, A., & Paraskeva, C. (2006). Mediators of PGE2 synthesis and signalling downstream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1766(1), 104–119.CrossRefGoogle Scholar
  83. 83.
    Psarra, A., Nikolaou, A., Kokotou, M. G., Limnios, D., & Kokotos, G. (2017). Microsomal prostaglandin E2 synthase-1 inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 27(9), 1047–1059.PubMedCrossRefGoogle Scholar
  84. 84.
    El-Sheikh, A. A., van den Heuvel, J. J., Koenderink, J. B., & Russel, F. G. (2007). Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. The Journal of Pharmacology and Experimental Therapeutics, 320(1), 229–235.PubMedCrossRefGoogle Scholar
  85. 85.
    Russel, F. G., Koenderink, J. B., & Masereeuw, R. (2008). Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends in Pharmacological Sciences, 29(4), 200–207.PubMedCrossRefGoogle Scholar
  86. 86.
    Reid, G., Wielinga, P., Zelcer, N., van der Heijden, I., Kuil, A., de Haas, M., Wijnholds, J., & Borst, P. (2003). The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9244–9249.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kleberg, K., Jensen, G. M., Christensen, D. P., Lundh, M., Grunnet, L. G., Knuhtsen, S., Poulsen, S. S., Hansen, M. B., & Bindslev, N. (2012). Transporter function and cyclic AMP turnover in normal colonic mucosa from patients with and without colorectal neoplasia. BMC Gastroenterology, 12, 78.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Fink, S. P., Yamauchi, M., Nishihara, R., Jung, S., Kuchiba, A., Wu, K., et al. (2014). Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD). Sci Transl Med, 6(233), 233re232.CrossRefGoogle Scholar
  89. 89.
    Grossi, I. M., Fitzgerald, L. A., Kendall, A., Taylor, J. D., Sloane, B. F., & Honn, K. V. (1987). Inhibition of human tumor cell induced platelet aggregation by antibodies to platelet glycoproteins Ib and IIb/IIIa. Proceedings of the Society for Experimental Biology and Medicine, 186(3), 378–383.PubMedCrossRefGoogle Scholar
  90. 90.
    Bendas, G., & Borsig, L. (2012). Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. International Journal of Cell Biology, 2012, 676731.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Menter, D. G., Onoda, J. M., Moilanen, D., Sloane, B. F., Taylor, J. D., & Honn, K. V. (1987). Inhibition by prostacyclin of the tumor cell-induced platelet release reaction and platelet aggregation. Journal of the National Cancer Institute, 78(5), 961–969.PubMedGoogle Scholar
  92. 92.
    Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Umar, A., Steele, V. E., Menter, D. G., & Hawk, E. T. (2016). Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention. Seminars in Oncology, 43(1), 65–77.PubMedCrossRefGoogle Scholar
  94. 94.
    Huang, J. S., Ramamurthy, S. K., Lin, X., & Le Breton, G. C. (2004). Cell signalling through thromboxane A2 receptors. Cellular Signalling, 16(5), 521–533.PubMedCrossRefGoogle Scholar
  95. 95.
    Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. The Journal of Biological Chemistry, 282(16), 11613–11617.PubMedCrossRefGoogle Scholar
  96. 96.
    Kalinski, P. (2012). Regulation of immune responses by prostaglandin E2. Journal of Immunology, 188(1), 21–28.CrossRefGoogle Scholar
  97. 97.
    Katoh, H., Wang, D., Daikoku, T., Sun, H., Dey, S. K., & Dubois, R. N. (2013). CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell, 24(5), 631–644.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Wang, D., Wang, H., Brown, J., Daikoku, T., Ning, W., Shi, Q., Richmond, A., Strieter, R., Dey, S. K., & DuBois, R. N. (2006). CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. The Journal of Experimental Medicine, 203(4), 941–951.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Obermajer, N., & Kalinski, P. (2012). Key role of the positive feedback between PGE(2) and COX2 in the biology of myeloid-derived suppressor cells. Oncoimmunology, 1(5), 762–764.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Obermajer, N., Wong, J. L., Edwards, R. P., Odunsi, K., Moysich, K., & Kalinski, P. (2012). PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunological Investigations, 41(6–7), 635–657.PubMedCrossRefGoogle Scholar
  101. 101.
    Veltman, J. D., Lambers, M. E., van Nimwegen, M., Hendriks, R. W., Hoogsteden, H. C., Aerts, J. G., et al. (2010). COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer, 10, 464.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Fujita, M., Kohanbash, G., Fellows-Mayle, W., Hamilton, R. L., Komohara, Y., Decker, S. A., Ohlfest, J. R., & Okada, H. (2011). COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Research, 71(7), 2664–2674.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Sinha, P., Clements, V. K., Fulton, A. M., & Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Research, 67(9), 4507–4513.PubMedCrossRefGoogle Scholar
  104. 104.
    Ostrand-Rosenberg, S., & Sinha, P. (2009). Myeloid-derived suppressor cells: linking inflammation and cancer. Journal of Immunology, 182(8), 4499–4506.CrossRefGoogle Scholar
  105. 105.
    Rodriguez-Ubreva, J., Catala-Moll, F., Obermajer, N., Alvarez-Errico, D., Ramirez, R. N., Company, C., et al. (2017). Prostaglandin E2 leads to the acquisition of DNMT3A-dependent tolerogenic functions in human myeloid-derived suppressor cells. Cell Reports, 21(1), 154–167.PubMedCrossRefGoogle Scholar
  106. 106.
    Harris, S. G., Padilla, J., Koumas, L., Ray, D., & Phipps, R. P. (2002). Prostaglandins as modulators of immunity. Trends in Immunology, 23(3), 144–150.PubMedCrossRefGoogle Scholar
  107. 107.
    Moltu, K., Henjum, K., Oberprieler, N. G., Bjornbeth, B. A., & Tasken, K. (2017). Proximal signaling responses in peripheral T cells from colorectal cancer patients are affected by high concentrations of circulating prostaglandin E2. Human Immunology, 78(2), 129–137.PubMedCrossRefGoogle Scholar
  108. 108.
    Prima, V., Kaliberova, L. N., Kaliberov, S., Curiel, D. T., & Kusmartsev, S. (2017). COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proceedings of the National Academy of Sciences of the United States of America, 114(5), 1117–1122.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wang, J., Zhang, L., Kang, D., Yang, D., & Tang, Y. (2018). Activation of PGE2/EP2 and PGE2/EP4 signaling pathways positively regulate the level of PD-1 in infiltrating CD8(+) T cells in patients with lung cancer. Oncology Letters, 15(1), 552–558.PubMedGoogle Scholar
  110. 110.
    Goto, T., Herberman, R. B., Maluish, A., & Strong, D. M. (1983). Cyclic AMP as a mediator of prostaglandin E-induced suppression of human natural killer cell activity. Journal of Immunology, 130(3), 1350–1355.Google Scholar
  111. 111.
    Targan, S. R. (1981). The dual interaction of prostaglandin E2 (PGE2) and interferon (IFN) on NK lytic activation: enhanced capacity of effector-target lytic interactions (recycling) and blockage of pre-NK cell recruitment. Journal of Immunology, 127(4), 1424–1428.Google Scholar
  112. 112.
    Baratelli, F., Lin, Y., Zhu, L., Yang, S. C., Heuze-Vourc'h, N., Zeng, G., Reckamp, K., Dohadwala, M., Sharma, S., & Dubinett, S. M. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. Journal of Immunology, 175(3), 1483–1490.CrossRefGoogle Scholar
  113. 113.
    Sharma, S., Yang, S. C., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., Huang, M., Batra, R. K., & Dubinett, S. M. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Research, 65(12), 5211–5220.PubMedCrossRefGoogle Scholar
  114. 114.
    Harizi, H., & Gualde, N. (2002). Dendritic cells produce eicosanoids, which modulate generation and functions of antigen-presenting cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 66(5–6), 459–466.PubMedCrossRefGoogle Scholar
  115. 115.
    Slattery, M. L., Lundgreen, A., Bondurant, K. L., & Wolff, R. K. (2011). Tumor necrosis factor-related genes and colon and rectal cancer. International Journal of Molecular Epidemiology and Genetics, 2(4), 328–338.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Hackstein, H., Morelli, A. E., Larregina, A. T., Ganster, R. W., Papworth, G. D., Logar, A. J., Watkins, S. C., Falo, L. D., & Thomson, A. W. (2001). Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. Journal of Immunology, 166(12), 7053–7062.CrossRefGoogle Scholar
  117. 117.
    Vasandan, A. B., Jahnavi, S., Shashank, C., Prasad, P., Kumar, A., & Prasanna, S. J. (2016). Human mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Scientific Reports, 6, 38308.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Liu, L., Ge, D., Ma, L., Mei, J., Liu, S., Zhang, Q., Ren, F., Liao, H., Pu, Q., Wang, T., & You, Z. (2012). Interleukin-17 and prostaglandin E2 are involved in formation of an M2 macrophage-dominant microenvironment in lung cancer. Journal of Thoracic Oncology, 7(7), 1091–1100.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Heusinkveld, M., de Vos van Steenwijk, P. J., Goedemans, R., Ramwadhdoebe, T. H., Gorter, A., Welters, M. J., et al. (2011). M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. Journal of Immunology, 187(3), 1157–1165.CrossRefGoogle Scholar
  120. 120.
    Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., Ilkovitch, D., Schwendener, R. A., Iragavarapu-Charyulu, V., Cardentey, Y., Strbo, N., & Lopez, D. M. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Research, 69(11), 4800–4809.PubMedCrossRefGoogle Scholar
  121. 121.
    Yoshida, N., & Aoki, N. (1978). Release of arachidonic acid from human platelets. A key role for the potentiation of platelet aggregability in normal subjects as well as in those with nephrotic syndrome. Blood, 52(5), 969–977.PubMedGoogle Scholar
  122. 122.
    Derksen, A., & Cohen, P. (1975). Patterns of fatty acid release from endogenous substrates by human platelet homogenates and membranes. The Journal of Biological Chemistry, 250(24), 9342–9347.PubMedGoogle Scholar
  123. 123.
    Honn, K. V., Grossi, I. M., Diglio, C. A., Wojtukiewicz, M., & Taylor, J. D. (1989). Enhanced tumor cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-induced endothelial cell retraction. The FASEB Journal, 3(11), 2285–2293.PubMedCrossRefGoogle Scholar
  124. 124.
    Honn, K. V., Tang, D. G., Gao, X., Butovich, I. A., Liu, B., Timar, J., & Hagmann, W. (1994). 12-lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer Metastasis Reviews, 13(3–4), 365–396.PubMedCrossRefGoogle Scholar
  125. 125.
    McCabe, N. P., Selman, S. H., & Jankun, J. (2006). Vascular endothelial growth factor production in human prostate cancer cells is stimulated by overexpression of platelet 12-lipoxygenase. Prostate, 66(7), 779–787.PubMedCrossRefGoogle Scholar
  126. 126.
    Honn, K. V., Timar, J., Rozhin, J., Bazaz, R., Sameni, M., Ziegler, G., et al. (1994). A lipoxygenase metabolite, 12-(S)-HETE, stimulates protein kinase C-mediated release of cathepsin B from malignant cells. Experimental Cell Research, 214(1), 120–130.PubMedCrossRefGoogle Scholar
  127. 127.
    Raso, E., Tovari, J., Toth, K., Paku, S., Trikha, M., Honn, K. V., et al. (2001). Ectopic alphaIIbbeta3 integrin signaling involves 12-lipoxygenase- and PKC-mediated serine phosphorylation events in melanoma cells. Thrombosis and Haemostasis, 85(6), 1037–1042.PubMedCrossRefGoogle Scholar
  128. 128.
    Silletti, S., Timar, J., Honn, K. V., & Raz, A. (1994). Autocrine motility factor induces differential 12-lipoxygenase expression and activity in high- and low-metastatic K1735 melanoma cell variants. Cancer Research, 54(22), 5752–5756.PubMedGoogle Scholar
  129. 129.
    Tang, D. G., Tarrien, M., Dobrzynski, P., & Honn, K. V. (1995). Melanoma cell spreading on fibronectin induced by 12(S)-HETE involves both protein kinase C- and protein tyrosine kinase-dependent focal adhesion formation and tyrosine phosphorylation of focal adhesion kinase (pp125FAK). Journal of Cellular Physiology, 165(2), 291–306.PubMedCrossRefGoogle Scholar
  130. 130.
    Timar, J., Raso, E., Fazakas, Z. S., Silletti, S., Raz, A., & Honn, K. V. (1996). Multiple use of a signal transduction pathway in tumor cell invasion. Anticancer Research, 16(6A), 3299–3306.PubMedGoogle Scholar
  131. 131.
    Timar, J., Trikha, M., Szekeres, K., Bazaz, R., Tovari, J., Silletti, S., Raz, A., & Honn, K. V. (1996). Autocrine motility factor signals integrin-mediated metastatic melanoma cell adhesion and invasion. Cancer Research, 56(8), 1902–1908.PubMedGoogle Scholar
  132. 132.
    Rowlinson, S. W., Crews, B. C., Goodwin, D. C., Schneider, C., Gierse, J. K., & Marnett, L. J. (2000). Spatial requirements for 15-(R)-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid synthesis within the cyclooxygenase active site of murine COX-2. Why acetylated COX-1 does not synthesize 15-(R)-hete. The Journal of Biological Chemistry, 275(9), 6586–6591.PubMedCrossRefGoogle Scholar
  133. 133.
    Park, S. W., Heo, D. S., & Sung, M. W. (2012). The shunting of arachidonic acid metabolism to 5-lipoxygenase and cytochrome p450 epoxygenase antagonizes the anti-cancer effect of cyclooxygenase-2 inhibition in head and neck cancer cells. Cellular Oncology (Dordrecht), 35(1), 1–8.CrossRefGoogle Scholar
  134. 134.
    Ganesh, R., Marks, D. J., Sales, K., Winslet, M. C., & Seifalian, A. M. (2012). Cyclooxygenase/lipoxygenase shunting lowers the anti-cancer effect of cyclooxygenase-2 inhibition in colorectal cancer cells. World Journal of Surgical Oncology, 10, 200.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Melstrom, L. G., Bentrem, D. J., Salabat, M. R., Kennedy, T. J., Ding, X. Z., Strouch, M., Rao, S. M., Witt, R. C., Ternent, C. A., Talamonti, M. S., Bell, R. H., & Adrian, T. A. (2008). Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clinical Cancer Research, 14(20), 6525–6530.PubMedCrossRefGoogle Scholar
  136. 136.
    Tam, V. C. (2013). Lipidomic profiling of bioactive lipids by mass spectrometry during microbial infections. Seminars in Immunology, 25(3), 240–248.PubMedCrossRefGoogle Scholar
  137. 137.
    Evangelista, V., Celardo, A., Dell'Elba, G., Manarini, S., Mironov, A., de Gaetano, G., & Cerletti, C. (1999). Platelet contribution to leukotriene production in inflammation: in vivo evidence in the rabbit. Thrombosis and Haemostasis, 81(3), 442–448.PubMedCrossRefGoogle Scholar
  138. 138.
    Spite, M., Claria, J., & Serhan, C. N. (2014). Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metabolism, 19(1), 21–36.PubMedCrossRefGoogle Scholar
  139. 139.
    Umar, A. (2012). Is 15-LOX-1 a tumor suppressor? Journal of the National Cancer Institute, 104(9), 645–647.PubMedCrossRefGoogle Scholar
  140. 140.
    Serhan, C. N., Yang, R., Martinod, K., Kasuga, K., Pillai, P. S., Porter, T. F., Oh, S. F., & Spite, M. (2009). Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. The Journal of Experimental Medicine, 206(1), 15–23.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Spite, M., & Serhan, C. N. (2010). Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circulation Research, 107(10), 1170–1184.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Krishnamoorthy, N., Burkett, P. R., Dalli, J., Abdulnour, R. E., Colas, R., Ramon, S., et al. (2015). Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. Journal of Immunology, 194(3), 863–867.CrossRefGoogle Scholar
  143. 143.
    Serhan, C. N. (2014). Pro-resolving lipid mediators are leads for resolution physiology. Nature, 510(7503), 92–101.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Serhan, C. N., Gotlinger, K., Hong, S., Lu, Y., Siegelman, J., Baer, T., Yang, R., Colgan, S. P., & Petasis, N. A. (2006). Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. Journal of Immunology, 176(3), 1848–1859.CrossRefGoogle Scholar
  145. 145.
    Cerella, C., Michiels, C., Dashwood, R. H., Surh, Y. J., & Diederich, M. (2013). Metabolism and cancer: old and new players. International Journal of Cell and Biology, 2013, 293201.Google Scholar
  146. 146.
    Spitz, G. A., Furtado, C. M., Sola-Penna, M., & Zancan, P. (2009). Acetylsalicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure and activity. Biochemical Pharmacology, 77(1), 46–53.PubMedCrossRefGoogle Scholar
  147. 147.
    Marimuthu, S., Chivukula, R. S., Alfonso, L. F., Moridani, M., Hagen, F. K., & Bhat, G. J. (2011). Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: Identification of novel targets. International Journal of Oncology, 39(5), 1273–1283.PubMedGoogle Scholar
  148. 148.
    Wang, J., Zhang, C. J., Zhang, J., He, Y., Lee, Y. M., Chen, S., Lim, T. K., Ng, S., Shen, H. M., & Lin, Q. (2015). Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (QA-ABPP). Scientific Reports, 5, 7896.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Tewari, D., Majumdar, D., Vallabhaneni, S., & Bera, A. K. (2017). Aspirin induces cell death by directly modulating mitochondrial voltage-dependent anion channel (VDAC). Scientific Reports, 7, 45184.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Soma, P., Swanepoel, A. C., du Plooy, J. N., Mqoco, T., & Pretorius, E. (2016). Flow cytometric analysis of platelets type 2 diabetes mellitus reveals ‘angry’ platelets. Cardiovascular Diabetology, 15, 52.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Okada, S., Morimoto, T., Ogawa, H., Sakuma, M., Matsumoto, C., Soejima, H., Nakayama, M., Doi, N., Jinnouchi, H., Waki, M., Masuda, I., Saito, Y., & JPAD Trial Investigators. (2018). Effect of aspirin on cancer chemoprevention in Japanese patients with type 2 diabetes: 10-year observational follow-up of a randomized controlled trial. Diabetes Care, 41(8), 1757–1764.PubMedCrossRefGoogle Scholar
  152. 152.
    Hundal, R. S., Petersen, K. F., Mayerson, A. B., Randhawa, P. S., Inzucchi, S., Shoelson, S. E., & Shulman, G. I. (2002). Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. The Journal of Clinical Investigation, 109(10), 1321–1326.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Zhang, Y., Liu, L., Fan, P., Bauer, N., Gladkich, J., Ryschich, E., Bazhin, A. V., Giese, N. A., Strobel, O., Hackert, T., Hinz, U., Gross, W., Fortunato, F., & Herr, I. (2015). Aspirin counteracts cancer stem cell features, desmoplasia and gemcitabine resistance in pancreatic cancer. Oncotarget, 6(12), 9999–10015.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Ai, G., Dachineni, R., Kumar, D. R., Marimuthu, S., Alfonso, L. F., & Bhat, G. J. (2016). Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53. Tumour Biology, 37(5), 6007–6016.PubMedCrossRefGoogle Scholar
  155. 155.
    Din, F. V., Valanciute, A., Houde, V. P., Zibrova, D., Green, K. A., Sakamoto, K., et al. (2012). Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology, 142(7), 1504–1515 e1503.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Khan, K. M., Kothari, P., Du, B., Dannenberg, A. J., & Falcone, D. J. (2012). Matrix metalloproteinase-dependent microsomal prostaglandin E synthase-1 expression in macrophages: role of TNF-alpha and the EP4 prostanoid receptor. Journal of Immunology, 188(4), 1970–1980.CrossRefGoogle Scholar
  157. 157.
    Pathi, S., Jutooru, I., Chadalapaka, G., Nair, V., Lee, S. O., & Safe, S. (2012). Aspirin inhibits colon cancer cell and tumor growth and downregulates specificity protein (Sp) transcription factors. PLoS One, 7(10), e48208.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Bousser, M. G., Amarenco, P., Chamorro, A., Fisher, M., Ford, I., Fox, K. M., Hennerici, M. G., Mattle, H. P., Rothwell, P. M., de Cordoüe, A., & Fratacci, M. D. (2011). Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet, 377(9782), 2013–2022.PubMedCrossRefGoogle Scholar
  159. 159.
    Chan, A. T., Arber, N., Burn, J., Chia, W. K., Elwood, P., Hull, M. A., Logan, R. F., Rothwell, P. M., Schror, K., & Baron, J. A. (2012). Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prevention Research (Philadelphia, Pa.), 5(2), 164–178.CrossRefGoogle Scholar
  160. 160.
    Chan, A. T., & Cook, N. R. (2012). Are we ready to recommend aspirin for cancer prevention? Lancet, 379(9826), 1569–1571.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Cuzick, J., Thorat, M. A., Bosetti, C., Brown, P. H., Burn, J., Cook, N. R., Ford, L. G., Jacobs, E. J., Jankowski, J. A., la Vecchia, C., Law, M., Meyskens, F., Rothwell, P. M., Senn, H. J., & Umar, A. (2015). Estimates of benefits and harms of prophylactic use of aspirin in the general population. Annals of Oncology, 26(1), 47–57.PubMedCrossRefGoogle Scholar
  162. 162.
    Goldstein, L. B., & Rothwell, P. M. (2012). Advances in prevention and health services delivery 2010-2011. Stroke, 43(2), 298–299.PubMedCrossRefGoogle Scholar
  163. 163.
    Langley, R. E., & Rothwell, P. M. (2013). Potential biomarker for aspirin use in colorectal cancer therapy. Nature Reviews. Clinical Oncology, 10(1), 8–10.PubMedCrossRefGoogle Scholar
  164. 164.
    Langley, R. E., & Rothwell, P. M. (2014). Aspirin in gastrointestinal oncology: new data on an old friend. Current Opinion in Oncology, 26(4), 441–447.PubMedCrossRefGoogle Scholar
  165. 165.
    Rothwell, P. M. (2013). Alternate-day, low-dose aspirin and cancer risk. Annals of Internal Medicine, 159(2), 148–150.PubMedCrossRefGoogle Scholar
  166. 166.
    Walker, J., Hutchison, P., Ge, J., Zhao, D., Wang, Y., Rothwell, P. M., et al. (2018). Aspirin: 120 years of innovation. A report from the 2017 Scientific Conference of the International Aspirin Foundation, 14 September 2017, Charite, Berlin. Ecancermedicalscience, 12, p. 813.Google Scholar
  167. 167.
    Chan, A. T., & Moayyedi, P. (2018). Signature celebration of gastroenterology, colorectal cancer. Gastroenterology, 154(4), 767–770.PubMedCrossRefGoogle Scholar
  168. 168.
    Drew, D. A., Cao, Y., & Chan, A. T. (2016). Aspirin and colorectal cancer: the promise of precision chemoprevention. Nature Reviews. Cancer, 16(3), 173–186.PubMedCrossRefGoogle Scholar
  169. 169.
    Cao, Y., Nishihara, R., Wu, K., Wang, M., Ogino, S., Willett, W. C., Spiegelman, D., Fuchs, C. S., Giovannucci, E. L., & Chan, A. T. (2016). Population-wide impact of long-term use of aspirin and the risk for cancer. JAMA Oncology, 2(6), 762–769.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Pinckard, R. N., Hawkins, D., & Farr, R. S. (1968). In vitro acetylation of plasma proteins, enzymes and DNA by aspirin. Nature, 219(5149), 68–69.PubMedCrossRefGoogle Scholar
  171. 171.
    Macdonald, J. M., LeBlanc, D. A., Haas, A. L., & London, R. E. (1999). An NMR analysis of the reaction of ubiquitin with [acetyl-1-13C]aspirin. Biochemical Pharmacology, 57(11), 1233–1244.PubMedCrossRefGoogle Scholar
  172. 172.
    Liyasova, M. S., Schopfer, L. M., & Lockridge, O. (2010). Reaction of human albumin with aspirin in vitro: mass spectrometric identification of acetylated lysines 199, 402, 519, and 545. Biochemical Pharmacology, 79(5), 784–791.PubMedCrossRefGoogle Scholar
  173. 173.
    Lei, J., Zhou, Y., Xie, D., & Zhang, Y. (2015). Mechanistic insights into a classic wonder drug-aspirin. Journal of the American Chemical Society, 137(1), 70–73.PubMedCrossRefGoogle Scholar
  174. 174.
    Kovacs, E. G., Katona, E., Bereczky, Z., Homorodi, N., Balogh, L., Toth, E., et al. (2013). New direct and indirect methods for the detection of cyclooxygenase 1 acetylation by aspirin; the lack of aspirin resistance among healthy individuals. Thrombosis Research, 131(4), 320–324.PubMedCrossRefGoogle Scholar
  175. 175.
    Antithrombotic Trialists, C., Baigent, C., Blackwell, L., Collins, R., Emberson, J., Godwin, J., et al. (2009). Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet, 373(9678), 1849–1860.CrossRefGoogle Scholar
  176. 176.
    Force, U. S. P. S. T. (2009). Aspirin for the prevention of cardiovascular disease: U.S. preventive services task force recommendation statement. Annals of Internal Medicine, 150(6), 396–404.CrossRefGoogle Scholar
  177. 177.
    Rothwell, P. M., Price, J. F., Fowkes, F. G., Zanchetti, A., Roncaglioni, M. C., Tognoni, G., et al. (2012). Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet, 379(9826), 1602–1612.PubMedCrossRefGoogle Scholar
  178. 178.
    Bosetti, C., Rosato, V., Gallus, S., Cuzick, J., & La Vecchia, C. (2012). Aspirin and cancer risk: a quantitative review to 2011. Annals of Oncology, 23(6), 1403–1415.PubMedCrossRefGoogle Scholar
  179. 179.
    Bardia, A., Ebbert, J. O., Vierkant, R. A., Limburg, P. J., Anderson, K., Wang, A. H., Olson, J. E., Vachon, C. M., & Cerhan, J. R. (2007). Association of aspirin and nonaspirin nonsteroidal anti-inflammatory drugs with cancer incidence and mortality. Journal of the National Cancer Institute, 99(11), 881–889.PubMedCrossRefGoogle Scholar
  180. 180.
    Chan, A. T., Manson, J. E., Feskanich, D., Stampfer, M. J., Colditz, G. A., & Fuchs, C. S. (2007). Long-term aspirin use and mortality in women. Archives of Internal Medicine, 167(6), 562–572.PubMedCrossRefGoogle Scholar
  181. 181.
    Jacobs, E. J., Newton, C. C., Gapstur, S. M., & Thun, M. J. (2012). Daily aspirin use and cancer mortality in a large US cohort. Journal of the National Cancer Institute, 104(16), 1208–1217.PubMedCrossRefGoogle Scholar
  182. 182.
    Sandler, R. S., Halabi, S., Baron, J. A., Budinger, S., Paskett, E., Keresztes, R., Petrelli, N., Pipas, J. M., Karp, D. D., Loprinzi, C. L., Steinbach, G., & Schilsky, R. (2003). A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. The New England Journal of Medicine, 348(10), 883–890.PubMedCrossRefGoogle Scholar
  183. 183.
    Baron, J. A., Cole, B. F., Sandler, R. S., Haile, R. W., Ahnen, D., Bresalier, R., McKeown-Eyssen, G., Summers, R. W., Rothstein, R., Burke, C. A., Snover, D. C., Church, T. R., Allen, J. I., Beach, M., Beck, G. J., Bond, J. H., Byers, T., Greenberg, E. R., Mandel, J. S., Marcon, N., Mott, L. A., Pearson, L., Saibil, F., & van Stolk, R. U. (2003). A randomized trial of aspirin to prevent colorectal adenomas. The New England Journal of Medicine, 348(10), 891–899.PubMedCrossRefGoogle Scholar
  184. 184.
    Benamouzig, R., Deyra, J., Martin, A., Girard, B., Jullian, E., Piednoir, B., Couturier, D., Coste, T., Little, J., & Chaussade, S. (2003). Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology, 125(2), 328–336.PubMedCrossRefGoogle Scholar
  185. 185.
    Arber, N., Eagle, C. J., Spicak, J., Racz, I., Dite, P., Hajer, J., et al. (2006). Celecoxib for the prevention of colorectal adenomatous polyps. The New England Journal of Medicine, 355(9), 885–895.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Preeti Kanikarla-Marie
    • 1
  • Scott Kopetz
    • 1
  • Ernest T. Hawk
    • 2
  • Steven W. Millward
    • 3
  • Anil K. Sood
    • 4
    • 5
    • 6
  • Paolo Gresele
    • 7
  • Michael Overman
    • 1
  • Kenneth Honn
    • 8
    • 9
    • 10
    • 11
  • David G. Menter
    • 1
    Email author
  1. 1.Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Office of the Vice President Cancer Prevention and Population ScienceThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Cancer Systems ImagingThe University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.Gynocologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA
  5. 5.Department of Cancer BiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  6. 6.Center for RNA Interference and Non-Coding RNAThe University of Texas MD Anderson Cancer CenterHoustonUSA
  7. 7.Department of Medicine, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
  8. 8.Bioactive Lipids Research Program, Department of PathologyWayne State UniversityDetroitUSA
  9. 9.Department of PathologyWayne State University School of MedicineDetroitUSA
  10. 10.Cancer Biology DivisionWayne State University School of MedicineDetroitUSA
  11. 11.Department of Gastrointestinal Medical OncologyM. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations