Advertisement

Cancer and Metastasis Reviews

, Volume 37, Issue 2–3, pp 203–211 | Cite as

Stress, inflammation, and eicosanoids: an emerging perspective

  • Sujanitha Umamaheswaran
  • Santosh K. Dasari
  • Peiying Yang
  • Susan K. Lutgendorf
  • Anil K. SoodEmail author
Article

Abstract

Clinical and experimental studies support the notion that adrenergic stimulation and chronic stress affect inflammation, metabolism, and tumor growth. Eicosanoids are also known to heavily influence inflammation while regulating certain stress responses. However, additional work is needed to understand the full extent of interactions between the stress-related pathways and eicosanoids. Here, we review the potential influences that stress, inflammation, and metabolic pathways have on each other, in the context of eicosanoids. Understanding the intricacies of such interactions could provide insights on how systemic metabolic effects mediated by the stress pathways can be translated into therapies for cancer and other diseases.

Keywords

Eicosanoids PGE2 Inflammation Stress Cancer 

Notes

Funding information

This work is supported, in part, by the National Institutes of Health (CA016672, CA109298, CA193249, UH3TR000943, P50 CA217685, P50 CA083639, R35 CA209904), Ovarian Cancer Research Fund, Inc. (Program Project Development Grant), the Blanton-Davis Ovarian Cancer Research Program, the American Cancer Society Research Professor Award, and the Frank McGraw Memorial Chair in Cancer Research (A.K.S.).

References

  1. 1.
    Antoni, M. H., Lutgendorf, S. K., Cole, S. W., Dhabhar, F. S., Sephton, S. E., McDonald, P. G., Stefanek, M., & Sood, A. K. (2006). The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nature Reviews. Cancer, 6(3), 240–248.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Glaser, R., & Kiecolt-Glaser, J. K. (2005). Stress-induced immune dysfunction: implications for health. Nature Reviews. Immunology, 5(3), 243–251.PubMedCrossRefGoogle Scholar
  3. 3.
    Charmandari, E., Tsigos, C., & Chrousos, G. (2005). Endocrinology of the stress response. Annual Review of Physiology, 67, 259–284.PubMedCrossRefGoogle Scholar
  4. 4.
    McEwen, B. S. (2002). Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiology of Aging, 23(5), 921–939.PubMedCrossRefGoogle Scholar
  5. 5.
    Penninx, B. W., et al. (1998). Chronically depressed mood and cancer risk in older persons. Journal of the National Cancer Institute, 90(24), 1888–1893.PubMedCrossRefGoogle Scholar
  6. 6.
    Duijts, S. F., Zeegers, M. P., & Borne, B. V. (2003). The association between stressful life events and breast cancer risk: a meta-analysis. International Journal of Cancer, 107(6), 1023–1029.PubMedCrossRefGoogle Scholar
  7. 7.
    Bleiker, E. M., et al. (2008). Personality factors and breast cancer risk: a 13-year follow-up. Journal of the National Cancer Institute, 100(3), 213–218.PubMedCrossRefGoogle Scholar
  8. 8.
    Price, M. A., Tennant, C. C., Smith, R. C., Butow, P. N., Kennedy, S. J., Kossoff, M. B., & Dunn, S. M. (2001). The role of psychosocial factors in the development of breast carcinoma: part I. The cancer prone personality. Cancer, 91(4), 679–685.PubMedCrossRefGoogle Scholar
  9. 9.
    Chida, Y., Hamer, M., Wardle, J., & Steptoe, A. (2008). Do stress-related psychosocial factors contribute to cancer incidence and survival? Nature Clinical Practice. Oncology, 5(8), 466–475.PubMedCrossRefGoogle Scholar
  10. 10.
    Selye, H. (1998). A syndrome produced by diverse nocuous agents. 1936. The Journal of Neuropsychiatry and Clinical Neurosciences, 10(2), 230–231.PubMedCrossRefGoogle Scholar
  11. 11.
    Reiche, E. M., Nunes, S. O., & Morimoto, H. K. (2004). Stress, depression, the immune system, and cancer. The Lancet Oncology, 5(10), 617–625.PubMedCrossRefGoogle Scholar
  12. 12.
    Cole, S. W., Nagaraja, A. S., Lutgendorf, S. K., Green, P. A., & Sood, A. K. (2015). Sympathetic nervous system regulation of the tumour microenvironment. Nature Reviews. Cancer, 15(9), 563–572.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hassan, S., Karpova, Y., Baiz, D., Yancey, D., Pullikuth, A., Flores, A., Register, T., Cline, J. M., D’Agostino R Jr, Danial, N., Datta, S. R., & Kulik, G. (2013). Behavioral stress accelerates prostate cancer development in mice. The Journal of Clinical Investigation, 123(2), 874–886.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kruk, J., & Aboul-Enein, H. Y. (2004). Psychological stress and the risk of breast cancer: a case-control study. Cancer Detection and Prevention, 28(6), 399–408.PubMedCrossRefGoogle Scholar
  15. 15.
    Lutgendorf, S. K., de Geest, K., Bender, D., Ahmed, A., Goodheart, M. J., Dahmoush, L., Zimmerman, M. B., Penedo, F. J., Lucci III, J. A., Ganjei-Azar, P., Thaker, P. H., Mendez, L., Lubaroff, D. M., Slavich, G. M., Cole, S. W., & Sood, A. K. (2012). Social influences on clinical outcomes of patients with ovarian cancer. Journal of Clinical Oncology, 30(23), 2885–2890.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ramirez, A. J., Craig, T. K., Watson, J. P., Fentiman, I. S., North, W. R., & Rubens, R. D. (1989). Stress and relapse of breast cancer. BMJ, 298(6669), 291–293.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Thaker, P. H., Han, L. Y., Kamat, A. A., Arevalo, J. M., Takahashi, R., Lu, C., Jennings, N. B., Armaiz-Pena, G., Bankson, J. A., Ravoori, M., Merritt, W. M., Lin, Y. G., Mangala, L. S., Kim, T. J., Coleman, R. L., Landen, C. N., Li, Y., Felix, E., Sanguino, A. M., Newman, R. A., Lloyd, M., Gershenson, D. M., Kundra, V., Lopez-Berestein, G., Lutgendorf, S. K., Cole, S. W., & Sood, A. K. (2006). Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nature Medicine, 12(8), 939–944.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang, H. M., Liao, Z. X., Komaki, R., Welsh, J. W., O’Reilly, M. S., Chang, J. Y., Zhuang, Y., Levy, L. B., Lu, C., & Gomez, D. R. (2013). Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Annals of Oncology, 24(5), 1312–1319.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Nagaraja, A. S., Dorniak, P. L., Sadaoui, N. C., Kang, Y., Lin, T., Armaiz-Pena, G., Wu, S. Y., Rupaimoole, R., Allen, J. K., Gharpure, K. M., Pradeep, S., Zand, B., Previs, R. A., Hansen, J. M., Ivan, C., Rodriguez-Aguayo, C., Yang, P., Lopez-Berestein, G., Lutgendorf, S. K., Cole, S. W., & Sood, A. K. (2016). Sustained adrenergic signaling leads to increased metastasis in ovarian cancer via increased PGE2 synthesis. Oncogene, 35(18), 2390–2397.PubMedCrossRefGoogle Scholar
  20. 20.
    Sanders, V. M., & Straub, R. H. (2002). Norepinephrine, the beta-adrenergic receptor, and immunity. Brain, Behavior, and Immunity, 16(4), 290–332.PubMedCrossRefGoogle Scholar
  21. 21.
    Jean, D., & Bar-Eli, M. (2000). Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. Molecular and Cellular Biochemistry, 212(1–2), 19–28.PubMedCrossRefGoogle Scholar
  22. 22.
    Sood, A. K., Bhatty, R., Kamat, A. A., Landen, C. N., Han, L., Thaker, P. H., Li, Y., Gershenson, D. M., Lutgendorf, S., & Cole, S. W. (2006). Stress hormone-mediated invasion of ovarian cancer cells. Clinical Cancer Research, 12(2), 369–375.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yang, E. V., Sood, A. K., Chen, M., Li, Y., Eubank, T. D., Marsh, C. B., Jewell, S., Flavahan, N. A., Morrison, C., Yeh, P. E., Lemeshow, S., & Glaser, R. (2006). Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Research, 66(21), 10357–10364.PubMedCrossRefGoogle Scholar
  24. 24.
    Landen Jr., C. N., et al. (2007). Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Research, 67(21), 10389–10396.PubMedCrossRefGoogle Scholar
  25. 25.
    Li, W., Yu, C. P., Xia, J. T., Zhang, L., Weng, G. X., Zheng, H. Q., Kong, Q. L., Hu, L. J., Zeng, M. S., Zeng, Y. X., Li, M., Li, J., & Song, L. B. (2009). Sphingosine kinase 1 is associated with gastric cancer progression and poor survival of patients. Clinical Cancer Research, 15(4), 1393–1399.PubMedCrossRefGoogle Scholar
  26. 26.
    Hansen-Petrik, M. B., McEntee, M., Jull, B., Shi, H., Zemel, M. B., & Whelan, J. (2002). Prostaglandin E(2) protects intestinal tumors from nonsteroidal anti-inflammatory drug-induced regression in Apc(min/+) mice. Cancer Research, 62(2), 403–408.PubMedGoogle Scholar
  27. 27.
    Yan, M., Myung, S. J., Fink, S. P., Lawrence, E., Lutterbaugh, J., Yang, P., Zhou, X., Liu, D., Rerko, R. M., Willis, J., Dawson, D., Tai, H. H., Barnholtz-Sloan, J. S., Newman, R. A., Bertagnolli, M. M., & Markowitz, S. D. (2009). 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9409–9413.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Colby, J. K., et al. (2008). Progressive metaplastic and dysplastic changes in mouse pancreas induced by cyclooxygenase-2 overexpression. Neoplasia, 10(8), 782–796.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lewis, R. A., Austen, K. F., & Soberman, R. J. (1990). Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. The New England Journal of Medicine, 323(10), 645–655.PubMedCrossRefGoogle Scholar
  31. 31.
    Agarwal, S., Reddy, G. V., & Reddanna, P. (2009). Eicosanoids in inflammation and cancer: the role of COX-2. Expert Review of Clinical Immunology, 5(2), 145–165.PubMedCrossRefGoogle Scholar
  32. 32.
    Harizi, H., Corcuff, J. B., & Gualde, N. (2008). Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends in Molecular Medicine, 14(10), 461–469.PubMedCrossRefGoogle Scholar
  33. 33.
    Ruder, E. H., Laiyemo, A. O., Graubard, B. I., Hollenbeck, A. R., Schatzkin, A., & Cross, A. J. (2011). Non-steroidal anti-inflammatory drugs and colorectal cancer risk in a large, prospective cohort. The American Journal of Gastroenterology, 106(7), 1340–1350.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kuo, C. N., Pan, J. J., Huang, Y. W., Tsai, H. J., & Chang, W. C. (2018). Association between nonsteroidal anti-inflammatory drugs and colorectal cancer: a population-based case-control study. Cancer Epidemiology, Biomarkers & Prevention.Google Scholar
  35. 35.
    Harris, R. E. (2009). Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology, 17(2), 55–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Gurpinar, E., Grizzle, W. E., & Piazza, G. A. (2014). NSAIDs inhibit tumorigenesis, but how? Clinical Cancer Research, 20(5), 1104–1113.PubMedCrossRefGoogle Scholar
  37. 37.
    Narumiya, S. (2007). Physiology and pathophysiology of prostanoid receptors. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 83(9–10), 296–319.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Brown, J. R., & DuBois, R. N. (2005). COX-2: a molecular target for colorectal cancer prevention. Journal of Clinical Oncology, 23(12), 2840–2855.PubMedCrossRefGoogle Scholar
  39. 39.
    Sebaldt, R. J., Sheller, J. R., Oates, J. A., Roberts, L. J., & FitzGerald, G. A. (1990). Inhibition of eicosanoid biosynthesis by glucocorticoids in humans. Proceedings of the National Academy of Sciences of the United States of America, 87(18), 6974–6978.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Masferrer, J. L., Seibert, K., Zweifel, B., & Needleman, P. (1992). Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proceedings of the National Academy of Sciences of the United States of America, 89(9), 3917–3921.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Brenner, T., Boneh, A., Shohami, E., Abramsky, O., & Weidenfeld, J. (1992). Glucocorticoid regulation of eicosanoid production by glial cells under basal and stimulated conditions. Journal of Neuroimmunology, 40(2–3), 273–279.PubMedCrossRefGoogle Scholar
  42. 42.
    Fu, J. Y., Masferrer, J. L., Seibert, K., Raz, A., & Needleman, P. (1990). The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. The Journal of Biological Chemistry, 265(28), 16737–16740.PubMedGoogle Scholar
  43. 43.
    Chatzopoulou, A., Heijmans, J. P. M., Burgerhout, E., Oskam, N., Spaink, H. P., Meijer, A. H., & Schaaf, M. J. M. (2016). Glucocorticoid-induced attenuation of the inflammatory response in zebrafish. Endocrinology, 157(7), 2772–2784.PubMedCrossRefGoogle Scholar
  44. 44.
    Tahir, A., Bileck, A., Muqaku, B., Niederstaetter, L., Kreutz, D., Mayer, R. L., Wolrab, D., Meier, S. M., Slany, A., & Gerner, C. (2017). Combined proteome and eicosanoid profiling approach for revealing implications of human fibroblasts in chronic inflammation. Analytical Chemistry, 89(3), 1945–1954.PubMedCrossRefGoogle Scholar
  45. 45.
    Furuyashiki, T., & Narumiya, S. (2011). Stress responses: the contribution of prostaglandin E(2) and its receptors. Nature Reviews. Endocrinology, 7(3), 163–175.PubMedCrossRefGoogle Scholar
  46. 46.
    Elander, L., Engstrom, L., Ruud, J., Mackerlova, L., Jakobsson, P. J., Engblom, D., Nilsberth, C., & Blomqvist, A. (2009). Inducible prostaglandin E2 synthesis interacts in a temporally supplementary sequence with constitutive prostaglandin-synthesizing enzymes in creating the hypothalamic-pituitary-adrenal axis response to immune challenge. The Journal of Neuroscience, 29(5), 1404–1413.PubMedCrossRefGoogle Scholar
  47. 47.
    Elmquist, J. K., Breder, C. D., Sherin, J. E., Scammell, T. E., Hickey, W. F., Dewitt, D., & Saper, C. B. (1997). Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. The Journal of Comparative Neurology, 381(2), 119–129.PubMedCrossRefGoogle Scholar
  48. 48.
    Elander, L., Ruud, J., Korotkova, M., Jakobsson, P. J., & Blomqvist, A. (2010). Cyclooxygenase-1 mediates the immediate corticosterone response to peripheral immune challenge induced by lipopolysaccharide. Neuroscience Letters, 470(1), 10–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Garcia-Bueno, B., Serrats, J., & Sawchenko, P. E. (2009). Cerebrovascular cyclooxygenase-1 expression, regulation, and role in hypothalamic-pituitary-adrenal axis activation by inflammatory stimuli. The Journal of Neuroscience, 29(41), 12970–12981.PubMedCrossRefGoogle Scholar
  50. 50.
    Turnbull, A. V., & Rivier, C. L. (1999). Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiological Reviews, 79(1), 1–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Matsuoka, Y., Furuyashiki, T., Bito, H., Ushikubi, F., Tanaka, Y., Kobayashi, T., Muro, S., Satoh, N., Kayahara, T., Higashi, M., Mizoguchi, A., Shichi, H., Fukuda, Y., Nakao, K., & Narumiya, S. (2003). Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 4132–4137.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ericsson, A., Arias, C., & Sawchenko, P. E. (1997). Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. The Journal of Neuroscience, 17(18), 7166–7179.PubMedCrossRefGoogle Scholar
  53. 53.
    Matsuoka, Y., Furuyashiki, T., Yamada, K., Nagai, T., Bito, H., Tanaka, Y., Kitaoka, S., Ushikubi, F., Nabeshima, T., & Narumiya, S. (2005). Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proceedings of the National Academy of Sciences of the United States of America, 102(44), 16066–16071.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Garcia-Bueno, B., et al. (2008). Stress mediators regulate brain prostaglandin synthesis and peroxisome proliferator-activated receptor-gamma activation after stress in rats. Endocrinology, 149(4), 1969–1978.PubMedCrossRefGoogle Scholar
  55. 55.
    Yamagata, K., Andreasson, K. I., Kaufmann, W. E., Barnes, C. A., & Worley, P. F. (1993). Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron, 11(2), 371–386.PubMedCrossRefGoogle Scholar
  56. 56.
    McLemore, T. L., et al. (1988). Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Research, 48(11), 3140–3147.PubMedGoogle Scholar
  57. 57.
    Rigas, B., Goldman, I. S., & Levine, L. (1993). Altered eicosanoid levels in human colon cancer. The Journal of Laboratory and Clinical Medicine, 122(5), 518–523.PubMedGoogle Scholar
  58. 58.
    Wang, D., & Dubois, R. N. (2004). Cyclooxygenase-2: a potential target in breast cancer. Seminars in Oncology, 31(1 Suppl 3), 64–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Allen, J. K., Armaiz-Pena, G. N., Nagaraja, A. S., Sadaoui, N. C., Ortiz, T., Dood, R., Ozcan, M., Herder, D. M., Haemerrle, M., Gharpure, K. M., Rupaimoole, R., Previs, R., Wu, S. Y., Pradeep, S., Xu, X., Dong Han, H., Zand, B., Dalton, H. J., Taylor, M., Hu, W., Bottsford-Miller, J., Moreno-Smith, M., Kang, Y., Mangala, L. S., Rodriguez-Aguayo, C., Sehgal, V., Spaeth, E. L., Ram, P. T., Wong, S. T. C., Marini, F. C., Lopez-Berestein, G., Cole, S. W., Lutgendorf, S. K., diBiasi, M., & Sood, A. K. (2018). Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. In Cancer Res (p. canres.1701.2016).Google Scholar
  60. 60.
    Renz, B. W., et al. (2018). β2 Adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell, 33(1), 75–90 e7.PubMedCrossRefGoogle Scholar
  61. 61.
    Sloan, E. K., Capitanio, J. P., & Cole, S. W. (2008). Stress-induced remodeling of lymphoid innervation. Brain, Behavior, and Immunity, 22(1), 15–21.PubMedCrossRefGoogle Scholar
  62. 62.
    Gosain, A., Jones, S. B., Shankar, R., Gamelli, R. L., & DiPietro, L. A. (2006). Norepinephrine modulates the inflammatory and proliferative phases of wound healing. The Journal of Trauma, 60(4), 736–744.PubMedCrossRefGoogle Scholar
  63. 63.
    Sivamani, R. K., Pullar, C. E., Manabat-Hidalgo, C. G., Rocke, D. M., Carlsen, R. C., Greenhalgh, D. G., & Isseroff, R. R. (2009). Stress-mediated increases in systemic and local epinephrine impair skin wound healing: potential new indication for beta blockers. PLoS Medicine, 6(1), e12.PubMedCrossRefGoogle Scholar
  64. 64.
    Felten, D. L., et al. (1985). Noradrenergic and peptidergic innervation of lymphoid tissue. Journal of Immunology, 135(2 Suppl), 755s–765s.Google Scholar
  65. 65.
    Felten, S. Y., & Olschowka, J. (1987). Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synapticlike contacts on lymphocytes in the splenic white pulp. Journal of Neuroscience Research, 18(1), 37–48.PubMedCrossRefGoogle Scholar
  66. 66.
    Maestroni, G. J., & Mazzola, P. (2003). Langerhans cells beta 2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity. Journal of Neuroimmunology, 144(1–2), 91–99.PubMedCrossRefGoogle Scholar
  67. 67.
    Saint-Mezard, P., Chavagnac, C., Bosset, S., Ionescu, M., Peyron, E., Kaiserlian, D., Nicolas, J. F., & Berard, F. (2003). Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo. Journal of Immunology, 171(8), 4073–4080.CrossRefGoogle Scholar
  68. 68.
    Seiffert, K., Hosoi, J., Torii, H., Ozawa, H., Ding, W., Campton, K., Wagner, J. A., & Granstein, R. D. (2002). Catecholamines inhibit the antigen-presenting capability of epidermal Langerhans cells. Journal of Immunology, 168(12), 6128–6135.CrossRefGoogle Scholar
  69. 69.
    Manni, M., Granstein, R. D., & Maestroni, G. (2011). β2-Adrenergic agonists bias TLR-2 and NOD2 activated dendritic cells towards inducing an IL-17 immune response. Cytokine, 55(3), 380–386.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Yanagawa, Y., Matsumoto, M., & Togashi, H. (2011). Adrenoceptor-mediated enhancement of interleukin-33 production by dendritic cells. Brain, Behavior, and Immunity, 25(7), 1427–1433.PubMedCrossRefGoogle Scholar
  71. 71.
    Alaniz, R. C., Thomas, S. A., Perez-Melgosa, M., Mueller, K., Farr, A. G., Palmiter, R. D., & Wilson, C. B. (1999). Dopamine beta-hydroxylase deficiency impairs cellular immunity. Proceedings of the National Academy of Sciences of the United States of America, 96(5), 2274–2278.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Swanson, M. A., Lee, W. T., & Sanders, V. M. (2001). IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine. Journal of Immunology, 166(1), 232–240.CrossRefGoogle Scholar
  73. 73.
    Guereschi, M. G., Araujo, L. P., Maricato, J. T., Takenaka, M. C., Nascimento, V. M., Vivanco, B. C., Reis, V. O., Keller, A. C., Brum, P. C., & Basso, A. S. (2013). Beta2-adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner. European Journal of Immunology, 43(4), 1001–1012.PubMedCrossRefGoogle Scholar
  74. 74.
    Vida, G., et al. (2011). β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. The FASEB Journal, 25(12), 4476–4485.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Benschop, R. J., Jacobs, R., Sommer, B., Schürmeyer, T. H., Raab, J. R., Schmidt, R. E., & Schedlowski, M. (1996). Modulation of the immunologic response to acute stress in humans by beta-blockade or benzodiazepines. The FASEB Journal, 10(4), 517–524.PubMedCrossRefGoogle Scholar
  76. 76.
    Mathews, P. M., et al. (1983). Enhancement of natural cytotoxicity by beta-endorphin. Journal of Immunology, 130(4), 1658–1662.Google Scholar
  77. 77.
    Deng, J., Muthu, K., Gamelli, R., Shankar, R., & Jones, S. B. (2004). Adrenergic modulation of splenic macrophage cytokine release in polymicrobial sepsis. American Journal of Physiology. Cell Physiology, 287(3), C730–C736.PubMedCrossRefGoogle Scholar
  78. 78.
    Elenkov, I. J., et al. (1996). Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications. Proceedings of the Association of American Physicians, 108(5), 374–381.PubMedGoogle Scholar
  79. 79.
    Hetier, E., Ayala, J., Bousseau, A., & Prochiantz, A. (1991). Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells. Experimental Brain Research, 86(2), 407–413.PubMedCrossRefGoogle Scholar
  80. 80.
    Panina-Bordignon, P., Mazzeo, D., Lucia, P. D., D’Ambrosio, D., Lang, R., Fabbri, L., Self, C., & Sinigaglia, F. (1997). Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. The Journal of Clinical Investigation, 100(6), 1513–1519.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Heijnen, C. J., van der Voort, C. R., Wulffraat, N., van der Net, J., Kuis, W., & Kavelaars, A. (1996). Functional alpha 1-adrenergic receptors on leukocytes of patients with polyarticular juvenile rheumatoid arthritis. Journal of Neuroimmunology, 71(1–2), 223–226.PubMedCrossRefGoogle Scholar
  82. 82.
    Spengler, R. N., et al. (1990). Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. Journal of Immunology, 145(5), 1430–1434.Google Scholar
  83. 83.
    Szelenyi, J., Kiss, J. P., & Vizi, E. S. (2000). Differential involvement of sympathetic nervous system and immune system in the modulation of TNF-alpha production by alpha2- and beta-adrenoceptors in mice. Journal of Neuroimmunology, 103(1), 34–40.PubMedCrossRefGoogle Scholar
  84. 84.
    Madden, K. S., Szpunar, M. J., & Brown, E. B. (2011). Beta-Adrenergic receptors (beta-AR) regulate VEGF and IL-6 production by divergent pathways in high beta-AR-expressing breast cancer cell lines. Breast Cancer Research and Treatment, 130(3), 747–758.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Sloan, E. K., Priceman, S. J., Cox, B. F., Yu, S., Pimentel, M. A., Tangkanangnukul, V., Arevalo, J. M. G., Morizono, K., Karanikolas, B. D. W., Wu, L., Sood, A. K., & Cole, S. W. (2010). The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Research, 70(18), 7042–7052.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Waight, J. D., Netherby, C., Hensen, M. L., Miller, A., Hu, Q., Liu, S., Bogner, P. N., Farren, M. R., Lee, K. P., Liu, K., & Abrams, S. I. (2013). Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. The Journal of Clinical Investigation, 123(10), 4464–4478.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9(3), 162–174.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ostrand-Rosenberg, S., Sinha, P., Beury, D. W., & Clements, V. K. (2012). Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Seminars in Cancer Biology, 22(4), 275–281.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Jin, J., Wang, X., Wang, Q., Guo, X., Cao, J., Zhang, X., Zhu, T., Zhang, D., Wang, W., Wang, J., Shen, B., Gao, X., Shi, Y., & Zhang, J. (2013). Chronic psychological stress induces the accumulation of myeloid-derived suppressor cells in mice. PLoS One, 8(9), e74497.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ben-Eliyahu, S., et al. (1999). Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. International Journal of Cancer, 80(6), 880–888.PubMedCrossRefGoogle Scholar
  91. 91.
    Benish, M., Bartal, I., Goldfarb, Y., Levi, B., Avraham, R., Raz, A., & Ben-Eliyahu, S. (2008). Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Annals of Surgical Oncology, 15(7), 2042–2052.PubMedCrossRefGoogle Scholar
  92. 92.
    Shaashua, L., Shabat-Simon, M., Haldar, R., Matzner, P., Zmora, O., Shabtai, M., Sharon, E., Allweis, T., Barshack, I., Hayman, L., Arevalo, J., Ma, J., Horowitz, M., Cole, S., & Ben-Eliyahu, S. (2017). Perioperative COX-2 and beta-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clinical Cancer Research, 23(16), 4651–4661.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Noonan, D. M., de Lerma Barbaro, A., Vannini, N., Mortara, L., & Albini, A. (2008). Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Reviews, 27(1), 31–40.PubMedCrossRefGoogle Scholar
  94. 94.
    Sheibanie, A. F., Yen, J. H., Khayrullina, T., Emig, F., Zhang, M., Tuma, R., & Ganea, D. (2007). The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23->IL-17 axis. Journal of Immunology, 178(12), 8138–8147.CrossRefGoogle Scholar
  95. 95.
    Boniface, K., Bak-Jensen, K. S., Li, Y., Blumenschein, W. M., McGeachy, M. J., McClanahan, T. K., McKenzie, B. S., Kastelein, R. A., Cua, D. J., & de Waal Malefyt, R. (2009). Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. The Journal of Experimental Medicine, 206(3), 535–548.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Chizzolini, C., Chicheportiche, R., Alvarez, M., de Rham, C., Roux-Lombard, P., Ferrari-Lacraz, S., & Dayer, J. M. (2008). Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood, 112(9), 3696–3703.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Prescott, S. M., & Fitzpatrick, F. A. (2000). Cyclooxygenase-2 and carcinogenesis. Biochimica et Biophysica Acta, 1470(2), M69–M78.PubMedGoogle Scholar
  98. 98.
    Oshima, M., Dinchuk, J. E., Kargman, S. L., Oshima, H., Hancock, B., Kwong, E., Trzaskos, J. M., Evans, J. F., & Taketo, M. M. (1996). Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 87(5), 803–809.PubMedCrossRefGoogle Scholar
  99. 99.
    Obermajer, N., Wong, J. L., Edwards, R. P., Odunsi, K., Moysich, K., & Kalinski, P. (2012). PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunological Investigations, 41(6–7), 635–657.PubMedCrossRefGoogle Scholar
  100. 100.
    Huang, Y., Lichtenberger, L. M., Taylor, M., Bottsford-Miller, J. N., Haemmerle, M., Wagner, M. J., Lyons, Y., Pradeep, S., Hu, W., Previs, R. A., Hansen, J. M., Fang, D., Dorniak, P. L., Filant, J., Dial, E. J., Shen, F., Hatakeyama, H., & Sood, A. K. (2016). Antitumor and antiangiogenic effects of aspirin-PC in ovarian cancer. Molecular Cancer Therapeutics, 15(12), 2894–2904.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Brencicova, E., Jagger, A. L., Evans, H. G., Georgouli, M., Laios, A., Attard Montalto, S., Mehra, G., Spencer, J., Ahmed, A. A., Raju-Kankipati, S., Taams, L. S., & Diebold, S. S. (2017). Interleukin-10 and prostaglandin E2 have complementary but distinct suppressive effects on Toll-like receptor-mediated dendritic cell activation in ovarian carcinoma. PLoS One, 12(4), e0175712.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Yao, C., Sakata, D., Esaki, Y., Li, Y., Matsuoka, T., Kuroiwa, K., Sugimoto, Y., & Narumiya, S. (2009). Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nature Medicine, 15(6), 633–640.PubMedCrossRefGoogle Scholar
  103. 103.
    Bomalaski, J. S., Dundee, D., Brophy, L., & Clark, M. A. (1990). Leukotriene B4 modulates phospholipid methylation and chemotaxis in human polymorphonuclear leukocytes. Journal of Leukocyte Biology, 47(1), 1–12.PubMedCrossRefGoogle Scholar
  104. 104.
    Haribabu, B., Verghese, M. W., Steeber, D. A., Sellars, D. D., Bock, C. B., & Snyderman, R. (2000). Targeted disruption of the leukotriene B(4) receptor in mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis. The Journal of Experimental Medicine, 192(3), 433–438.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Islam, S. A., Thomas, S. Y., Hess, C., Medoff, B. D., Means, T. K., Brander, C., Lilly, C. M., Tager, A. M., & Luster, A. D. (2006). The leukotriene B4 lipid chemoattractant receptor BLT1 defines antigen-primed T cells in humans. Blood, 107(2), 444–453.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Woo, C. H., You, H. J., Cho, S. H., Eom, Y. W., Chun, J. S., Yoo, Y. J., & Kim, J. H. (2002). Leukotriene B(4) stimulates Rac-ERK cascade to generate reactive oxygen species that mediates chemotaxis. The Journal of Biological Chemistry, 277(10), 8572–8578.PubMedCrossRefGoogle Scholar
  107. 107.
    Henderson Jr., W. R., et al. (1996). The importance of leukotrienes in airway inflammation in a mouse model of asthma. The Journal of Experimental Medicine, 184(4), 1483–1494.PubMedCrossRefGoogle Scholar
  108. 108.
    Park, J., Park, S. Y., & Kim, J. H. (2016). Leukotriene B4 receptor-2 contributes to chemoresistance of SK-OV-3 ovarian cancer cells through activation of signal transducer and activator of transcription-3-linked cascade. Biochimica et Biophysica Acta, 1863(2), 236–243.PubMedCrossRefGoogle Scholar
  109. 109.
    Wen, Z., Liu, H., Li, M., Li, B., Gao, W., Shao, Q., Fan, B., Zhao, F., Wang, Q., Xie, Q., Yang, Y., Yu, J., & Qu, X. (2015). Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene, 34(10), 1241–1252.PubMedCrossRefGoogle Scholar
  110. 110.
    Fruhbeck, G., et al. (2001). The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. American Journal of Physiology. Endocrinology and Metabolism, 280(6), E827–E847.PubMedCrossRefGoogle Scholar
  111. 111.
    Fearon, K. C., Glass, D. J., & Guttridge, D. C. (2012). Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metabolism, 16(2), 153–166.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sujanitha Umamaheswaran
    • 1
    • 2
  • Santosh K. Dasari
    • 1
  • Peiying Yang
    • 3
  • Susan K. Lutgendorf
    • 4
    • 5
    • 6
    • 7
  • Anil K. Sood
    • 1
    • 2
    • 8
    Email author
  1. 1.Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Cancer BiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of Palliative, Rehabilitation and Integrative MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.Department of Psychological and Brain SciencesUniversity of IowaIowa CityUSA
  5. 5.Department of Obstetrics and GynecologyUniversity of IowaIowa CityUSA
  6. 6.Department of UrologyUniversity of IowaIowa CityUSA
  7. 7.Holden Comprehensive Cancer CenterUniversity of IowaIowa CityUSA
  8. 8.Center for RNA Interference and Non-coding RNAThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations