Advertisement

Cancer and Metastasis Reviews

, Volume 37, Issue 2–3, pp 347–354 | Cite as

Role of prostaglandins in tumor microenvironment

  • Koji Kobayashi
  • Keisuke Omori
  • Takahisa MurataEmail author
Article

Abstract

Tumor tissue is composed of tumor cells and surrounding non-tumor endothelial and immune cells, collectively known as the tumor microenvironment. Tumor cells manipulate tumor microenvironment to obtain sufficient oxygen and nutrient supply, and evade anti-tumor immunosurveillance. Various types of signaling molecules, including cytokines, chemokines, growth factors, and lipid mediators, are secreted, which co-operate to make up the complex tumor microenvironment. Prostaglandins, cyclooxygenase metabolites of arachidonic acid, are abundantly produced in tumor tissues. Ever since treatment with nonsteroidal anti-inflammatory drugs showed anti-tumor effect in mouse models and human patients by inhibiting whole prostaglandin production, investigators have focused on the importance of prostaglandins in tumor malignancies. However, most studies that followed focused on the role of an eminent prostaglandin, prostaglandin E2, in tumor onset, growth, and metastasis. It remained unclear how other prostaglandin species affected tumor malignancies. Recently, we identified prostaglandin D2, a well-known sleep-inducing prostaglandin, as a factor with strong anti-angiogenic and anti-tumor properties, in genetically modified mice. In this review, we summarize recent studies focusing on the importance of prostaglandins and their metabolites in the tumor microenvironment.

Keywords

Prostaglandin Tumor microenvironment Angiogenesis Tumor immunity 

Notes

Funding information

This study is supported by the Japan Society for the Promotion of Science, Futaba Electronics Memorial Foundation, Hoyu Science Foundation, the Naito Foundation, the Nipponham Foundation, and the Skylark Food Science Institute.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322.  https://doi.org/10.1016/j.ccr.2012.02.022.CrossRefPubMedGoogle Scholar
  2. 2.
    Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. The New England Journal of Medicine, 285(21), 1182–1186.  https://doi.org/10.1056/NEJM197111182852108.CrossRefPubMedGoogle Scholar
  3. 3.
    Goel, S., Duda, D. G., Xu, L., Munn, L. L., Boucher, Y., Fukumura, D., & Jain, R. K. (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiological Reviews, 91(3), 1071–1121.  https://doi.org/10.1152/physrev.00038.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Eklund, L., Bry, M., & Alitalo, K. (2013). Mouse models for studying angiogenesis and lymphangiogenesis in cancer. Molecular Oncology, 7(2), 259–282.  https://doi.org/10.1016/j.molonc.2013.02.007.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shalapour, S., & Karin, M. (2015). Immunity, inflammation, and cancer: an eternal fight between good and evil. Journal of Clinical Investigation, 125(9), 3347–3355.  https://doi.org/10.1172/JCI80007.CrossRefPubMedGoogle Scholar
  6. 6.
    Sukari, A., Nagasaka, M., Al-Hadidi, A., & Lum, L. G. (2016). Cancer immunology and immunotherapy. Anticancer Research, 36(11), 5593–5606.  https://doi.org/10.21873/anticanres.11144.CrossRefPubMedGoogle Scholar
  7. 7.
    Narumiya, S., Sugimoto, Y., & Ushikubi, F. (1999). Prostanoid receptors: structures, properties, and functions. Physiological Reviews, 79(4), 1193–1226.  https://doi.org/10.1152/physrev.1999.79.4.1193.CrossRefPubMedGoogle Scholar
  8. 8.
    Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. Journal of Biological Chemistry, 282(16), 11613–11617.  https://doi.org/10.1074/jbc.R600038200.CrossRefPubMedGoogle Scholar
  9. 9.
    Omori, K., Kida, T., Hori, M., Ozaki, H., & Murata, T. (2014). Multiple roles of the PGE2-EP receptor signal in vascular permeability. British Journal of Pharmacology, 171(21), 4879–4889.  https://doi.org/10.1111/bph.12815.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sarashina, H., Tsubosaka, Y., Omori, K., Aritake, K., Nakagawa, T., Hori, M., Hirai, H., Nakamura, M., Narumiya, S., Urade, Y., Ozaki, H., & Murata, T. (2014). Opposing immunomodulatory roles of prostaglandin D2 during the progression of skin inflammation. Journal of Immunology, 192(1), 459–465.  https://doi.org/10.4049/jimmunol.1302080.CrossRefGoogle Scholar
  11. 11.
    Murata, T., Aritake, K., Tsubosaka, Y., Maruyama, T., Nakagawa, T., Hori, M., Hirai, H., Nakamura, M., Narumiya, S., Urade, Y., & Ozaki, H. (2013). Anti-inflammatory role of PGD2 in acute lung inflammation and therapeutic application of its signal enhancement. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 5205–5210.  https://doi.org/10.1073/pnas.1218091110.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kune, G. A., Kune, S., & Watson, L. F. (1988). Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Research, 48(15), 4399–4404.PubMedGoogle Scholar
  13. 13.
    Logan, R. F., Little, J., Hawtin, P. G., & Hardcastle, J. D. (1993). Effect of aspirin and non-steroidal anti-inflammatory drugs on colorectal adenomas: case-control study of subjects participating in the Nottingham faecal occult blood screening programme. BMJ, 307(6899), 285–289.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Funkhouser, E. M., & Sharp, G. B. (1995). Aspirin and reduced risk of esophageal carcinoma. Cancer, 76(7), 1116–1119.CrossRefPubMedGoogle Scholar
  15. 15.
    Farrow, D. C., Vaughan, T. L., Hansten, P. D., Stanford, J. L., Risch, H. A., Gammon, M. D., et al. (1998). Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric cancer. Cancer Epidemiology, Biomarkers & Prevention, 7(2), 97–102.Google Scholar
  16. 16.
    Zhao, X., Xu, Z., & Li, H. (2017). NSAIDs use and reduced metastasis in cancer patients: results from a meta-analysis. Scientific Reports, 7(1), 1875.  https://doi.org/10.1038/s41598-017-01644-0.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tomozawa, S., Tsuno, N. H., Sunami, E., Hatano, K., Kitayama, J., Osada, T., Saito, S., Tsuruo, T., Shibata, Y., & Nagawa, H. (2000). Cyclooxygenase-2 overexpression correlates with tumour recurrence, especially haematogenous metastasis, of colorectal cancer. British Journal of Cancer, 83(3), 324–328.  https://doi.org/10.1054/bjoc.2000.1270.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Denkert, C., Winzer, K. J., Muller, B. M., Weichert, W., Pest, S., Kobel, M., et al. (2003). Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer, 97(12), 2978–2987.  https://doi.org/10.1002/Cncr.11437.CrossRefPubMedGoogle Scholar
  19. 19.
    Steinbach, G., Lynch, P. M., Phillips, R. K., Wallace, M. H., Hawk, E., Gordon, G. B., et al. (2000). The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. The New England Journal of Medicine, 342(26), 1946–1952.  https://doi.org/10.1056/NEJM200006293422603.CrossRefPubMedGoogle Scholar
  20. 20.
    Oshima, M., Dinchuk, J. E., Kargman, S. L., Oshima, H., Hancock, B., Kwong, E., Trzaskos, J. M., Evans, J. F., & Taketo, M. M. (1996). Suppression of intestinal polyposis in Apc(Delta 716) knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 87(5), 803–809.  https://doi.org/10.1016/S0092-8674(00)81988-1.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen, E. P., Markosyan, N., Connolly, E., Lawson, J. A., Li, X. W., Grant, G. R., et al. (2014). Myeloid cell COX-2 deletion reduces mammary tumor growth through enhanced cytotoxic T-lymphocyte function. Carcinogenesis, 35(8), 1788–1797.  https://doi.org/10.1093/carcin/bgu053.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Basu, G. D., Pathangey, L. B., Tinder, T. L., LaGioia, M., Gendler, S. J., & Mukherjee, P. (2004). Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer. Molecular Cancer Research, 2(11), 632–642.PubMedGoogle Scholar
  23. 23.
    Yoshinaka, R., Shibata, M. A., Morimoto, J., Tanigawa, N., & Otsuki, Y. (2006). COX-2 inhibitor celecoxib suppresses tumor growth and lung metastasis of a murine mammary cancer. Anticancer Research, 26(6B), 4245–4254.PubMedGoogle Scholar
  24. 24.
    Fujita, M., Kohanbash, G., Fellows-Mayle, W., Hamilton, R. L., Komohara, Y., Decker, S. A., Ohlfest, J. R., & Okada, H. (2011). COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Research, 71(7), 2664–2674.  https://doi.org/10.1158/0008-5472.CAN-10-3055.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liu, B., Qu, L., & Yan, S. (2015). Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell International, 15, 106.  https://doi.org/10.1186/s12935-015-0260-7.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Salvado, M. D., Alfranca, A., Haeggstrom, J. Z., & Redondo, J. M. (2012). Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2. Trends in Molecular Medicine, 18(4), 233–243.  https://doi.org/10.1016/j.molmed.2012.02.002.CrossRefPubMedGoogle Scholar
  27. 27.
    Gudis, K., Tatsuguchi, A., Wada, K., Futagami, S., Nagata, K., Hiratsuka, T., Shinji, Y., Miyake, K., Tsukui, T., Fukuda, Y., & Sakamoto, C. (2005). Microsomal prostaglandin E synthase (mPGES)-1, mPGES-2 and cytosolic PGES expression in human gastritis and gastric ulcer tissue. Laboratory Investigation, 85(2), 225–236.  https://doi.org/10.1038/labinvest.3700200.CrossRefPubMedGoogle Scholar
  28. 28.
    Ushikubi, F., Segi, E., Sugimoto, Y., Murata, T., Matsuoka, T., Kobayashi, T., Hizaki, H., Tuboi, K., Katsuyama, M., Ichikawa, A., Tanaka, T., Yoshida, N., & Narumiya, S. (1998). Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature, 395(6699), 281–284.CrossRefPubMedGoogle Scholar
  29. 29.
    Ueno, A., Matsumoto, H., Naraba, H., Ikeda, Y., Ushikubi, F., Matsuoka, T., Narumiya, S., Sugimoto, Y., Ichikawa, A., & Oh-ishi, S. (2001). Major roles of prostanoid receptors IP and EP3 in endotoxin-induced enhancement of pain perception. Biochemical Pharmacology, 62(2), 157–160.  https://doi.org/10.1016/S0006-2952(01)00654-2.CrossRefPubMedGoogle Scholar
  30. 30.
    Sander, W. J., O’Neill, H. G., & Pohl, C. H. (2017). Prostaglandin E2 as a modulator of viral infections. Frontiers in Physiology, 8, 89.  https://doi.org/10.3389/Fphys.2017.00089.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sakata, D., Yao, C. C., & Narumiya, S. (2010). Prostaglandin E2, an immunoactivator. Journal of Pharmacological Sciences, 112(1), 1–5.  https://doi.org/10.1254/jphs.09R03CP.CrossRefPubMedGoogle Scholar
  32. 32.
    O’Flaherty, J. T., Wooten, R. E., Samuel, M. P., Thomas, M. J., Levine, E. A., Case, L. D., et al. (2013). Fatty acid metabolites in rapidly proliferating breast cancer. PLoS One, 8(5), e63076.  https://doi.org/10.1371/journal.pone.0063076.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yip-Schneider, M. T., Carr, R. A., Wu, H., & Schmidt, C. M. (2017). Prostaglandin E2: a pancreatic fluid biomarker of intraductal papillary mucinous neoplasm dysplasia. Journal of the American College of Surgeons, 225(4), 481–487.  https://doi.org/10.1016/j.jamcollsurg.2017.07.521.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Form, D. M., & Auerbach, R. (1983). PGE2 and angiogenesis. Proceedings of the Society for Experimental Biology and Medicine, 172(2), 214–218.CrossRefPubMedGoogle Scholar
  35. 35.
    Gomez, I., Foudi, N., Longrois, D., & Norel, X. (2013). The role of prostaglandin E2 in human vascular inflammation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 89(2–3), 55–63.  https://doi.org/10.1016/j.plefa.2013.04.004.CrossRefPubMedGoogle Scholar
  36. 36.
    Tamura, K., Sakurai, T., & Kogo, H. (2006). Relationship between prostaglandin E2 and vascular endothelial growth factor (VEGF) in angiogenesis in human vascular endothelial cells. Vascular Pharmacology, 44(6), 411–416.  https://doi.org/10.1016/j.vph.2006.02.009.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang, Y. S., & Daaka, Y. (2011). PGE2 promotes angiogenesis through EP4 and PKAC gamma pathway. Blood, 118(19), 5355–5364.  https://doi.org/10.1182/blood-2011-04-350587.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rao, R., Redha, R., Macias-Perez, I., Su, Y., Hao, C. M., Zent, R., et al. (2007). Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. Journal of Biological Chemistry, 282(23), 16959–16968.  https://doi.org/10.1074/jbc.M701214200.CrossRefPubMedGoogle Scholar
  39. 39.
    Kamiyama, M., Pozzi, A., Yang, L., DeBusk, L. M., Breyer, R. M., & Lin, P. C. (2006). EP2, a receptor for PGE2, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene, 25(53), 7019–7028.  https://doi.org/10.1038/sj.onc.1209694.CrossRefPubMedGoogle Scholar
  40. 40.
    Xin, X. P., Majumder, M., Girish, G. V., Mohindra, V., Maruyama, T., & Lala, P. K. (2012). Targeting COX-2 and EP4 to control tumor growth, angiogenesis, lymphangiogenesis and metastasis to the lungs and lymph nodes in a breast cancer model. Laboratory Investigation, 92(8), 1115–1128.  https://doi.org/10.1038/labinvest.2012.90.CrossRefPubMedGoogle Scholar
  41. 41.
    Hosono, K., Suzuki, T., Tamaki, H., Sakagami, H., Hayashi, I., Narumiya, S., Alitalo, K., & Majima, M. (2011). Roles of prostaglandin E2-EP3/EP4 receptor signaling in the enhancement of lymphangiogenesis during fibroblast growth Factor-2-induced granulation formation. Arteriosclerosis Thrombosis and Vascular Biology, 31(5), 1049–U1246.  https://doi.org/10.1161/Atvbaha.110.222356. CrossRefGoogle Scholar
  42. 42.
    Majumder, M., Xin, X. P., Liu, L., Girish, G. V., & Lala, P. K. (2014). Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Science, 105(9), 1142–1151.  https://doi.org/10.1111/cas.12475.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Li, H., Edin, M. L., Gruzdev, A., Cheng, J., Bradbury, J. A., Graves, J. P., DeGraff, L. M., & Zeldin, D. C. (2013). Regulation of T helper cell subsets by cyclooxygenases and their metabolites. Prostaglandins & Other Lipid Mediators, 104, 74–83.  https://doi.org/10.1016/j.prostaglandins.2012.11.002.CrossRefGoogle Scholar
  44. 44.
    Kalinski, P. (2012). Regulation of immune responses by prostaglandin E2. Journal of Immunology, 188(1), 21–28.  https://doi.org/10.4049/jimmunol.1101029.CrossRefGoogle Scholar
  45. 45.
    Prima, V., Kaliberova, L. N., Kaliberov, S., Curiel, D. T., & Kusmartsev, S. (2017). COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proceedings of the National Academy of Sciences of the United States of America, 114(5), 1117–1122.  https://doi.org/10.1073/pnas.1612920114.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Miao, J., Lu, X., Hu, Y. F., Piao, C. M., Wu, X., Liu, X. S., et al. (2017). Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget, 8(52), 89802–89810.  https://doi.org/10.18632/oncotarget.21155. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zelenay, S., van der Veen, A. G., Bottcher, J. P., Snelgrove, K. J., Rogers, N., Acton, S. E., et al. (2015). Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell, 162(6), 1257–1270.  https://doi.org/10.1016/j.cell.2015.08.015.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wu, K. K., & Liou, J. Y. (2005). Cellular and molecular biology of prostacyclin synthase. Biochemical and Biophysical Research Communications, 338(1), 45–52.  https://doi.org/10.1016/j.bbrc.2005.08.021.CrossRefPubMedGoogle Scholar
  49. 49.
    Gray, S. G., Cathcart, M. C., Al-Sarraf, N., Boyle, E., Kay, E., McGovern, E., et al. (2009). Expression and epigenetic regulation of prostacyclin synthase in non-small cell lung cancer. Journal of Thoracic Oncology, 4(9), S606–S606.Google Scholar
  50. 50.
    Osawa, T., Ohga, N., Hida, Y., Kitayama, K., Akiyama, K., Onodera, Y., Fujie, M., Shinohara, N., Shindoh, M., Nonomura, K., & Hida, K. (2012). Prostacyclin receptor in tumor endothelial cells promotes angiogenesis in an autocrine manner. Cancer Science, 103(6), 1038–1044.  https://doi.org/10.1111/j.1349-7006.2012.02261.x.CrossRefPubMedGoogle Scholar
  51. 51.
    Turner, E. C., Mulvaney, E. P., Reid, H. M., & Kinsella, B. T. (2011). Interaction of the human prostacyclin receptor with the PDZ adapter protein PDZK1: role in endothelial cell migration and angiogenesis. Molecular Biology of the Cell, 22(15), 2664–2679.  https://doi.org/10.1091/mbc.E11-04-0374.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Minami, Y., Sasaki, T., Bochimoto, H., Kawabe, J., Endo, S., Hira, Y., et al. (2015). Prostaglandin I2 analog suppresses lung metastasis by recruiting pericytes in tumor angiogenesis. International Journal of Oncology, 46(2), 548–554.  https://doi.org/10.3892/ijo.2014.2783.CrossRefPubMedGoogle Scholar
  53. 53.
    Sasaki, Y., Kamiyama, S., Kamiyama, A., Matsumoto, K., Akatsu, M., Nakatani, Y., Kuwata, H., Ishikawa, Y., Ishii, T., Yokoyama, C., & Hara, S. (2015). Genetic-deletion of cyclooxygenase-2 downstream prostacyclin synthase suppresses inflammatory reactions but facilitates carcinogenesis, unlike deletion of microsomal prostaglandin E synthase-1. Scientific Reports, 5, 17376.  https://doi.org/10.1038/Srep17376.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hamberg, M., & Fredholm, B. B. (1976). Isomerization of prostaglandin H2 into prostaglandin D2 in presence of serum-albumin. Biochimica Et Biophysica Acta, 431(1), 189–193.  https://doi.org/10.1016/0005-2760(76)90273-3.CrossRefPubMedGoogle Scholar
  55. 55.
    Ueno, R., Honda, K., Inoue, S., & Hayaishi, O. (1983). Prostaglandin-D2, a cerebral sleep-inducing substance in rats. Proceedings of the National Academy of Sciences of the United States of America, 80(6), 1735–1737.  https://doi.org/10.1073/pnas.80.6.1735.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Onoe, H., Ueno, R., Fujita, I., Nishino, H., Oomura, Y., & Hayaishi, O. (1988). Prostaglandin-D2, a cerebral sleep-inducing substance in monkeys. Proceedings of the National Academy of Sciences of the United States of America, 85(11), 4082–4086.  https://doi.org/10.1073/pnas.85.11.4082.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Matsumura, H., Nakajima, T., Osaka, T., Satoh, S., Kawase, K., Kubo, E., Kantha, S. S., Kasahara, K., & Hayaishi, O. (1994). Prostaglandin D2-sensitive, sleep-promoting zone defined in the ventral surface of the rostral basal forebrain. Proceedings of the National Academy of Sciences of the United States of America, 91(25), 11998–12002.  https://doi.org/10.1073/pnas.91.25.11998.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hirai, H., Tanaka, K., Yoshie, O., Ogawa, K., Kenmotsu, K., Takamori, Y., Ichimasa, M., Sugamura, K., Nakamura, M., Takano, S., & Nagata, K. (2001). Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. Journal of Experimental Medicine, 193(2), 255–261.  https://doi.org/10.1084/jem.193.2.255.CrossRefPubMedGoogle Scholar
  59. 59.
    Honda, K., Arima, M., Cheng, G., Taki, S., Hirata, H., Eda, F., Fukushima, F., Yamaguchi, B., Hatano, M., Tokuhisa, T., & Fukuda, T. (2003). Prostaglandin D2 reinforces Th2 type inflammatory responses of airways to low-dose antigen through bronchial expression of macrophage-derived chemokine. Journal of Experimental Medicine, 198(4), 533–543.  https://doi.org/10.1084/jem.20022218.CrossRefPubMedGoogle Scholar
  60. 60.
    Satoh, T., Moroi, R., Aritake, K., Urade, Y., Kanai, Y., Sumi, K., Yokozeki, H., Hirai, H., Nagata, K., Hara, T., Utsuyama, M., Hirokawa, K., Sugamura, K., Nishioka, K., & Nakamura, M. (2006). Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor. Journal of Immunology, 177(4), 2621–2629.CrossRefGoogle Scholar
  61. 61.
    Spik, I., Brenuchon, C., Angeli, V., Staumont, D., Fleury, S., Capron, M., Trottein, F., & Dombrowicz, D. (2005). Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. Journal of Immunology, 174(6), 3703–3708.CrossRefGoogle Scholar
  62. 62.
    Fujitani, Y., Kanaoka, Y., Aritake, K., Uodome, N., Okazaki-Hatake, K., & Urade, Y. (2002). Pronounced eosinophilic lung inflammation and Th2 cytokine release in human lipocalin-type prostaglandin D synthase transgenic mice. Journal of Immunology, 168(1), 443–449.CrossRefGoogle Scholar
  63. 63.
    Yoshimura-Uchiyama, C., Iikura, M., Yamaguchi, M., Nagase, H., Ishii, A., Matsushima, K., Yamamoto, K., Shichijo, M., Bacon, K. B., & Hirai, K. (2004). Differential modulation of human basophil functions through prostaglandin D2 receptors DP and chemoattractant receptor-homologous molecule expressed on Th2 cells/DP2. Clinical and Experimental Allergy, 34(8), 1283–1290.  https://doi.org/10.1111/j.1365-2222.2004.02027.x.CrossRefPubMedGoogle Scholar
  64. 64.
    Hammad, H., Kool, M., Soullie, T., Narumiya, S., Trottein, F., Hoogsteden, H. C., et al. (2007). Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. Journal of Experimental Medicine, 204(2), 357–367.  https://doi.org/10.1084/jem.20061196.CrossRefPubMedGoogle Scholar
  65. 65.
    Saso, L., Leone, M. G., Sorrentino, C., Giacomelli, S., Silvestrini, B., Grima, J., Li, J. C., Samy, E., Mruk, D., & Cheng, C. Y. (1998). Quantification of prostaglandin D synthetase in cerebrospinal fluid: a potential marker for brain tumor. Biochemistry and Molecular Biology International, 46(4), 643–656.PubMedGoogle Scholar
  66. 66.
    Rajagopal, M. U., Hathout, Y., MacDonald, T. J., Kieran, M. W., Gururangan, S., Blaney, S. M., Phillips, P., Packer, R., Gordish-Dressman, H., & Rood, B. R. (2011). Proteomic profiling of cerebrospinal fluid identifies prostaglandin D2 synthase as a putative biomarker for pediatric medulloblastoma: a pediatric brain tumor consortium study. Proteomics, 11(5), 935–943.  https://doi.org/10.1002/pmic.201000198.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Murata, T., Lin, M. I., Aritake, K., Matsumoto, S., Narumiya, S., Ozaki, H., Urade, Y., Hori, M., & Sessa, W. C. (2008). Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105(50), 20009–20014.  https://doi.org/10.1073/pnas.0805171105.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Murata, T., Aritake, K., Matsumoto, S., Kamauchi, S., Nakagawa, T., Hori, M., Momotani, E., Urade, Y., & Ozaki, H. (2011). Prostagladin D2 is a mast cell-derived antiangiogenic factor in lung carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19802–19807.  https://doi.org/10.1073/pnas.1110011108.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Omori, K., Morikawa, T., Kunita, A., Nakamura, T., Aritake, K., Urade, Y., Fukayama, M., & Murata, T. (2018). Lipocalin-type prostaglandin D synthase-derived PGD2 attenuates malignant properties of tumor endothelial cells. Journal of Pathology, 244(1), 84–96.  https://doi.org/10.1002/path.4993.CrossRefPubMedGoogle Scholar
  70. 70.
    Trabanelli, S., Chevalier, M. F., Martinez-Usatorre, A., Gomez-Cadena, A., Salome, B., Lecciso, M., et al. (2017). Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nature Communications, 8, 593.  https://doi.org/10.1038/s41467-017-00678-2.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Iwanaga, K., Nakamura, T., Maeda, S., Aritake, K., Hori, M., Urade, Y., Ozaki, H., & Murata, T. (2014). Mast cell-derived prostaglandin D2 inhibits colitis and colitis-associated colon cancer in mice. Cancer Research, 74(11), 3011–3019.  https://doi.org/10.1158/0008-5472.CAN-13-2792.CrossRefPubMedGoogle Scholar
  72. 72.
    Park, J. M., Kanaoka, Y., Eguchi, N., Aritake, K., Grujic, S., Materi, A. M., Buslon, V. S., Tippin, B. L., Kwong, A. M., Salido, E., French, S. W., Urade, Y., & Lin, H. J. (2007). Hematopoietic prostaglandin D synthase suppresses intestinal adenomas in Apc(Min/+) mice. Cancer Research, 67(3), 881–889.  https://doi.org/10.1158/0008-5472.CAN-05-3767.CrossRefPubMedGoogle Scholar
  73. 73.
    Scher, J. U., & Pillinger, M. H. (2005). 15d-PGJ2: the anti-inflammatory prostaglandin? Clinical Immunology, 114(2), 100–109.  https://doi.org/10.1016/j.clim.2004.09.008.CrossRefPubMedGoogle Scholar
  74. 74.
    Wu, K., Yang, Y., Liu, D., Qi, Y., Zhang, C., Zhao, J., & Zhao, S. (2016). Activation of PPARgamma suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway. Oncotarget, 7(28), 44572–44582.  https://doi.org/10.18632/oncotarget.10067. PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Yokoyama, Y., Xin, B., Shigeto, T., & Mizunuma, H. (2011). Combination of ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, and cisplatin enhances the inhibition of growth of human ovarian cancers. Journal of Cancer Research and Clinical Oncology, 137(8), 1219–1228.  https://doi.org/10.1007/s00432-011-0993-1.CrossRefPubMedGoogle Scholar
  76. 76.
    Tang, H., Shi, W., Fu, S., Wang, T., Zhai, S., Song, Y., & Han, J. (2018). Pioglitazone and bladder cancer risk: a systematic review and meta-analysis. Cancer Medicine, 7, 1070–1080.  https://doi.org/10.1002/cam4.1354.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Filipova, E., Uzunova, K., Kalinov, K., & Vekov, T. (2017). Pioglitazone and the risk of bladder cancer: a meta-analysis. Diabetes Ther, 8(4), 705–726.  https://doi.org/10.1007/s13300-017-0273-4.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Gou, Q., Gong, X., Jin, J. H., Shi, J. J., & Hou, Y. Z. (2017). Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget, 8(36), 60704–60709.  https://doi.org/10.18632/oncotarget.19610.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Fu, Y. G., Sung, J. J. Y., Wu, K. C., Bai, A. H. C., Chan, M. C. W., Yu, J., et al. (2006). Inhibition of gastric cancer cells associated angiogenesis by 15d-prostaglandin J2 through the downregulation of angiopoietin-1. Cancer Letters, 243(2), 246–254.  https://doi.org/10.1016/j.canlet.2005.11.039.CrossRefPubMedGoogle Scholar
  80. 80.
    Morgenstern, J., Fleming, T., Kadiyska, I., Brings, S., Groener, J. B., Nawroth, P., Hecker, M., & Brune, M. (2018). Sensitive mass spectrometric assay for determination of 15-deoxy-delta(12,14)-prostaglandin J2 and its application in human plasma samples of patients with diabetes. Analytical and Bioanalytical Chemistry, 410(2), 521–528.  https://doi.org/10.1007/s00216-017-0748-1.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Koji Kobayashi
    • 1
  • Keisuke Omori
    • 1
  • Takahisa Murata
    • 1
    Email author
  1. 1.Department of Animal Radiology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations