Advertisement

Cancer and Metastasis Reviews

, Volume 37, Issue 2–3, pp 397–408 | Cite as

The importance of 15-lipoxygenase inhibitors in cancer treatment

  • Ala Orafaie
  • Maryam Moghaddam Matin
  • Hamid SadeghianEmail author
Article

Abstract

Cancer-targeted therapy is an expanding and successful approach in treatment of many types of cancers. One of the main categories of targeted therapy is use of small molecule inhibitors. 15-Lipoxygenase (15-LOX) is an enzyme which reacts with polyunsaturated fatty acids and produces metabolites that are implicated in many important human diseases, such as cancer. Considering the role of 15-LOX (mainly 15-LOX-1) in the progression of some cancers, the discovery of 15-LOX inhibitors could potentially lead to development of novel cancer therapeutics and it can be claimed that 15-LOX inhibitors might be suitable as chemotherapy agents in the near future. This article reviews relevant publications on 15-LOX inhibitors with focus on their anticancer activities in vitro and in vivo. Many 15-LOX inhibitors have been reported for which separate studies have shown their anticancer activities. This review paves the way to further explore the mechanism of their antiproliferative effects via 15-LOX inhibition.

Keywords

15-LOX Coumarin Flavonoid Catechol Azine Cannabidiol 

References

  1. 1.
    Bray, F., & Moller, B. (2006). Predicting the future burden of cancer. Nature Reviews. Cancer, 6(1), 63–74.  https://doi.org/10.1038/nrc1781.CrossRefPubMedGoogle Scholar
  2. 2.
    Aggarwal, B. B., Vijayalekshmi, R. V., & Sung, B. (2009). Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clinical Cancer Research, 15(2), 425–430.  https://doi.org/10.1158/1078-0432.ccr-08-0149.CrossRefPubMedGoogle Scholar
  3. 3.
    Prasad, S., Phromnoi, K., Yadav, V. R., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Medica, 76(11), 1044–1063.  https://doi.org/10.1055/s-0030-1250111.CrossRefPubMedGoogle Scholar
  4. 4.
    Burdick, A. D., Kim, D. J., Peraza, M. A., Gonzalez, F. J., & Peters, J. M. (2006). The role of peroxisome proliferator-activated receptor-beta/delta in epithelial cell growth and differentiation. Cellular Signalling, 18(1), 9–20.  https://doi.org/10.1016/j.cellsig.2005.07.009.CrossRefPubMedGoogle Scholar
  5. 5.
    Kasibhatla, S., & Tseng, B. (2003). Why target apoptosis in cancer treatment? Molecular Cancer Therapeutics, 2(6), 573–580.PubMedGoogle Scholar
  6. 6.
    Salimi, V., Tavakoli-Yaraki, M., Mahmoodi, M., Shahabi, S., Gharagozlou, M. J., Shokri, F., et al. (2013). The oncolytic effect of respiratory syncytial virus (RSV) in human skin cancer cell line, A431. Iranian Red Crescent Medical Journal, 15(1), 62–67.  https://doi.org/10.5812/ircmj.4722.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hyde, C. A., & Missailidis, S. (2009). Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. International Immunopharmacology, 9(6), 701–715.  https://doi.org/10.1016/j.intimp.2009.02.003.CrossRefPubMedGoogle Scholar
  8. 8.
    Burke, J. E., & Dennis, E. A. (2009). Phospholipase A2 biochemistry. Cardiovascular Drugs and Therapy, 23(1), 49–59.  https://doi.org/10.1007/s10557-008-6132-9.CrossRefPubMedGoogle Scholar
  9. 9.
    Orafaie, A., Sadeghian, H., Bahrami, A. R., Saboormaleki, S., & Matin, M. M. (2017). 5-Farnesyloxycoumarin: a potent 15-LOX-1 inhibitor, prevents prostate cancer cell growth. Medicinal Chemistry Research, 26(1), 227–234.  https://doi.org/10.1007/s00044-016-1737-1.CrossRefGoogle Scholar
  10. 10.
    Yamamoto, S. (1992). Mammalian lipoxygenases: molecular structures and functions. Biochimica et Biophysica Acta, 1128(2–3), 117–131.CrossRefPubMedGoogle Scholar
  11. 11.
    Kuhn, H., & Thiele, B. J. (1999). The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. FEBS Letters, 449(1), 7–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Sadeghian, H., & Jabbari, A. (2016). 15-Lipoxygenase inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 26(1), 65–88.  https://doi.org/10.1517/13543776.2016.1113259.CrossRefPubMedGoogle Scholar
  13. 13.
    Brash, A. R., Boeglin, W. E., & Chang, M. S. (1997). Discovery of a second 15S-lipoxygenase in humans. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6148–6152.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Grullich, C., Duvoisin, R. M., Wiedmann, M., & van Leyen, K. (2001). Inhibition of 15-lipoxygenase leads to delayed organelle degradation in the reticulocyte. FEBS Letters, 489(1), 51–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Kroschwald, P., Kroschwald, A., Kuhn, H., Ludwig, P., Thiele, B. J., Hohne, M., et al. (1989). Occurrence of the erythroid cell specific arachidonate 15-lipoxygenase in human reticulocytes. Biochemical and Biophysical Research Communications, 160(2), 954–960.CrossRefPubMedGoogle Scholar
  16. 16.
    Vijayvergiya, C., De Angelis, D., Walther, M., Kuhn, H., Duvoisin, R. M., Smith, D. H., et al. (2004). High-level expression of rabbit 15-lipoxygenase induces collapse of the mitochondrial pH gradient in cell culture. Biochemistry, 43(48), 15296–15302.  https://doi.org/10.1021/bi048745v.CrossRefPubMedGoogle Scholar
  17. 17.
    Maccarrone, M., Melino, G., & Finazzi-Agro, A. (2001). Lipoxygenases and their involvement in programmed cell death. Cell Death and Differentiation, 8(8), 776–784.  https://doi.org/10.1038/sj.cdd.4400908.CrossRefPubMedGoogle Scholar
  18. 18.
    Nadel, J. A., Conrad, D. J., Ueki, I. F., Schuster, A., & Sigal, E. (1991). Immunocytochemical localization of arachidonate 15-lipoxygenase in erythrocytes, leukocytes, and airway cells. The Journal of Clinical Investigation, 87(4), 1139–1145.  https://doi.org/10.1172/jci115110.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    van Leyen, K., Duvoisin, R. M., Engelhardt, H., & Wiedmann, M. (1998). A function for lipoxygenase in programmed organelle degradation. Nature, 395(6700), 392–395.  https://doi.org/10.1038/26500.CrossRefPubMedGoogle Scholar
  20. 20.
    Yokota, S., Oda, T., & Fahimi, H. D. (2001). The role of 15-lipoxygenase in disruption of the peroxisomal membrane and in programmed degradation of peroxisomes in normal rat liver. The Journal of Histochemistry and Cytochemistry, 49(5), 613–622.  https://doi.org/10.1177/002215540104900508.CrossRefPubMedGoogle Scholar
  21. 21.
    Comba, A., Maestri, D. M., Berra, M. A., Garcia, C. P., Das, U. N., Eynard, A. R., et al. (2010). Effect of omega-3 and omega-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids in Health and Disease, 9, 112.  https://doi.org/10.1186/1476-511x-9-112.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Suraneni, M. V., Moore, J. R., Zhang, D., Badeaux, M., Macaluso, M. D., DiGiovanni, J., et al. (2014). Tumor-suppressive functions of 15-lipoxygenase-2 and RB1CC1 in prostate cancer. Cell Cycle, 13(11), 1798–1810.  https://doi.org/10.4161/cc.28757.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Spindler, S. A., Sarkar, F. H., Sakr, W. A., Blackburn, M. L., Bull, A. W., LaGattuta, M., et al. (1997). Production of 13-hydroxyoctadecadienoic acid (13-HODE) by prostate tumors and cell lines. Biochemical and Biophysical Research Communications, 239(3), 775–781.  https://doi.org/10.1006/bbrc.1997.7471.CrossRefPubMedGoogle Scholar
  24. 24.
    Kelavkar, U. P., Cohen, C., Kamitani, H., Eling, T. E., & Badr, K. F. (2000). Concordant induction of 15-lipoxygenase-1 and mutant p53 expression in human prostate adenocarcinoma: correlation with Gleason staging. Carcinogenesis, 21(10), 1777–1787.CrossRefPubMedGoogle Scholar
  25. 25.
    Kelavkar, U., Lin, Y., Landsittel, D., Chandran, U., & Dhir, R. (2006). The yin and yang of 15-lipoxygenase-1 and delta-desaturases: dietary omega-6 linoleic acid metabolic pathway in prostate. J Carcinog, 5, 9.  https://doi.org/10.1186/1477-3163-5-9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kelavkar, U. P., Glasgow, W., Olson, S. J., Foster, B. A., & Shappell, S. B. (2004). Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Neoplasia, 6(6), 821–830.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kelavkar, U. P., Parwani, A. V., Shappell, S. B., & Martin, W. D. (2006). Conditional expression of human 15-lipoxygenase-1 in mouse prostate induces prostatic intraepithelial neoplasia: the FLiMP mouse model. Neoplasia, 8(6), 510–522.  https://doi.org/10.1593/neo.06202.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sen, M., McHugh, K., Hutzley, J., Philips, B. J., Dhir, R., Parwani, A. V., & Kelavkar, U. P. (2006). Orthotopic expression of human 15-lipoxygenase (LO)-1 in the dorsolateral prostate of normal wild-type C57BL/6 mouse causes PIN-like lesions. Prostaglandins & Other Lipid Mediators, 81(1–2), 1–13.  https://doi.org/10.1016/j.prostaglandins.2006.05.024.CrossRefGoogle Scholar
  29. 29.
    Kelavkar, U. P., Nixon, J. B., Cohen, C., Dillehay, D., Eling, T. E., & Badr, K. F. (2001). Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis. Carcinogenesis, 22(11), 1765–1773.CrossRefPubMedGoogle Scholar
  30. 30.
    Kelavkar, U. P., Harya, N. S., Hutzley, J., Bacich, D. J., Monzon, F. A., Chandran, U., Dhir, R., & O’Keefe, D. S. (2007). DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins & Other Lipid Mediators, 82(1–4), 185–197.  https://doi.org/10.1016/j.prostaglandins.2006.05.015.CrossRefGoogle Scholar
  31. 31.
    Das, S., Roth, C. P., Wasson, L. M., & Vishwanatha, J. K. (2007). Signal transducer and activator of transcription-6 (STAT6) is a constitutively expressed survival factor in human prostate cancer. Prostate, 67(14), 1550–1564.  https://doi.org/10.1002/pros.20640.CrossRefPubMedGoogle Scholar
  32. 32.
    Iranshahi, M., Jabbari, A., Orafaie, A., Mehri, R., Zeraatkar, S., Ahmadi, T., Alimardani, M., & Sadeghian, H. (2012). Synthesis and SAR studies of mono O-prenylated coumarins as potent 15-lipoxygenase inhibitors. European Journal of Medicinal Chemistry, 57, 134–142.  https://doi.org/10.1016/j.ejmech.2012.09.006.CrossRefPubMedGoogle Scholar
  33. 33.
    Musa, M. A., Cooperwood, J. S., & Khan, M. O. (2008). A review of coumarin derivatives in pharmacotherapy of breast cancer. Current Medicinal Chemistry, 15(26), 2664–2679.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Roussaki, M., Zelianaios, K., Kavetsou, E., Hamilakis, S., Hadjipavlou-Litina, D., Kontogiorgis, C., Liargkova, T., & Detsi, A. (2014). Structural modifications of coumarin derivatives: determination of antioxidant and lipoxygenase (LOX) inhibitory activity. Bioorganic & Medicinal Chemistry, 22(23), 6586–6594.  https://doi.org/10.1016/j.bmc.2014.10.008.CrossRefGoogle Scholar
  35. 35.
    Iranshahi, M., Askari, M., Sahebkar, A., & Adjipavlou-Litina, D. (2009). Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. DARU&58; Journal of Pharmaceutical Sciences, 17(2), 99–103.Google Scholar
  36. 36.
    Barthomeuf, C., Lim, S., Iranshahi, M., & Chollet, P. (2008). Umbelliprenin from Ferula szowitsiana inhibits the growth of human M4Beu metastatic pigmented malignant melanoma cells through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis. Phytomedicine, 15(1–2), 103–111.  https://doi.org/10.1016/j.phymed.2007.04.001.CrossRefPubMedGoogle Scholar
  37. 37.
    Hosseinymehr, M., Matin, M. M., Sadeghian, H., Bahrami, A. R., & Kaseb-Mojaver, N. (2016). 8-Farnesyloxycoumarin induces apoptosis in PC-3 prostate cancer cells by inhibition of 15-lipoxygenase-1 enzymatic activity. Anti-Cancer Drugs, 27(9), 854–862.  https://doi.org/10.1097/cad.0000000000000399.CrossRefPubMedGoogle Scholar
  38. 38.
    Jun, M., Bacay, A. F., Moyer, J., Webb, A., & Carrico-Moniz, D. (2014). Synthesis and biological evaluation of isoprenylated coumarins as potential anti-pancreatic cancer agents. Bioorganic & Medicinal Chemistry Letters, 24(19), 4654–4658.  https://doi.org/10.1016/j.bmcl.2014.08.038.CrossRefGoogle Scholar
  39. 39.
    Aliabadi, A., Mohammadi-farani, A., Seydi-kangarshahi, S., & Ahmadi, F. (2017). Discovery of 2-(1,3-dioxoisoindolin-2-yl)-n-phenylacetamide derivatives as probable 15-lipoxygenase-1 inhibitors with potential anticancer effects. FARMACIA, 65(2), 268–274.Google Scholar
  40. 40.
    Aliabadi, A., Mohammadi-Farani, A., Roodabeh, S., & Ahmadi, F. (2017). Synthesis and biological evaluation of N-(5-(pyridin-2-yl)-1,3,4-thiadiazol-2-yl)benzamide derivatives as lipoxygenase inhibitor with potential anticancer activity. Iran J Pharm Res, 16(1), 165–172.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Bakavoli, M., Nikpour, M., Rahimizadeh, M., Saberi, M. R., & Sadeghian, H. (2007). Design and synthesis of pyrimido[4,5-b][1,4]benzothiazine derivatives, as potent 15-lipoxygenase inhibitors. Bioorganic & Medicinal Chemistry, 15(5), 2120–2126.  https://doi.org/10.1016/j.bmc.2006.12.022.CrossRefGoogle Scholar
  42. 42.
    Cornicelli, J., Padia, J., & Lane, Y. (1997). Method for treating and preventing inflammation and atherosclerosis.Google Scholar
  43. 43.
    Kelavkar, U., Glasgow, W., & Eling, T. E. (2002). The effect of 15-lipoxygenase-1 expression on cancer cells. Current Urology Reports, 3(3), 207–214.CrossRefPubMedGoogle Scholar
  44. 44.
    Ma, J., Zhang, L., Zhang, J., Liu, M., Wei, L., Shen, T., Ma, C., Wang, Y., Chen, Y., & Zhu, D. (2013). 15-Lipoxygenase-1/15-hydroxyeicosatetraenoic acid promotes hepatocellular cancer cells growth through protein kinase B and heat shock protein 90 complex activation. The International Journal of Biochemistry & Cell Biology, 45(6), 1031–1041.  https://doi.org/10.1016/j.biocel.2013.02.018.CrossRefGoogle Scholar
  45. 45.
    Simpson, J., Forrester, R., Tisdale, M. J., Billington, D. C., & Rathbone, D. L. (2003). Effect of catechol derivatives on cell growth and lipoxygenase activity. Bioorganic & Medicinal Chemistry Letters, 13(15), 2435–2439.CrossRefGoogle Scholar
  46. 46.
    Matsuyama, M., Yoshimura, R., Mitsuhashi, M., Hase, T., Tsuchida, K., Takemoto, Y., Kawahito, Y., Sano, H., & Nakatani, T. (2004). Expression of lipoxygenase in human prostate cancer and growth reduction by its inhibitors. International Journal of Oncology, 24(4), 821–827.PubMedGoogle Scholar
  47. 47.
    Yoshinaga, M., Buchanan, F. G., & DuBois, R. N. (2004). 15-LOX-1 inhibits p21 (Cip/WAF 1) expression by enhancing MEK-ERK 1/2 signaling in colon carcinoma cells. Prostaglandins & Other Lipid Mediators, 73(1–2), 111–122.CrossRefGoogle Scholar
  48. 48.
    Kashyap, D., Mittal, S., Sak, K., Singhal, P., & Tuli, H. S. (2016). Molecular mechanisms of action of quercetin in cancer: recent advances. Tumour Biology, 37(10), 12927–12939.  https://doi.org/10.1007/s13277-016-5184-x.CrossRefPubMedGoogle Scholar
  49. 49.
    Malterud, K. E., & Rydland, K. M. (2000). Inhibitors of 15-lipoxygenase from orange peel. Journal of Agricultural and Food Chemistry, 48(11), 5576–5580.CrossRefPubMedGoogle Scholar
  50. 50.
    Park, H. J., Kim, M. J., Ha, E., & Chung, J. H. (2008). Apoptotic effect of hesperidin through caspase3 activation in human colon cancer cells, SNU-C4. Phytomedicine, 15(1–2), 147–151.  https://doi.org/10.1016/j.phymed.2007.07.061.CrossRefPubMedGoogle Scholar
  51. 51.
    Lee, C. J., Wilson, L., Jordan, M. A., Nguyen, V., Tang, J., & Smiyun, G. (2010). Hesperidin suppressed proliferations of both human breast cancer and androgen-dependent prostate cancer cells. Phytotherapy Research, 24(Suppl 1), S15–S19.  https://doi.org/10.1002/ptr.2856.CrossRefPubMedGoogle Scholar
  52. 52.
    Luo, G., Guan, X., & Zhou, L. (2008). Apoptotic effect of citrus fruit extract nobiletin on lung cancer cell line A549 in vitro and in vivo. Cancer Biology & Therapy, 7(6), 966–973.CrossRefGoogle Scholar
  53. 53.
    Morley, K. L., Ferguson, P. J., & Koropatnick, J. (2007). Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Letters, 251(1), 168–178.  https://doi.org/10.1016/j.canlet.2006.11.016.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang, J., Wu, Y., Zhao, X., Luo, F., Li, X., Zhu, H., Sun, C., & Chen, K. (2014). Chemopreventive effect of flavonoids from Ougan (Citrus reticulata cv. Suavissima) fruit against cancer cell proliferation and migration. Journal of Functional Foods, 10, 511–519.  https://doi.org/10.1016/j.jff.2014.08.006.CrossRefGoogle Scholar
  55. 55.
    Bracke, M. E., Depypere, H. T., Boterberg, T., Van Marck, V. L., Vennekens, K. M., Vanluchene, E., et al. (1999). Influence of tangeretin on tamoxifen's therapeutic benefit in mammary cancer. Journal of the National Cancer Institute, 91(4), 354–359.CrossRefPubMedGoogle Scholar
  56. 56.
    Arafa el, S. A., Zhu, Q., Barakat, B. M., Wani, G., Zhao, Q., El-Mahdy, M. A., et al. (2009). Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Research, 69(23), 8910–8917.  https://doi.org/10.1158/0008-5472.can-09-1543.CrossRefGoogle Scholar
  57. 57.
    Du, Q., & Chen, H. (2010). The methoxyflavones in Citrus reticulata Blanco cv. ponkan and their antiproliferative activity against cancer cells. Food Chemistry, 119(2), 567–572.  https://doi.org/10.1016/j.foodchem.2009.06.059.CrossRefGoogle Scholar
  58. 58.
    Thangapazham, R. L., Singh, A. K., Sharma, A., Warren, J., Gaddipati, J. P., & Maheshwari, R. K. (2007). Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Letters, 245(1–2), 232–241.  https://doi.org/10.1016/j.canlet.2006.01.027.CrossRefPubMedGoogle Scholar
  59. 59.
    Liao, S., Umekita, Y., Guo, J., Kokontis, J. M., & Hiipakka, R. A. (1995). Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Letters, 96(2), 239–243.CrossRefPubMedGoogle Scholar
  60. 60.
    Masuda, M., Suzui, M., Lim, J. T., & Weinstein, I. B. (2003). Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck and breast carcinoma cells. Clinical Cancer Research, 9(9), 3486–3491.PubMedGoogle Scholar
  61. 61.
    Shimizu, M., Deguchi, A., Lim, J. T., Moriwaki, H., Kopelovich, L., & Weinstein, I. B. (2005). (−)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clinical Cancer Research, 11(7), 2735–2746.  https://doi.org/10.1158/1078-0432.ccr-04-2014.CrossRefPubMedGoogle Scholar
  62. 62.
    Baek, S. J., Kim, J. S., Jackson, F. R., Eling, T. E., McEntee, M. F., & Lee, S. H. (2004). Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis, 25(12), 2425–2432.  https://doi.org/10.1093/carcin/bgh255.CrossRefPubMedGoogle Scholar
  63. 63.
    Dinicola, S., Pasqualato, A., Cucina, A., Coluccia, P., Ferranti, F., Canipari, R., Catizone, A., Proietti, S., D’Anselmi, F., Ricci, G., Palombo, A., & Bizzarri, M. (2014). Grape seed extract suppresses MDA-MB231 breast cancer cell migration and invasion. European Journal of Nutrition, 53(2), 421–431.  https://doi.org/10.1007/s00394-013-0542-6.CrossRefPubMedGoogle Scholar
  64. 64.
    Lewandowska, U., Szewczyk, K., Owczarek, K., Hrabec, Z., Podsedek, A., Sosnowska, D., et al. (2013). Procyanidins from evening primrose (Oenothera paradoxa) defatted seeds inhibit invasiveness of breast cancer cells and modulate the expression of selected genes involved in angiogenesis, metastasis, and apoptosis. Nutrition and Cancer, 65(8), 1219–1231.  https://doi.org/10.1080/01635581.2013.830314.CrossRefPubMedGoogle Scholar
  65. 65.
    Ye, X., Krohn, R. L., Liu, W., Joshi, S. S., Kuszynski, C. A., McGinn, T. R., Bagchi, M., Preuss, H. G., Stohs, S. J., & Bagchi, D. (1999). The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Molecular and Cellular Biochemistry, 196(1–2), 99–108.CrossRefPubMedGoogle Scholar
  66. 66.
    Chatelain, K., Phippen, S., McCabe, J., Teeters, C. A., O'Malley, S., & Kingsley, K. (2011). Cranberry and grape seed extracts inhibit the proliferative phenotype of oral squamous cell carcinomas. Evidence-based Complementary and Alternative Medicine, 2011, 467691.  https://doi.org/10.1093/ecam/nen047.CrossRefPubMedGoogle Scholar
  67. 67.
    Tyagi, A., Agarwal, R., & Agarwal, C. (2003). Grape seed extract inhibits EGF-induced and constitutively active mitogenic signaling but activates JNK in human prostate carcinoma DU145 cells: possible role in antiproliferation and apoptosis. Oncogene, 22(9), 1302–1316.  https://doi.org/10.1038/sj.onc.1206265.CrossRefPubMedGoogle Scholar
  68. 68.
    Agarwal, C., Singh, R. P., & Agarwal, R. (2002). Grape seed extract induces apoptotic death of human prostate carcinoma DU145 cells via caspases activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis, 23(11), 1869–1876.CrossRefPubMedGoogle Scholar
  69. 69.
    Liu, J., Zhang, W. Y., Kong, Z. H., & Ding, D. G. (2016). Induction of cell cycle arrest and apoptosis by grape seed procyanidin extract in human bladder cancer BIU87 cells. European Review for Medical and Pharmacological Sciences, 20(15), 3282–3291.PubMedGoogle Scholar
  70. 70.
    Dinicola, S., Cucina, A., Pasqualato, A., D'Anselmi, F., Proietti, S., Lisi, E., et al. (2012). Antiproliferative and apoptotic effects triggered by grape seed extract (GSE) versus epigallocatechin and procyanidins on colon cancer cell lines. International Journal of Molecular Sciences, 13(1), 651–664.  https://doi.org/10.3390/ijms13010651.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kaur, M., Mandair, R., Agarwal, R., & Agarwal, C. (2008). Grape seed extract induces cell cycle arrest and apoptosis in human colon carcinoma cells. Nutrition and Cancer, 60(Suppl 1), 2–11.  https://doi.org/10.1080/01635580802381295.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Owczarek, K., Hrabec, E., Fichna, J., Sosnowska, D., Koziolkiewicz, M., Szymanski, J., et al. (2017). Flavanols from Japanese quince (Chaenomeles japonica) fruit suppress expression of cyclooxygenase-2, metalloproteinase-9, and nuclear factor-kappaB in human colon cancer cells. Acta Biochimica Polonica, 64(3), 567–576.  https://doi.org/10.18388/abp.2017_1599.CrossRefPubMedGoogle Scholar
  73. 73.
    Malterud, K. E., Farbrot, T. L., Huse, A. E., & Sund, R. B. (1993). Antioxidant and radical scavenging effects of anthraquinones and anthrones. Pharmacology, 47(Suppl 1), 77–85.  https://doi.org/10.1159/000139846.CrossRefPubMedGoogle Scholar
  74. 74.
    Fernand, V. E., Losso, J. N., Truax, R. E., Villar, E. E., Bwambok, D. K., Fakayode, S. O., Lowry, M., & Warner, I. M. (2011). Rhein inhibits angiogenesis and the viability of hormone-dependent and -independent cancer cells under normoxic or hypoxic conditions in vitro. Chemico-Biological Interactions, 192(3), 220–232.  https://doi.org/10.1016/j.cbi.2011.03.013.CrossRefPubMedGoogle Scholar
  75. 75.
    Trybus, W., Krol, G., Trybus, E., Stachurska, A., Kopacz-Bednarska, A., & Krol, T. (2017). Aloe-emodin influence on the lysosomal compartment of Hela cells. Asian Pacific Journal of Cancer Prevention, 18(12), 3273–3279.  https://doi.org/10.22034/apjcp.2017.18.12.3273.PubMedCrossRefGoogle Scholar
  76. 76.
    Pecere, T., Gazzola, M. V., Mucignat, C., Parolin, C., Vecchia, F. D., Cavaggioni, A., Basso, G., Diaspro, A., Salvato, B., Carli, M., & Palù, G. (2000). Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Research, 60(11), 2800–2804.PubMedGoogle Scholar
  77. 77.
    Takeda, S., Jiang, R., Aramaki, H., Imoto, M., Toda, A., Eyanagi, R., Amamoto, T., Yamamoto, I., & Watanabe, K. (2011). Delta9-tetrahydrocannabinol and its major metabolite delta9-tetrahydrocannabinol-11-oic acid as 15-lipoxygenase inhibitors. Journal of Pharmaceutical Sciences, 100(3), 1206–1211.  https://doi.org/10.1002/jps.22354. CrossRefPubMedGoogle Scholar
  78. 78.
    Ruiz, L., Miguel, A., & Diaz-Laviada, I. (1999). Delta9-tetrahydrocannabinol induces apoptosis in human prostate PC-3 cells via a receptor-independent mechanism. FEBS Letters, 458(3), 400–404.CrossRefPubMedGoogle Scholar
  79. 79.
    Caffarel, M. M., Sarrio, D., Palacios, J., Guzman, M., & Sanchez, C. (2006). Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Research, 66(13), 6615–6621.  https://doi.org/10.1158/0008-5472.can-05-4566.CrossRefPubMedGoogle Scholar
  80. 80.
    Greenhough, A., Patsos, H. A., Williams, A. C., & Paraskeva, C. (2007). The cannabinoid delta(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. International Journal of Cancer, 121(10), 2172–2180.  https://doi.org/10.1002/ijc.22917.CrossRefPubMedGoogle Scholar
  81. 81.
    Sadeghian, H., Seyedi, S. M., Saberi, M. R., Arghiani, Z., & Riazi, M. (2008). Design and synthesis of eugenol derivatives, as potent 15-lipoxygenase inhibitors. Bioorganic & Medicinal Chemistry, 16(2), 890–901.  https://doi.org/10.1016/j.bmc.2007.10.016.CrossRefGoogle Scholar
  82. 82.
    Pisano, M., Pagnan, G., Loi, M., Mura, M. E., Tilocca, M. G., Palmieri, G., Fabbri, D., Dettori, M. A., Delogu, G., Ponzoni, M., & Rozzo, C. (2007). Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Molecular Cancer, 6, 8.  https://doi.org/10.1186/1476-4598-6-8. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kim, G., Choi, D., Lim, J., Jeong, H., Kim, I., Lee, M., et al. (2006). Caspases-dependent apoptosis in human melanoma cell by eugenol. Korean Journal of Anatomy, 39(3), 245–253.Google Scholar
  84. 84.
    Ghosh, R., Nadiminty, N., Fitzpatrick, J. E., Alworth, W. L., Slaga, T. J., & Kumar, A. P. (2005). Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. The Journal of Biological Chemistry, 280(7), 5812–5819.  https://doi.org/10.1074/jbc.M411429200.CrossRefPubMedGoogle Scholar
  85. 85.
    Pal, D., Banerjee, S., Mukherjee, S., Roy, A., Panda, C. K., & Das, S. (2010). Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway. Journal of Dermatological Science, 59(1), 31–39.  https://doi.org/10.1016/j.jdermsci.2010.04.013.CrossRefPubMedGoogle Scholar
  86. 86.
    Kaur, G., Athar, M., & Alam, M. S. (2010). Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis. Molecular Carcinogenesis, 49(3), 290–301.  https://doi.org/10.1002/mc.20601.PubMedCrossRefGoogle Scholar
  87. 87.
    Shin, S. H., Park, J. H., & Kim, G. C. (2007). The mechanism of apoptosis induced by eugenol in human osteosarcoma cells. J. Korean Oral Maxillofac. Surg., 33, 20–27.Google Scholar
  88. 88.
    Yoo, C. B., Han, K. T., Cho, K. S., Ha, J., Park, H. J., Nam, J. H., Kil, U. H., & Lee, K. T. (2005). Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Letters, 225(1), 41–52.  https://doi.org/10.1016/j.canlet.2004.11.018.CrossRefPubMedGoogle Scholar
  89. 89.
    Manikandan, P., Vinothini, G., Vidya Priyadarsini, R., Prathiba, D., & Nagini, S. (2011). Eugenol inhibits cell proliferation via NF-kappaB suppression in a rat model of gastric carcinogenesis induced by MNNG. Investigational New Drugs, 29(1), 110–117.  https://doi.org/10.1007/s10637-009-9345-2.CrossRefPubMedGoogle Scholar
  90. 90.
    Ghosh, R., Ganapathy, M., Alworth, W. L., Chan, D. C., & Kumar, A. P. (2009). Combination of 2-methoxyestradiol (2-ME2) and eugenol for apoptosis induction synergistically in androgen independent prostate cancer cells. The Journal of Steroid Biochemistry and Molecular Biology, 113(1–2), 25–35.  https://doi.org/10.1016/j.jsbmb.2008.11.002.CrossRefPubMedGoogle Scholar
  91. 91.
    Carrasco, A. H., Espinoza, C. L., Cardile, V., Gallardo, C., Cardona, W., Lombardo, L., et al. (2008). Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (part I). Journal of the Brazilian Chemical Society, 19, 543–548.CrossRefGoogle Scholar
  92. 92.
    Jaganathan, S. K., Mondhe, D., Wani, Z. A., Pal, H. C., & Mandal, M. (2010). Effect of honey and eugenol on Ehrlich ascites and solid carcinoma. Journal of Biomedicine & Biotechnology, 2010, 989163–989165.  https://doi.org/10.1155/2010/989163.CrossRefGoogle Scholar
  93. 93.
    Hampson, A. J., Axelrod, J., & Grimaldi, M. (2003). Cannabinoids as antioxidants and neuroprotectants. US6630507B1.Google Scholar
  94. 94.
    Takeda, S., Usami, N., Yamamoto, I., & Watanabe, K. (2009). Cannabidiol-2′,6′-dimethyl ether, a cannabidiol derivative, is a highly potent and selective 15-lipoxygenase inhibitor. Drug Metabolism and Disposition, 37(8), 1733–1737.  https://doi.org/10.1124/dmd.109.026930.CrossRefPubMedGoogle Scholar
  95. 95.
    Carracedo, A., Gironella, M., Lorente, M., Garcia, S., Guzman, M., Velasco, G., et al. (2006). Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Research, 66(13), 6748–6755.  https://doi.org/10.1158/0008-5472.can-06-0169.CrossRefPubMedGoogle Scholar
  96. 96.
    Vara, D., Morell, C., Rodriguez-Henche, N., & Diaz-Laviada, I. (2013). Involvement of PPARgamma in the antitumoral action of cannabinoids on hepatocellular carcinoma. Cell Death & Disease, 4, e618.  https://doi.org/10.1038/cddis.2013.141.CrossRefGoogle Scholar
  97. 97.
    Casanova, M. L., Blazquez, C., Martinez-Palacio, J., Villanueva, C., Fernandez-Acenero, M. J., Huffman, J. W., et al. (2003). Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. The Journal of Clinical Investigation, 111(1), 43–50.  https://doi.org/10.1172/jci16116.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Blazquez, C., Casanova, M. L., Planas, A., Gomez Del Pulgar, T., Villanueva, C., Fernandez-Acenero, M. J., et al. (2003). Inhibition of tumor angiogenesis by cannabinoids. The FASEB Journal, 17(3), 529–531.  https://doi.org/10.1096/fj.02-0795fje.CrossRefPubMedGoogle Scholar
  99. 99.
    Blazquez, C., Gonzalez-Feria, L., Alvarez, L., Haro, A., Casanova, M. L., & Guzman, M. (2004). Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. Cancer Research, 64(16), 5617–5623.  https://doi.org/10.1158/0008-5472.can-03-3927.CrossRefPubMedGoogle Scholar
  100. 100.
    Portella, G., Laezza, C., Laccetti, P., De Petrocellis, L., Di Marzo, V., & Bifulco, M. (2003). Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. The FASEB Journal, 17(12), 1771–1773.  https://doi.org/10.1096/fj.02-1129fje.CrossRefPubMedGoogle Scholar
  101. 101.
    Kuroiwa, S., Maruyama, S., Suzuki, Y., & Yamazaki, H. (2006). Use of 3,5-diphenylpyrazole analogue as anti-tumor agent. WO2006109680A1: Google Patents.Google Scholar
  102. 102.
    Armstrong, M. M., Freedman, C. J., Jung, J. E., Zheng, Y., Kalyanaraman, C., Jacobson, M. P., Simeonov, A., Maloney, D. J., van Leyen, K., Jadhav, A., & Holman, T. R. (2016). A potent and selective inhibitor targeting human and murine 12/15-LOX. Bioorganic & Medicinal Chemistry, 24(6), 1183–1190.  https://doi.org/10.1016/j.bmc.2016.01.042.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ala Orafaie
    • 1
  • Maryam Moghaddam Matin
    • 1
    • 2
  • Hamid Sadeghian
    • 3
    • 4
    Email author
  1. 1.Department of Biology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
  2. 2.Novel Diagnostics and Therapeutics Research Group, Institute of BiotechnologyFerdowsi University of MashhadMashhadIran
  3. 3.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
  4. 4.Department of Laboratory Sciences, School of Paramedical SciencesMashhad University of Medical SciencesMashhadIran

Personalised recommendations