Advertisement

Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents

  • Alfredo Erazo-Oliveras
  • Natividad R. Fuentes
  • Rachel C. Wright
  • Robert S. Chapkin
Article
  • 172 Downloads

Abstract

The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.

Keywords

Ras Wnt n-3 PUFA Membrane order Nanoclustering Membrane therapy Cancer prevention 

Abbreviations

Chol

Cholesterol

EM

Electron microscopy

FLIM-FRET

Fluorescence lifetime imaging microscopy combined with fluorescence resonance energy transfer

LC

Lung cancer

NL

Normal lung

PA

Phosphatidic acid

PALM

Photo-activated localization microscopy

PIP2

Phosphatidylinositol 4,5-biphosphate

PIP3

Phosphatidylinositol 3,4,5-trisphosphate

PI3P

Phosphatidylinositol 3-phosphate

PI4P

Phosphatidylinositol 4-phosphate

PS

Phosphatidylserine

SPT

Single-particle tracking

STED

Stimulated emission depletion

STORM

Stochastic optical reconstruction microscopy

dSTORM

Direct stochastic optical reconstruction microscopy

TIRF

Total internal reflection fluorescence

Notes

Funding information

This work was supported by the National Institutes of Health (NIH) grants R35CA197707 and P30ES023512, the Cancer Prevention Research Institute of Texas (CPRIT), and funds from the Allen Endowed Chair in Nutrition and Chronic Disease Prevention. Natividad Fuentes is a recipient of a Predoctoral Fellowship in Pharmacology/Toxicology from the PhRMA Foundation and the National Science Foundation Texas A&M University System Louis Stokes Alliance for Minority Participation (TAMUS LSAMP) Bridge to the Doctorate Fellowship (HRD-1249272). Alfredo Erazo-Oliveras is a recipient of the 2017 Ford Foundation Postdoctoral Fellowship from The National Academies of Sciences, Engineering and Medicine and the National Institutes of Health-National Cancer Institute (NIH-NCI) Research Supplement to Promote Diversity in Health-Related Research Award (3R35CA197707-02S1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Grecco, Hernán E., Schmick, M., & Bastiaens, Philippe I. H. Signaling from the living plasma membrane. Cell, 144(6), 897–909,  https://doi.org/10.1016/j.cell.2011.01.029.
  2. 2.
    van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: where they are and how they behave. Nature Reviews. Molecular Cell Biology, 9(2), 112–124.  https://doi.org/10.1038/nrm2330.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Chabanon, M., Stachowiak, J. C., & Rangamani, P. (2017). Systems biology of cellular membranes: a convergence with biophysics. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 9(5).  https://doi.org/10.1002/wsbm.1386.
  4. 4.
    Schmick, M., & Bastiaens, P. I. (2014). The interdependence of membrane shape and cellular signal processing. Cell, 156(6), 1132–1138.  https://doi.org/10.1016/j.cell.2014.02.007.PubMedCrossRefGoogle Scholar
  5. 5.
    Tocanne, J. F., Cezanne, L., Lopez, A., Piknova, B., Schram, V., Tournier, J. F., et al. (1994). Lipid domains and lipid/protein interactions in biological membranes. Chemistry and Physics of Lipids, 73(1–2), 139–158.PubMedCrossRefGoogle Scholar
  6. 6.
    Lamaze, C., & Blouin, C. M. (2017). Receptor lipid nanodomain partitioning and signaling. Cell Cycle, 16(3), 237–238.  https://doi.org/10.1080/15384101.2016.1245573.PubMedCrossRefGoogle Scholar
  7. 7.
    Foti, M., Porcheron, G., Fournier, M., Maeder, C., & Carpentier, J. L. (2007). The neck of caveolae is a distinct plasma membrane subdomain that concentrates insulin receptors in 3T3-L1 adipocytes. Proceedings of the National Academy of Sciences of the United States of America, 104(4), 1242–1247.  https://doi.org/10.1073/pnas.0610523104.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ziolkowska, N. E., Christiano, R., & Walther, T. C. (2012). Organized living: formation mechanisms and functions of plasma membrane domains in yeast. Trends in Cell Biology, 22(3), 151–158.  https://doi.org/10.1016/j.tcb.2011.12.002.PubMedCrossRefGoogle Scholar
  9. 9.
    Yoshida, S., Hoppe, A. D., Araki, N., & Swanson, J. A. (2009). Sequential signaling in plasma-membrane domains during macropinosome formation in macrophages. Journal of Cell Science, 122(Pt 18), 3250–3261.  https://doi.org/10.1242/jcs.053207.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Garcia-Parajo, M. F., Cambi, A., Torreno-Pina, J. A., Thompson, N., & Jacobson, K. (2014). Nanoclustering as a dominant feature of plasma membrane organization. Journal of Cell Science, 127(Pt 23), 4995–5005.  https://doi.org/10.1242/jcs.146340.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ariotti, N., Fernandez-Rojo, M. A., Zhou, Y., Hill, M. M., Rodkey, T. L., Inder, K. L., et al. (2014). Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. The Journal of Cell Biology, 204(5), 777–792.  https://doi.org/10.1083/jcb.201307055.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Raghupathy, R., Anilkumar, A. A., Polley, A., Singh, P. P., Yadav, M., Johnson, C., et al. (2015). Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell, 161(3), 581–594.  https://doi.org/10.1016/j.cell.2015.03.048.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bilić, J., Huang, Y.-L., Davidson, G., Zimmermann, T., Cruciat, C.-M., Bienz, M., et al. (2007). Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science, 316(5831), 1619.  https://doi.org/10.1126/science.1137065.PubMedCrossRefGoogle Scholar
  14. 14.
    MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 17(1), 9–26.  https://doi.org/10.1016/j.devcel.2009.06.016.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Niehrs, C. (2012). The complex world of WNT receptor signalling. Nature Reviews. Molecular Cell Biology, 13(12), 767–779.  https://doi.org/10.1038/nrm3470.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang, Z., Wang, L., Du, J., Li, Y., Yang, H., Li, C., et al. (2016). Lipid raft localization of epidermal growth factor receptor alters matrix metalloproteinase-1 expression in SiHa cells via the MAPK/ERK signaling pathway. Oncology Letters, 12(6), 4991–4998,  https://doi.org/10.3892/ol.2016.5307.
  17. 17.
    Roepstorff, K., Thomsen, P., Sandvig, K., & van Deurs, B. (2002). Sequestration of epidermal growth factor receptors in non-caveolar lipid rafts inhibits ligand binding. The Journal of Biological Chemistry, 277(21), 18954–18960.  https://doi.org/10.1074/jbc.M201422200.PubMedCrossRefGoogle Scholar
  18. 18.
    Gueguinou, M., Gambade, A., Felix, R., Chantome, A., Fourbon, Y., Bougnoux, P., et al. (2015). Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? Biochimica et Biophysica Acta, 1848(10 Pt B), 2603–2620.  https://doi.org/10.1016/j.bbamem.2014.10.036.PubMedCrossRefGoogle Scholar
  19. 19.
    Janosi, L., Li, Z., Hancock, J. F., & Gorfe, A. A. (2012). Organization, dynamics, and segregation of Ras nanoclusters in membrane domains. Proceedings of the National Academy of Sciences of the United States of America, 109(21), 8097–8102.  https://doi.org/10.1073/pnas.1200773109.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhou, Y., Cho, K.-J., Plowman, S. J., & Hancock, J. F. (2012). Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane. Journal of Biological Chemistry, 287(20), 16586–16595.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ma, D. W., Seo, J., Switzer, K. C., Fan, Y. Y., McMurray, D. N., Lupton, J. R., et al. (2004). n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. The Journal of Nutritional Biochemistry, 15(11), 700–706.  https://doi.org/10.1016/j.jnutbio.2004.08.002.PubMedCrossRefGoogle Scholar
  22. 22.
    Solman, M., Ligabue, A., Blazevits, O., Jaiswal, A., Zhou, Y., Liang, H., et al. (2015). Specific cancer-associated mutations in the switch III region of Ras increase tumorigenicity by nanocluster augmentation. Elife, 4, e08905.  https://doi.org/10.7554/eLife.08905. PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Beloribi-Djefaflia, S., Vasseur, S., & Guillaumond, F. (2016). Lipid metabolic reprogramming in cancer cells. Oncogenesis, 5, e189.  https://doi.org/10.1038/oncsis.2015.49.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Shalom-Feuerstein, R., Plowman, S. J., Rotblat, B., Ariotti, N., Tian, T., Hancock, J. F., et al. (2008). K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Research, 68(16), 6608–6616.  https://doi.org/10.1158/0008-5472.CAN-08-1117.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fuentes, N. R., Salinas, M. L., Kim, E., & Chapkin, R. S. (2017). Emerging role of chemoprotective agents in the dynamic shaping of plasma membrane organization. Biochimica et Biophysica Acta, 1859(9 Pt B), 1668–1678.  https://doi.org/10.1016/j.bbamem.2017.03.014.PubMedCrossRefGoogle Scholar
  26. 26.
    Hou, T. Y., McMurray, D. N., & Chapkin, R. S. (2016). Omega-3 fatty acids, lipid rafts, and T cell signaling. European Journal of Pharmacology, 785, 2–9.  https://doi.org/10.1016/j.ejphar.2015.03.091.PubMedCrossRefGoogle Scholar
  27. 27.
    Turk, H. F., & Chapkin, R. S. (2013). Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 88(1), 43–47.  https://doi.org/10.1016/j.plefa.2012.03.008.PubMedCrossRefGoogle Scholar
  28. 28.
    Kim, E., Davidson, L. A., Zoh, R. S., Hensel, M. E., Salinas, M. L., Patil, B. S., et al. (2016). Rapidly cycling Lgr5+ stem cells are exquisitely sensitive to extrinsic dietary factors that modulate colon cancer risk. Cell Death & Disease, 7(11), e2460.  https://doi.org/10.1038/cddis.2016.269.CrossRefGoogle Scholar
  29. 29.
    Chapkin, R. S., DeClercq, V., Kim, E., Fuentes, N. R., & Fan, Y.-Y. (2014). Mechanisms by which pleiotropic amphiphilic n−3 PUFA reduce colon cancer risk. Current Colorectal Cancer Reports, 10(4), 442–452.  https://doi.org/10.1007/s11888-014-0241-6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Triff, K., Kim, E., & Chapkin, R. S. (2015). Chemoprotective epigenetic mechanisms in a colorectal cancer model: modulation by n-3 PUFA in combination with fermentable fiber. Current Pharmacology Reports, 1(1), 11–20.  https://doi.org/10.1007/s40495-014-0005-7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kraft, M. L. (2013). Plasma membrane organization and function: moving past lipid rafts. Molecular Biology of the Cell, 24(18), 2765–2768.  https://doi.org/10.1091/mbc.E13-03-0165.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Curthoys, N. M., Parent, M., Mlodzianoski, M., Nelson, A. J., Lilieholm, J., Butler, M. B., et al. (2015). Chapter three—dances with membranes: breakthroughs from super-resolution imaging. In A. K. Kenworthy (Ed.), Current topics in membranes (Vol. 75, pp. 59–123): Academic press.Google Scholar
  33. 33.
    Yu, J., Fischman, D. A., & Steck, T. L. (1973). Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. Journal of Supramolecular Structure, 1(3), 233–248.  https://doi.org/10.1002/jss.400010308.PubMedCrossRefGoogle Scholar
  34. 34.
    Sezgin, E., Levental, I., Mayor, S., & Eggeling, C. (2017). The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nature Reviews. Molecular Cell Biology, 18(6), 361–374.  https://doi.org/10.1038/nrm.2017.16.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ipsen, J. H., Karlstrom, G., Mouritsen, O. G., Wennerstrom, H., & Zuckermann, M. J. (1987). Phase equilibria in the phosphatidylcholine-cholesterol system. Biochimica et Biophysica Acta, 905(1), 162–172.PubMedCrossRefGoogle Scholar
  36. 36.
    Lentz, B. R., Barrow, D. A., & Hoechli, M. (1980). Cholesterol-phosphatidylcholine interactions in multilamellar vesicles. Biochemistry, 19(9), 1943–1954.PubMedCrossRefGoogle Scholar
  37. 37.
    Bacia, K., Schwille, P., & Kurzchalia, T. (2005). Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3272–3277.  https://doi.org/10.1073/pnas.0408215102.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Baumgart, T., Hess, S. T., & Webb, W. W. (2003). Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature, 425(6960), 821–824.  https://doi.org/10.1038/nature02013.PubMedCrossRefGoogle Scholar
  39. 39.
    Oncul, S., Klymchenko, A. S., Kucherak, O. A., Demchenko, A. P., Martin, S., Dontenwill, M., et al. (2010). Liquid ordered phase in cell membranes evidenced by a hydration-sensitive probe: effects of cholesterol depletion and apoptosis. Biochimica et Biophysica Acta, 1798(7), 1436–1443.  https://doi.org/10.1016/j.bbamem.2010.01.013.PubMedCrossRefGoogle Scholar
  40. 40.
    M'Baye, G., Mely, Y., Duportail, G., & Klymchenko, A. S. (2008). Liquid ordered and gel phases of lipid bilayers: fluorescent probes reveal close fluidity but different hydration. Biophysical Journal, 95(3), 1217–1225.  https://doi.org/10.1529/biophysj.107.127480.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Simons, K., & Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387(6633), 569–572.  https://doi.org/10.1038/42408.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Simons, K., & Vaz, W. L. (2004). Model systems, lipid rafts, and cell membranes. Annual Review of Biophysics and Biomolecular Structure, 33, 269–295.  https://doi.org/10.1146/annurev.biophys.32.110601.141803.PubMedCrossRefGoogle Scholar
  43. 43.
    Pike, L. J. (2006). Rafts defined: a report on the keystone symposium on lipid rafts and cell function. Journal of Lipid Research, 47(7), 1597–1598.  https://doi.org/10.1194/jlr.E600002-JLR200.PubMedCrossRefGoogle Scholar
  44. 44.
    Pike, L. J. (2003). Lipid rafts: bringing order to chaos. Journal of Lipid Research, 44(4), 655–667.  https://doi.org/10.1194/jlr.R200021-JLR200.PubMedCrossRefGoogle Scholar
  45. 45.
    Zuidscherwoude, M., de Winde, C. M., Cambi, A., & van Spriel, A. B. (2014). Microdomains in the membrane landscape shape antigen-presenting cell function. Journal of Leukocyte Biology, 95(2), 251–263.  https://doi.org/10.1189/jlb.0813440.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu, Y., Yang, G., Bu, X., Liu, G., Ding, J., Li, P., et al. (2011). Cell-type-specific regulation of raft-associated Akt signaling. Cell Death & Disease, 2, e145.  https://doi.org/10.1038/cddis.2011.28.CrossRefGoogle Scholar
  47. 47.
    Gorodinsky, A., & Harris, D. A. (1995). Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. The Journal of Cell Biology, 129(3), 619–627.PubMedCrossRefGoogle Scholar
  48. 48.
    Kiessling, V., Wan, C., & Tamm, L. K. (2009). Domain coupling in asymmetric lipid bilayers. Biochimica et Biophysica Acta, 1788(1), 64–71.  https://doi.org/10.1016/j.bbamem.2008.09.003.PubMedCrossRefGoogle Scholar
  49. 49.
    Eisenberg, S., Shvartsman, D. E., Ehrlich, M., & Henis, Y. I. (2006). Clustering of raft-associated proteins in the external membrane leaflet modulates internal leaflet H-ras diffusion and signaling. Molecular and Cellular Biology, 26(19), 7190–7200.  https://doi.org/10.1128/MCB.01059-06.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Devaux, P. F., & Morris, R. (2004). Transmembrane asymmetry and lateral domains in biological membranes. Traffic, 5(4), 241–246.  https://doi.org/10.1111/j.1600-0854.2004.0170.x.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu, S. L., Sheng, R., Jung, J. H., Wang, L., Stec, E., O'Connor, M. J., et al. (2017). Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nature Chemical Biology, 13(3), 268–274.  https://doi.org/10.1038/nchembio.2268.PubMedCrossRefGoogle Scholar
  52. 52.
    Truong-Quang, B. A., & Lenne, P. F. (2014). Membrane microdomains: from seeing to understanding. Frontiers in Plant Science, 5, 18.  https://doi.org/10.3389/fpls.2014.00018.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Shashkova, S., & Leake, M. C. (2017). Single-molecule fluorescence microscopy review: shedding new light on old problems. Bioscience Reports, 37(4).  https://doi.org/10.1042/BSR20170031.
  54. 54.
    Zhou, Y., Wong, C. O., Cho, K. J., van der Hoeven, D., Liang, H., Thakur, D. P., et al. (2015). Signal transduction. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science, 349(6250), 873–876.  https://doi.org/10.1126/science.aaa5619. PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Mattheyses, A. L., Simon, S. M., & Rappoport, J. Z. (2010). Imaging with total internal reflection fluorescence microscopy for the cell biologist. Journal of Cell Science, 123(Pt 21), 3621–3628.  https://doi.org/10.1242/jcs.056218.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Prior, I. A., Muncke, C., Parton, R. G., & Hancock, J. F. (2003). Direct visualization of Ras proteins in spatially distinct cell surface microdomains. The Journal of Cell Biology, 160(2), 165–170.  https://doi.org/10.1083/jcb.200209091.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Niv, H., Gutman, O., Kloog, Y., & Henis, Y. I. (2002). Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. The Journal of Cell Biology, 157(5), 865–872.  https://doi.org/10.1083/jcb.200202009.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Manley, S., Gillette, J. M., Patterson, G. H., Shroff, H., Hess, H. F., Betzig, E., et al. (2008). High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nature Methods, 5(2), 155–157.  https://doi.org/10.1038/nmeth.1176.PubMedCrossRefGoogle Scholar
  59. 59.
    Ritchie, K., Iino, R., Fujiwara, T., Murase, K., & Kusumi, A. (2003). The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (review). Molecular Membrane Biology, 20(1), 13–18.Google Scholar
  60. 60.
    Kusumi, A., Sako, Y., & Yamamoto, M. (1993). Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophysical Journal, 65(5), 2021–2040.  https://doi.org/10.1016/S0006-3495(93)81253-0.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Machan, R., & Hof, M. (2010). Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. Biochimica et Biophysica Acta, 1798(7), 1377–1391.  https://doi.org/10.1016/j.bbamem.2010.02.014.PubMedCrossRefGoogle Scholar
  62. 62.
    Frisz, J. F., Lou, K., Klitzing, H. A., Hanafin, W. P., Lizunov, V., Wilson, R. L., et al. (2013). Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 110(8), E613–E622.  https://doi.org/10.1073/pnas.1216585110.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    He, C., Hu, X., Jung, R. S., Weston, T. A., Sandoval, N. P., Tontonoz, P., et al. (2017). High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS. Proceedings of the National Academy of Sciences of the United States of America, 114(8), 2000–2005.  https://doi.org/10.1073/pnas.1621432114.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kraft, M. L., & Klitzing, H. A. (2014). Imaging lipids with secondary ion mass spectrometry. Biochimica et Biophysica Acta, 1841(8), 1108–1119.  https://doi.org/10.1016/j.bbalip.2014.03.003.PubMedCrossRefGoogle Scholar
  65. 65.
    Chen, L. J., Shah, S. S., Silangcruz, J., Eller, M. J., Verkhoturov, S. V., Revzin, A., et al. (2011). Characterization and quantification of nanoparticle-antibody conjugates on cells using C(60) ToF SIMS in the event-by-event bombardment/detection mode. International Journal of Mass Spectrometry, 303(2–3), 97–102.  https://doi.org/10.1016/j.ijms.2011.01.001.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Debord, J. D., Della-Negra, S., Fernandez-Lima, F. A., Verkhoturov, S. V., & Schweikert, E. A. (2012). Bi-directional ion emission from massive gold cluster impacts on nanometric carbon foils. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 116(14), 8138–8144.  https://doi.org/10.1021/jp212126m.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Eller, M. J., Verkhoturov, S. V., & Schweikert, E. A. (2016). Testing molecular homogeneity at the nanoscale with massive cluster secondary ion mass spectrometry. Analytical Chemistry, 88(15), 7639–7646.  https://doi.org/10.1021/acs.analchem.6b01466.PubMedCrossRefGoogle Scholar
  68. 68.
    Liang, C. K., Verkhoturov, S. V., Bisrat, Y., Dikler, S., Debord, J. D., Fernandez-Lima, F. A., et al. (2013). Characterization of individual nano-objects with nanoprojectile-SIMS. Surface and Interface Analysis, 45(1), 329–332.  https://doi.org/10.1002/sia.5084.PubMedCrossRefGoogle Scholar
  69. 69.
    Verkhoturov, S. V., Eller, M. J., Rickman, R. D., Della-Negra, S., & Schweikert, E. A. (2010). Single impacts of C60 on solids: emission of electrons, ions and prospects for surface mapping. The Journal of Physical Chemistry C, 114(12), 5637–5644.  https://doi.org/10.1021/jp9073703.CrossRefGoogle Scholar
  70. 70.
    Fernandez-Lima, F. A., Post, J., DeBord, J. D., Eller, M. J., Verkhoturov, S. V., Della-Negra, S., et al. (2011). Analysis of native biological surfaces using a 100 kV massive gold cluster source. Analytical Chemistry, 83(22), 8448–8453.  https://doi.org/10.1021/ac201481r.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Krager, K. J., Sarkar, M., Twait, E. C., Lill, N. L., & Koland, J. G. (2012). A novel biotinylated lipid raft reporter for electron microscopic imaging of plasma membrane microdomains. Journal of Lipid Research, 53(10), 2214–2225.  https://doi.org/10.1194/jlr.D026468.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Head, B. P., Patel, H. H., Roth, D. M., Murray, F., Swaney, J. S., Niesman, I. R., et al. (2006). Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. The Journal of Biological Chemistry, 281(36), 26391–26399.  https://doi.org/10.1074/jbc.M602577200.PubMedCrossRefGoogle Scholar
  73. 73.
    Klymchenko, A. S., & Kreder, R. (2014). Fluorescent probes for lipid rafts: from model membranes to living cells. Chemistry & Biology, 21(1), 97–113.  https://doi.org/10.1016/j.chembiol.2013.11.009.CrossRefGoogle Scholar
  74. 74.
    Ohno-Iwashita, Y., Shimada, Y., Waheed, A. A., Hayashi, M., Inomata, M., Nakamura, M., et al. (2004). Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts. Anaerobe, 10(2), 125–134.  https://doi.org/10.1016/j.anaerobe.2003.09.003.PubMedCrossRefGoogle Scholar
  75. 75.
    Skocaj, M., Resnik, N., Grundner, M., Ota, K., Rojko, N., Hodnik, V., et al. (2014). Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS One, 9(3), e92783.  https://doi.org/10.1371/journal.pone.0092783.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Yamaji, A., Sekizawa, Y., Emoto, K., Sakuraba, H., Inoue, K., Kobayashi, H., et al. (1998). Lysenin, a novel sphingomyelin-specific binding protein. The Journal of Biological Chemistry, 273(9), 5300–5306.PubMedCrossRefGoogle Scholar
  77. 77.
    Bhat, H. B., Kishimoto, T., Abe, M., Makino, A., Inaba, T., Murate, M., et al. (2013). Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains. Journal of Lipid Research, 54(10), 2933–2943.  https://doi.org/10.1194/jlr.D041731.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Baumgart, T., Hunt, G., Farkas, E. R., Webb, W. W., & Feigenson, G. W. (2007). Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochimica et Biophysica Acta, 1768(9), 2182–2194.  https://doi.org/10.1016/j.bbamem.2007.05.012.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Prior, I. A., Harding, A., Yan, J., Sluimer, J., Parton, R. G., & Hancock, J. F. (2001). GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nature Cell Biology, 3(4), 368–375.  https://doi.org/10.1038/35070050.PubMedCrossRefGoogle Scholar
  80. 80.
    Mariani, M. M., Lampen, P., Popp, J., Wood, B. R., & Deckert, V. (2009). Impact of fixation on in vitro cell culture lines monitored with Raman spectroscopy. Analyst, 134(6), 1154–1161.  https://doi.org/10.1039/b822408k.PubMedCrossRefGoogle Scholar
  81. 81.
    Schaepe, K., Kokesch-Himmelreich, J., Rohnke, M., Wagner, A. S., Schaaf, T., Wenisch, S., et al. (2015). Assessment of different sample preparation routes for mass spectrometric monitoring and imaging of lipids in bone cells via ToF-SIMS. Biointerphases, 10(1), 019016.  https://doi.org/10.1116/1.4915263.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Dietrich, C., Bagatolli, L. A., Volovyk, Z. N., Thompson, N. L., Levi, M., Jacobson, K., et al. (2001). Lipid rafts reconstituted in model membranes. Biophysical Journal, 80(3), 1417–1428.  https://doi.org/10.1016/S0006-3495(01)76114-0.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jin, L., Millard, A. C., Wuskell, J. P., Dong, X., Wu, D., Clark, H. A., et al. (2006). Characterization and application of a new optical probe for membrane lipid domains. Biophysical Journal, 90(7), 2563–2575.  https://doi.org/10.1529/biophysj.105.072884.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kwiatek, J. M., Owen, D. M., Abu-Siniyeh, A., Yan, P., Loew, L. M., & Gaus, K. (2013). Characterization of a new series of fluorescent probes for imaging membrane order. PLoS One, 8(2), e52960.  https://doi.org/10.1371/journal.pone.0052960.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Loew, L. M., Cohen, L. B., Dix, J., Fluhler, E. N., Montana, V., Salama, G., et al. (1992). A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. The Journal of Membrane Biology, 130(1), 1–10.PubMedCrossRefGoogle Scholar
  86. 86.
    Sezgin, E., Sadowski, T., & Simons, K. (2014). Measuring lipid packing of model and cellular membranes with environment sensitive probes. Langmuir, 30(27), 8160–8166.  https://doi.org/10.1021/la501226v.PubMedCrossRefGoogle Scholar
  87. 87.
    Owen, D. M., Rentero, C., Magenau, A., Abu-Siniyeh, A., & Gaus, K. (2011). Quantitative imaging of membrane lipid order in cells and organisms. Nature Protocols, 7(1), 24–35.  https://doi.org/10.1038/nprot.2011.419.PubMedCrossRefGoogle Scholar
  88. 88.
    Schilling, T., & Eder, C. (2010). Importance of lipid rafts for lysophosphatidylcholine-induced caspase-1 activation and reactive oxygen species generation. Cellular Immunology, 265(2), 87–90.  https://doi.org/10.1016/j.cellimm.2010.08.003.PubMedCrossRefGoogle Scholar
  89. 89.
    Bang, B., Gniadecki, R., & Gajkowska, B. (2005). Disruption of lipid rafts causes apoptotic cell death in HaCaT keratinocytes. Experimental Dermatology, 14(4), 266–272.  https://doi.org/10.1111/j.0906-6705.2005.00283.x.PubMedCrossRefGoogle Scholar
  90. 90.
    Saghy, E., Szoke, E., Payrits, M., Helyes, Z., Borzsei, R., Erostyak, J., et al. (2015). Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of transient receptor potential channels in trigeminal sensory neurons and peripheral nerve terminals. Pharmacological Research, 100, 101–116.  https://doi.org/10.1016/j.phrs.2015.07.028.PubMedCrossRefGoogle Scholar
  91. 91.
    Schwan, C., Nolke, T., Kruppke, A. S., Schubert, D. M., Lang, A. E., & Aktories, K. (2011). Cholesterol- and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by clostridium difficile transferase (CDT). The Journal of Biological Chemistry, 286(33), 29356–29365.  https://doi.org/10.1074/jbc.M111.261925.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Zidovetzki, R., & Levitan, I. (2007). Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochimica et Biophysica Acta, 1768(6), 1311–1324.  https://doi.org/10.1016/j.bbamem.2007.03.026.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Linetti, A., Fratangeli, A., Taverna, E., Valnegri, P., Francolini, M., Cappello, V., et al. (2010). Cholesterol reduction impairs exocytosis of synaptic vesicles. Journal of Cell Science, 123(Pt 4), 595–605.  https://doi.org/10.1242/jcs.060681. PubMedCrossRefGoogle Scholar
  94. 94.
    Voss, K. A., Liu, J., Anderson, S. P., Dunn, C., Miller, J. D., Owen, J. R., et al. (2006). Toxic effects of fumonisin in mouse liver are independent of the peroxisome proliferator-activated receptor alpha. Toxicological Sciences, 89(1), 108–119.  https://doi.org/10.1093/toxsci/kfj019. PubMedCrossRefGoogle Scholar
  95. 95.
    Contreras, F. X., Villar, A. V., Alonso, A., Kolesnick, R. N., & Goni, F. M. (2003). Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. The Journal of Biological Chemistry, 278(39), 37169–37174.  https://doi.org/10.1074/jbc.M303206200.PubMedCrossRefGoogle Scholar
  96. 96.
    Merrill Jr., A. H., Sullards, M. C., Wang, E., Voss, K. A., & Riley, R. T. (2001). Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environmental Health Perspectives, 109(Suppl 2), 283–289.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Arita, Y., Nishimura, S., Ishitsuka, R., Kishimoto, T., Ikenouchi, J., Ishii, K., et al. (2015). Targeting cholesterol in a liquid-disordered environment by theonellamides modulates cell membrane order and cell shape. Chemistry & Biology, 22(5), 604–610.  https://doi.org/10.1016/j.chembiol.2015.04.011.CrossRefGoogle Scholar
  98. 98.
    Pike, L. J. (2004). Lipid rafts: heterogeneity on the high seas. The Biochemical Journal, 378(Pt 2), 281–292.  https://doi.org/10.1042/BJ20031672. PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mishra, S., & Joshi, P. G. (2007). Lipid raft heterogeneity: an enigma. Journal of Neurochemistry, 103(Suppl 1), 135–142.  https://doi.org/10.1111/j.1471-4159.2007.04720.x.PubMedCrossRefGoogle Scholar
  100. 100.
    Hancock, J. F. (2006). Lipid rafts: contentious only from simplistic standpoints. Nature Reviews. Molecular Cell Biology, 7(6), 456–462.  https://doi.org/10.1038/nrm1925.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Stockl, M., Plazzo, A. P., Korte, T., & Herrmann, A. (2008). Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy of fluorescent lipid analogues. The Journal of Biological Chemistry, 283(45), 30828–30837.  https://doi.org/10.1074/jbc.M801418200.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kusumi, A., Koyama-Honda, I., & Suzuki, K. (2004). Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic, 5(4), 213–230.  https://doi.org/10.1111/j.1600-0854.2004.0178.x.PubMedCrossRefGoogle Scholar
  103. 103.
    Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.  https://doi.org/10.1038/nature03319.PubMedCrossRefGoogle Scholar
  104. 104.
    Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3), 469–480.  https://doi.org/10.1016/j.cell.2006.10.018.PubMedCrossRefGoogle Scholar
  105. 105.
    Chen, Q., Su, Y., Wesslowski, J., Hagemann, A. I., Ramialison, M., Wittbrodt, J., et al. (2014). Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/beta-catenin signalling. EMBO Reports, 15(12), 1254–1267.  https://doi.org/10.15252/embr.201439644.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hagemann, A. I., Kurz, J., Kauffeld, S., Chen, Q., Reeves, P. M., Weber, S., et al. (2014). In vivo analysis of formation and endocytosis of the Wnt/beta-catenin signaling complex in zebrafish embryos. Journal of Cell Science, 127(Pt 18), 3970–3982.  https://doi.org/10.1242/jcs.148767. PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Cervenka, I., Wolf, J., Masek, J., Krejci, P., Wilcox, W. R., Kozubik, A., et al. (2011). Mitogen-activated protein kinases promote WNT/beta-catenin signaling via phosphorylation of LRP6. Molecular and Cellular Biology, 31(1), 179–189.  https://doi.org/10.1128/MCB.00550-10.PubMedCrossRefGoogle Scholar
  108. 108.
    Henriquez, J. P., Webb, A., Bence, M., Bildsoe, H., Sahores, M., Hughes, S. M., et al. (2008). Wnt signaling promotes AChR aggregation at the neuromuscular synapse in collaboration with agrin. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18812–18817.  https://doi.org/10.1073/pnas.0806300105.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kim, I., Pan, W., Jones, S. A., Zhang, Y., Zhuang, X., & Wu, D. (2013). Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes. The Journal of Cell Biology, 200(4), 419–428.  https://doi.org/10.1083/jcb.201206096.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Schwarz-Romond, T., Fiedler, M., Shibata, N., Butler, P. J., Kikuchi, A., Higuchi, Y., et al. (2007). The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nature Structural & Molecular Biology, 14(6), 484–492.  https://doi.org/10.1038/nsmb1247.CrossRefGoogle Scholar
  111. 111.
    Metcalfe, C., Mendoza-Topaz, C., Mieszczanek, J., & Bienz, M. (2010). Stability elements in the LRP6 cytoplasmic tail confer efficient signalling upon DIX-dependent polymerization. Journal of Cell Science, 123(Pt 9), 1588–1599.  https://doi.org/10.1242/jcs.067546.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    MacDonald, B. T., Yokota, C., Tamai, K., Zeng, X., & He, X. (2008). Wnt signal amplification via activity, cooperativity, and regulation of multiple intracellular PPPSP motifs in the Wnt co-receptor LRP6. The Journal of Biological Chemistry, 283(23), 16115–16123.  https://doi.org/10.1074/jbc.M800327200.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    van Amerongen, R., & Nusse, R. (2009). Towards an integrated view of Wnt signaling in development. Development, 136(19), 3205–3214.  https://doi.org/10.1242/dev.033910.PubMedCrossRefGoogle Scholar
  114. 114.
    Mii, Y., Yamamoto, T., Takada, R., Mizumoto, S., Matsuyama, M., Yamada, S., et al. (2017). Roles of two types of heparan sulfate clusters in Wnt distribution and signaling in Xenopus. Nature Communications, 8(1), 1973.  https://doi.org/10.1038/s41467-017-02076-0.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Özhan, G., Sezgin, E., Wehner, D., Pfister, A. S., Kühl, S. J., Kagermeier-Schenk, B., et al. (2013). Lypd6 enhances Wnt/β-catenin signaling by promoting Lrp6 phosphorylation in raft plasma membrane domains. Developmental Cell, 26(4), 331–345.  https://doi.org/10.1016/j.devcel.2013.07.020.PubMedCrossRefGoogle Scholar
  116. 116.
    Schneider, F., Waithe, D., Clausen, M. P., Galiani, S., Koller, T., Ozhan, G., et al. (2017). Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Molecular Biology of the Cell, 28(11), 1507–1518.  https://doi.org/10.1091/mbc.E16-07-0536.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Davy, A., Gale, N. W., Murray, E. W., Klinghoffer, R. A., Soriano, P., Feuerstein, C., et al. (1999). Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes & Development, 13(23), 3125–3135.CrossRefGoogle Scholar
  118. 118.
    Saha, S., Anilkumar, A. A., & Mayor, S. (2016). GPI-anchored protein organization and dynamics at the cell surface. Journal of Lipid Research, 57(2), 159–175.  https://doi.org/10.1194/jlr.R062885.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Harder, T., Scheiffele, P., Verkade, P., & Simons, K. (1998). Lipid domain structure of the plasma membrane revealed by patching of membrane components. The Journal of Cell Biology, 141(4), 929–942.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Yamamoto, H., Sakane, H., Yamamoto, H., Michiue, T., & Kikuchi, A. (2008). Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of β-catenin signaling. Developmental Cell, 15(1), 37–48.  https://doi.org/10.1016/j.devcel.2008.04.015.PubMedCrossRefGoogle Scholar
  121. 121.
    Sakane, H., Yamamoto, H., & Kikuchi, A. (2010). LRP6 is internalized by Dkk1 to suppress its phosphorylation in the lipid raft and is recycled for reuse. Journal of Cell Science, 123(3), 360–368.  https://doi.org/10.1242/jcs.058008.PubMedCrossRefGoogle Scholar
  122. 122.
    Lucken-Ardjomande, S., Montessuit, S., & Martinou, J. C. (2008). Bax activation and stress-induced apoptosis delayed by the accumulation of cholesterol in mitochondrial membranes. Cell Death and Differentiation, 15(3), 484–493.  https://doi.org/10.1038/sj.cdd.4402280.PubMedCrossRefGoogle Scholar
  123. 123.
    Pan, W., Choi, S. C., Wang, H., Qin, Y., Volpicelli-Daley, L., Swan, L., et al. (2008). Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science, 321(5894), 1350–1353.  https://doi.org/10.1126/science.1160741.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zhou, Y., & Hancock, J. F. (2015). Ras nanoclusters: versatile lipid-based signaling platforms. Biochimica et Biophysica Acta, 1853(4), 841–849.  https://doi.org/10.1016/j.bbamcr.2014.09.008.PubMedCrossRefGoogle Scholar
  125. 125.
    Plowman, S. J., Muncke, C., Parton, R. G., & Hancock, J. F. (2005). H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15500–15505.  https://doi.org/10.1073/pnas.0504114102.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Murakoshi, H., Iino, R., Kobayashi, T., Fujiwara, T., Ohshima, C., Yoshimura, A., et al. (2004). Single-molecule imaging analysis of Ras activation in living cells. Proceedings of the National Academy of Sciences of the United States of America, 101(19), 7317–7322.  https://doi.org/10.1073/pnas.0401354101.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Abankwa, D., Gorfe, A. A., & Hancock, J. F. (2007). Ras nanoclusters: molecular structure and assembly. Seminars in Cell & Developmental Biology, 18(5), 599–607.  https://doi.org/10.1016/j.semcdb.2007.08.003.CrossRefGoogle Scholar
  128. 128.
    Abankwa, D., Gorfe, A. A., & Hancock, J. F. (2008). Mechanisms of Ras membrane organization and signalling: Ras on a rocker. Cell Cycle, 7(17), 2667–2673.  https://doi.org/10.4161/cc.7.17.6596.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Guzman, C., Solman, M., Ligabue, A., Blazevits, O., Andrade, D. M., Reymond, L., et al. (2014). The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer-specific nanoclustering. The Journal of Biological Chemistry, 289(14), 9519–9533.  https://doi.org/10.1074/jbc.M113.537001.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Zhou, Y., Liang, H., Rodkey, T., Ariotti, N., Parton, R. G., & Hancock, J. F. (2014). Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters. Molecular and Cellular Biology, 34(5), 862–876.  https://doi.org/10.1128/MCB.01227-13.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Plowman, S. J., Ariotti, N., Goodall, A., Parton, R. G., & Hancock, J. F. (2008). Electrostatic interactions positively regulate K-Ras nanocluster formation and function. Molecular and Cellular Biology, 28(13), 4377–4385.  https://doi.org/10.1128/MCB.00050-08.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Sezgin, E., Azbazdar, Y., Ng, X. W., Teh, C., Simons, K., Weidinger, G., et al. (2017). Binding of canonical Wnt ligands to their receptor complexes occurs in ordered plasma membrane environments. The FEBS Journal, 284(15), 2513–2526.  https://doi.org/10.1111/febs.14139.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Yamamoto, H., Komekado, H., & Kikuchi, A. (2006). Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of β-catenin. Developmental Cell, 11(2), 213–223.  https://doi.org/10.1016/j.devcel.2006.07.003.PubMedCrossRefGoogle Scholar
  134. 134.
    Sheng, R., Kim, H., Lee, H., Xin, Y., Chen, Y., Tian, W., et al. (2014). Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nature Communications, 5, 4393.  https://doi.org/10.1038/ncomms5393.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hofman, E. G., Ruonala, M. O., Bader, A. N., van den Heuvel, D., Voortman, J., Roovers, R. C., et al. (2008). EGF induces coalescence of different lipid rafts. Journal of Cell Science, 121(Pt 15), 2519–2528.  https://doi.org/10.1242/jcs.028753. PubMedCrossRefGoogle Scholar
  136. 136.
    Hofman, E. G., Bader, A. N., Gerritsen, H. C., & van Bergen En Henegouwen, P. M. (2009). EGF induces rapid reorganization of plasma membrane microdomains. Communicative & Integrative Biology, 2(3), 213–214.CrossRefGoogle Scholar
  137. 137.
    Nishioka, T., Frohman, M. A., Matsuda, M., & Kiyokawa, E. (2010). Heterogeneity of phosphatidic acid levels and distribution at the plasma membrane in living cells as visualized by a Foster resonance energy transfer (FRET) biosensor. The Journal of Biological Chemistry, 285(46), 35979–35987.  https://doi.org/10.1074/jbc.M110.153007.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zhao, C., Du, G., Skowronek, K., Frohman, M. A., & Bar-Sagi, D. (2007). Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nature Cell Biology, 9(6), 706–712.  https://doi.org/10.1038/ncb1594.PubMedCrossRefGoogle Scholar
  139. 139.
    Zhang, F., Wang, Z., Lu, M., Yonekubo, Y., Liang, X., Zhang, Y., et al. (2014). Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells. Molecular and Cellular Biology, 34(1), 84–95.  https://doi.org/10.1128/MCB.00987-13.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., et al. (1999). Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell, 99(5), 521–532.PubMedCrossRefGoogle Scholar
  141. 141.
    Michailidis, I. E., Rusinova, R., Georgakopoulos, A., Chen, Y., Iyengar, R., Robakis, N. K., et al. (2011). Phosphatidylinositol-4,5-bisphosphate regulates epidermal growth factor receptor activation. Pflügers Archiv, 461(3), 387–397.  https://doi.org/10.1007/s00424-010-0904-3.PubMedCrossRefGoogle Scholar
  142. 142.
    Ariotti, N., Liang, H., Xu, Y., Zhang, Y., Yonekubo, Y., Inder, K., et al. (2010). Epidermal growth factor receptor activation remodels the plasma membrane lipid environment to induce nanocluster formation. Molecular and Cellular Biology, 30(15), 3795–3804.  https://doi.org/10.1128/MCB.01615-09.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Wang, Y., Gao, J., Guo, X., Tong, T., Shi, X., Li, L., et al. (2014). Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. Cell Research, 24(8), 959–976.  https://doi.org/10.1038/cr.2014.89.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Gureasko, J., Kuchment, O., Makino, D. L., Sondermann, H., Bar-Sagi, D., & Kuriyan, J. (2010). Role of the histone domain in the autoinhibition and activation of the Ras activator son of sevenless. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3430–3435.  https://doi.org/10.1073/pnas.0913915107.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Yadav, K. K., & Bar-Sagi, D. (2010). Allosteric gating of son of sevenless activity by the histone domain. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3436–3440.  https://doi.org/10.1073/pnas.0914315107.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Abankwa, D., Hanzal-Bayer, M., Ariotti, N., Plowman, S. J., Gorfe, A. A., Parton, R. G., et al. (2008). A novel switch region regulates H-ras membrane orientation and signal output. The EMBO Journal, 27(5), 727–735.  https://doi.org/10.1038/emboj.2008.10.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Abankwa, D., Gorfe, A. A., Inder, K., & Hancock, J. F. (2010). Ras membrane orientation and nanodomain localization generate isoform diversity. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1130–1135.  https://doi.org/10.1073/pnas.0903907107.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Tian, T., Harding, A., Inder, K., Plowman, S., Parton, R. G., & Hancock, J. F. (2007). Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nature Cell Biology, 9(8), 905–914.  https://doi.org/10.1038/ncb1615.PubMedCrossRefGoogle Scholar
  149. 149.
    van Rheenen, J., Song, X., van Roosmalen, W., Cammer, M., Chen, X., Desmarais, V., et al. (2007). EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells. The Journal of Cell Biology, 179(6), 1247–1259.  https://doi.org/10.1083/jcb.200706206.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Roach, A. N., Wang, Z., Wu, P., Zhang, F., Chan, R. B., Yonekubo, Y., et al. (2012). Phosphatidic acid regulation of PIPKI is critical for actin cytoskeletal reorganization. Journal of Lipid Research, 53(12), 2598–2609.  https://doi.org/10.1194/jlr.M028597.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Pleskot, R., Li, J., Zarsky, V., Potocky, M., & Staiger, C. J. (2013). Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends in Plant Science, 18(9), 496–504.  https://doi.org/10.1016/j.tplants.2013.04.005.PubMedCrossRefGoogle Scholar
  152. 152.
    Wu, M., Holowka, D., Craighead, H. G., & Baird, B. (2004). Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 101(38), 13798–13803.  https://doi.org/10.1073/pnas.0403835101.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Pike, L. J., Han, X., & Gross, R. W. (2005). Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. The Journal of Biological Chemistry, 280(29), 26796–26804.  https://doi.org/10.1074/jbc.M503805200.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Kabouridis, P. S. (2006). Lipid rafts in T cell receptor signalling. Molecular Membrane Biology, 23(1), 49–57.  https://doi.org/10.1080/09687860500453673. PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Pierce, S. K. (2002). Lipid rafts and B-cell activation. Nature Reviews. Immunology, 2(2), 96–105.  https://doi.org/10.1038/nri726.PubMedCrossRefGoogle Scholar
  156. 156.
    Dinic, J., Riehl, A., Adler, J., & Parmryd, I. (2015). The T cell receptor resides in ordered plasma membrane nanodomains that aggregate upon patching of the receptor. Scientific Reports, 5, 10082.  https://doi.org/10.1038/srep10082.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Morino-Koga, S., Yano, S., Kondo, T., Shimauchi, Y., Matsuyama, S., Okamoto, Y., et al. (2013). Insulin receptor activation through its accumulation in lipid rafts by mild electrical stress. Journal of Cellular Physiology, 228(2), 439–446.  https://doi.org/10.1002/jcp.24149.PubMedCrossRefGoogle Scholar
  158. 158.
    Pike, L. J. (2005). Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochimica et Biophysica Acta, 1746(3), 260–273.  https://doi.org/10.1016/j.bbamcr.2005.05.005.PubMedCrossRefGoogle Scholar
  159. 159.
    Bunnell, S. C., Hong, D. I., Kardon, J. R., Yamazaki, T., McGlade, C. J., Barr, V. A., et al. (2002). T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. The Journal of Cell Biology, 158(7), 1263–1275.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Douglass, A. D., & Vale, R. D. (2005). Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell, 121(6), 937–950.  https://doi.org/10.1016/j.cell.2005.04.009.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Winter, P. W., Van Orden, A. K., Roess, D. A., & Barisas, B. G. (2012). Actin-dependent clustering of insulin receptors in membrane microdomains. Biochimica et Biophysica Acta, 1818(3), 467–473.  https://doi.org/10.1016/j.bbamem.2011.10.006.PubMedCrossRefGoogle Scholar
  162. 162.
    Dessi, S., Batetta, B., Pulisci, D., Spano, O., Anchisi, C., Tessitore, L., et al. (1994). Cholesterol content in tumor tissues is inversely associated with high-density lipoprotein cholesterol in serum in patients with gastrointestinal cancer. Cancer, 73(2), 253–258.PubMedCrossRefGoogle Scholar
  163. 163.
    Kolanjiappan, K., Ramachandran, C. R., & Manoharan, S. (2003). Biochemical changes in tumor tissues of oral cancer patients. Clinical Biochemistry, 36(1), 61–65.PubMedCrossRefGoogle Scholar
  164. 164.
    Montero, J., Morales, A., Llacuna, L., Lluis, J. M., Terrones, O., Basanez, G., et al. (2008). Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Research, 68(13), 5246–5256.  https://doi.org/10.1158/0008-5472.CAN-07-6161.PubMedCrossRefGoogle Scholar
  165. 165.
    Li, Y. C., Park, M. J., Ye, S. K., Kim, C. W., & Kim, Y. N. (2006). Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. The American Journal of Pathology, 168(4), 1107–1118; quiz 1404-1105.  https://doi.org/10.2353/ajpath.2006.050959.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Alves, A. C., Ribeiro, D., Nunes, C., & Reis, S. (2016). Biophysics in cancer: the relevance of drug-membrane interaction studies. Biochimica et Biophysica Acta, 1858(9), 2231–2244.  https://doi.org/10.1016/j.bbamem.2016.06.025.PubMedCrossRefGoogle Scholar
  167. 167.
    Lange, Y., Swaisgood, M. H., Ramos, B. V., & Steck, T. L. (1989). Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. The Journal of Biological Chemistry, 264(7), 3786–3793.PubMedGoogle Scholar
  168. 168.
    Ray, T. K., Skipski, V. P., Barclay, M., Essner, E., & Archibald, F. M. (1969). Lipid composition of rat liver plasma membranes. The Journal of Biological Chemistry, 244(20), 5528–5536.PubMedGoogle Scholar
  169. 169.
    Das, A., Brown, M. S., Anderson, D. D., Goldstein, J. L., & Radhakrishnan, A. (2014). Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife, 3.  https://doi.org/10.7554/eLife.02882.
  170. 170.
    Cancer Genome Atlas Research, N., Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R., Ozenberger, B. A., et al. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 45(10), 1113–1120.  https://doi.org/10.1038/ng.2764.CrossRefGoogle Scholar
  171. 171.
    Ribas, V., Garcia-Ruiz, C., & Fernandez-Checa, J. C. (2016). Mitochondria, cholesterol and cancer cell metabolism. Clinical and Translational Medicine, 5(1), 22.  https://doi.org/10.1186/s40169-016-0106-5.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Wang, B., Rong, X., Palladino, E. N. D., Wang, J., Fogelman, A. M., Martin, M. G., et al. (2018). Phospholipid remodeling and cholesterol availability regulate intestinal stemness and tumorigenesis. Cell Stem Cell, 22(2), 206–220 e204.  https://doi.org/10.1016/j.stem.2017.12.017.PubMedCrossRefGoogle Scholar
  173. 173.
    Kuzu, O. F., Noory, M. A., & Robertson, G. P. (2016). The role of cholesterol in cancer. Cancer Research, 76(8), 2063–2070.  https://doi.org/10.1158/0008-5472.CAN-15-2613.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Irwin, M. E., Mueller, K. L., Bohin, N., Ge, Y., & Boerner, J. L. (2011). Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. Journal of Cellular Physiology, 226(9), 2316–2328.  https://doi.org/10.1002/jcp.22570.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Gao, J., Wang, Y., Cai, M., Pan, Y., Xu, H., Jiang, J., et al. (2015). Mechanistic insights into EGFR membrane clustering revealed by super-resolution imaging. Nanoscale, 7(6), 2511–2519.  https://doi.org/10.1039/c4nr04962d.PubMedCrossRefGoogle Scholar
  176. 176.
    Dow, L. E., O'Rourke, K. P., Simon, J., Tschaharganeh, D. F., van Es, J. H., Clevers, H., et al. (2015). Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell, 161(7), 1539–1552.  https://doi.org/10.1016/j.cell.2015.05.033.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Halvey, P. J., Zhang, B., Coffey, R. J., Liebler, D. C., & Slebos, R. J. (2012). Proteomic consequences of a single gene mutation in a colorectal cancer model. Journal of Proteome Research, 11(2), 1184–1195.  https://doi.org/10.1021/pr2009109.PubMedCrossRefGoogle Scholar
  178. 178.
    Allott, E. H., Howard, L. E., Cooperberg, M. R., Kane, C. J., Aronson, W. J., Terris, M. K., et al. (2014). Serum lipid profile and risk of prostate cancer recurrence: results from the SEARCH database. Cancer Epidemiology, Biomarkers & Prevention, 23(11), 2349–2356.  https://doi.org/10.1158/1055-9965.EPI-14-0458.CrossRefGoogle Scholar
  179. 179.
    Kitahara, C. M., Berrington de Gonzalez, A., Freedman, N. D., Huxley, R., Mok, Y., Jee, S. H., et al. (2011). Total cholesterol and cancer risk in a large prospective study in Korea. Journal of Clinical Oncology, 29(12), 1592–1598.  https://doi.org/10.1200/JCO.2010.31.5200.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Wulaningsih, W., Vahdaninia, M., Rowley, M., Holmberg, L., Garmo, H., Malmstrom, H., et al. (2015). Prediagnostic serum glucose and lipids in relation to survival in breast cancer patients: a competing risk analysis. BMC Cancer, 15, 913.  https://doi.org/10.1186/s12885-015-1928-z.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Ulmer, H., Borena, W., Rapp, K., Klenk, J., Strasak, A., Diem, G., et al. (2009). Serum triglyceride concentrations and cancer risk in a large cohort study in Austria. British Journal of Cancer, 101(7), 1202–1206.  https://doi.org/10.1038/sj.bjc.6605264.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Yamada, K., Araki, S., Tamura, M., Sakai, I., Takahashi, Y., Kashihara, H., et al. (1998). Relation of serum total cholesterol, serum triglycerides and fasting plasma glucose to colorectal carcinoma in situ. International Journal of Epidemiology, 27(5), 794–798.PubMedCrossRefGoogle Scholar
  183. 183.
    Jacobs, E. J., Newton, C. C., Thun, M. J., & Gapstur, S. M. (2011). Long-term use of cholesterol-lowering drugs and cancer incidence in a large United States cohort. Cancer Research, 71(5), 1763–1771.  https://doi.org/10.1158/0008-5472.CAN-10-2953.PubMedCrossRefGoogle Scholar
  184. 184.
    Murtola, T. J., Visvanathan, K., Artama, M., Vainio, H., & Pukkala, E. (2014). Statin use and breast cancer survival: a nationwide cohort study from Finland. PLoS One, 9(10), e110231.  https://doi.org/10.1371/journal.pone.0110231.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Cardwell, C. R., Hicks, B. M., Hughes, C., & Murray, L. J. (2014). Statin use after colorectal cancer diagnosis and survival: a population-based cohort study. Journal of Clinical Oncology, 32(28), 3177–3183.  https://doi.org/10.1200/JCO.2013.54.4569.PubMedCrossRefGoogle Scholar
  186. 186.
    Nielsen, S. F., Nordestgaard, B. G., & Bojesen, S. E. (2012). Statin use and reduced cancer-related mortality. The New England Journal of Medicine, 367(19), 1792–1802.  https://doi.org/10.1056/NEJMoa1201735.PubMedCrossRefGoogle Scholar
  187. 187.
    Smith, B., & Land, H. (2012). Anticancer activity of the cholesterol exporter ABCA1 gene. Cell Reports, 2(3), 580–590.  https://doi.org/10.1016/j.celrep.2012.08.011.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Krycer, J. R., & Brown, A. J. (2013). Cholesterol accumulation in prostate cancer: a classic observation from a modern perspective. Biochimica et Biophysica Acta, 1835(2), 219–229.  https://doi.org/10.1016/j.bbcan.2013.01.002.PubMedCrossRefGoogle Scholar
  189. 189.
    Casey, S. C., Amedei, A., Aquilano, K., Azmi, A. S., Benencia, F., Bhakta, D., et al. (2015). Cancer prevention and therapy through the modulation of the tumor microenvironment. Seminars in Cancer Biology, (35 Suppl), S199–S223.  https://doi.org/10.1016/j.semcancer.2015.02.007.
  190. 190.
    Kawata, S., Takaishi, K., Nagase, T., Ito, N., Matsuda, Y., Tamura, S., et al. (1990). Increase in the active form of 3-hydroxy-3-methylglutaryl coenzyme A reductase in human hepatocellular carcinoma: possible mechanism for alteration of cholesterol biosynthesis. Cancer Research, 50(11), 3270–3273.PubMedGoogle Scholar
  191. 191.
    Harwood Jr., H. J., Alvarez, I. M., Noyes, W. D., & Stacpoole, P. W. (1991). In vivo regulation of human leukocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase: increased enzyme protein concentration and catalytic efficiency in human leukemia and lymphoma. Journal of Lipid Research, 32(8), 1237–1252.PubMedGoogle Scholar
  192. 192.
    Caruso, M. G., Notarnicola, M., Santillo, M., Cavallini, A., & Di Leo, A. (1999). Enhanced 3-hydroxy-3-methyl-glutaryl coenzyme A reductase activity in human colorectal cancer not expressing low density lipoprotein receptor. Anticancer Research, 19(1A), 451–454.PubMedGoogle Scholar
  193. 193.
    Wong, W. W., Dimitroulakos, J., Minden, M. D., & Penn, L. Z. (2002). HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia, 16(4), 508–519.  https://doi.org/10.1038/sj.leu.2402476.PubMedCrossRefGoogle Scholar
  194. 194.
    Guillaumond, F., Bidaut, G., Ouaissi, M., Servais, S., Gouirand, V., Olivares, O., et al. (2015). Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 112(8), 2473–2478.  https://doi.org/10.1073/pnas.1421601112.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Hilvo, M., Denkert, C., Lehtinen, L., Muller, B., Brockmoller, S., Seppanen-Laakso, T., et al. (2011). Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Research, 71(9), 3236–3245.  https://doi.org/10.1158/0008-5472.CAN-10-3894.PubMedCrossRefGoogle Scholar
  196. 196.
    Guenther, S., Muirhead, L. J., Speller, A. V., Golf, O., Strittmatter, N., Ramakrishnan, R., et al. (2015). Spatially resolved metabolic phenotyping of breast cancer by desorption electrospray ionization mass spectrometry. Cancer Research, 75(9), 1828–1837.  https://doi.org/10.1158/0008-5472.CAN-14-2258.PubMedCrossRefGoogle Scholar
  197. 197.
    Rysman, E., Brusselmans, K., Scheys, K., Timmermans, L., Derua, R., Munck, S., et al. (2010). De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Research, 70(20), 8117–8126.  https://doi.org/10.1158/0008-5472.CAN-09-3871.PubMedCrossRefGoogle Scholar
  198. 198.
    Kawashima, M., Iwamoto, N., Kawaguchi-Sakita, N., Sugimoto, M., Ueno, T., Mikami, Y., et al. (2013). High-resolution imaging mass spectrometry reveals detailed spatial distribution of phosphatidylinositols in human breast cancer. Cancer Science, 104(10), 1372–1379.  https://doi.org/10.1111/cas.12229.PubMedCrossRefGoogle Scholar
  199. 199.
    Foster, D. A. (2009). Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochimica et Biophysica Acta, 1791(9), 949–955.  https://doi.org/10.1016/j.bbalip.2009.02.009.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Menendez, J. A., & Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews Cancer, 7(10), 763–777.  https://doi.org/10.1038/nrc2222.PubMedCrossRefGoogle Scholar
  201. 201.
    Zaidi, N., Swinnen, J. V., & Smans, K. (2012). ATP-citrate lyase: a key player in cancer metabolism. Cancer Research, 72(15), 3709–3714.  https://doi.org/10.1158/0008-5472.CAN-11-4112.PubMedCrossRefGoogle Scholar
  202. 202.
    Sarker, D., Reid, A. H., Yap, T. A., & de Bono, J. S. (2009). Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clinical Cancer Research, 15(15), 4799–4805.  https://doi.org/10.1158/1078-0432.CCR-08-0125.PubMedCrossRefGoogle Scholar
  203. 203.
    Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Reviews Cancer, 2(7), 489–501.  https://doi.org/10.1038/nrc839.PubMedCrossRefGoogle Scholar
  204. 204.
    Podo, F., Paris, L., Cecchetti, S., Spadaro, F., Abalsamo, L., Ramoni, C., et al. (2016). Activation of phosphatidylcholine-specific phospholipase C in breast and ovarian cancer: impact on MRS-detected choline metabolic profile and perspectives for targeted therapy. Frontiers in Oncology, 6, 171.  https://doi.org/10.3389/fonc.2016.00171.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    El-Mashtoly, S. F., Yosef, H. K., Petersen, D., Mavarani, L., Maghnouj, A., Hahn, S., et al. (2015). Label-free Raman spectroscopic imaging monitors the integral physiologically relevant drug responses in cancer cells. Analytical Chemistry, 87(14), 7297–7304.  https://doi.org/10.1021/acs.analchem.5b01431.PubMedCrossRefGoogle Scholar
  206. 206.
    Loizides-Mangold, U. (2013). On the future of mass-spectrometry-based lipidomics. The FEBS Journal, 280(12), 2817–2829.  https://doi.org/10.1111/febs.12202.PubMedCrossRefGoogle Scholar
  207. 207.
    Li, J., & Cheng, J. X. (2014). Direct visualization of de novo lipogenesis in single living cells. Scientific Reports, 4, 6807.  https://doi.org/10.1038/srep06807.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Le, T. T., Yue, S., & Cheng, J. X. (2010). Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. Journal of Lipid Research, 51(11), 3091–3102.  https://doi.org/10.1194/jlr.R008730.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Schieffer, D., Naware, S., Bakun, W., & Bamezai, A. K. (2014). Lipid raft-based membrane order is important for antigen-specific clonal expansion of CD4(+) T lymphocytes. BMC Immunology, 15, 58.  https://doi.org/10.1186/s12865-014-0058-8.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    He, H. T., & Marguet, D. (2008). T-cell antigen receptor triggering and lipid rafts: a matter of space and time scales. Talking point on the involvement of lipid rafts in T-cell activation. EMBO Reports, 9(6), 525–530.  https://doi.org/10.1038/embor.2008.78.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Zhou, Y., Maxwell, K. N., Sezgin, E., Lu, M., Liang, H., Hancock, J. F., et al. (2013). Bile acids modulate signaling by functional perturbation of plasma membrane domains. The Journal of Biological Chemistry, 288(50), 35660–35670.  https://doi.org/10.1074/jbc.M113.519116.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Brown, D. A., & London, E. (1998). Structure and origin of ordered lipid domains in biological membranes. The Journal of Membrane Biology, 164(2), 103–114.PubMedCrossRefGoogle Scholar
  213. 213.
    Bakht, O., Pathak, P., & London, E. (2007). Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Biophysical Journal, 93(12), 4307–4318.  https://doi.org/10.1529/biophysj.107.114967.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Amaro, M., Reina, F., Hof, M., Eggeling, C., & Sezgin, E. (2017). Laurdan and Di-4-ANEPPDHQ probe different properties of the membrane. Journal of Physics D: Applied Physics, 50(13), 134004.  https://doi.org/10.1088/1361-6463/aa5dbc.PubMedCentralCrossRefGoogle Scholar
  215. 215.
    Ramani, K., & Balasubramanian, S. V. (2003). Fluorescence properties of Laurdan in cochleate phases. Biochimica et Biophysica Acta, 1618(1), 67–78.PubMedCrossRefGoogle Scholar
  216. 216.
    Sezgin, E., Schneider, F., Zilles, V., Urbancic, I., Garcia, E., Waithe, D., et al. (2017). Polarity-sensitive probes for superresolution stimulated emission depletion microscopy. Biophysical Journal, 113(6), 1321–1330.  https://doi.org/10.1016/j.bpj.2017.06.050.PubMedCrossRefGoogle Scholar
  217. 217.
    Parasassi, T., De Stasio, G., d’Ubaldo, A., & Gratton, E. (1990). Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophysical Journal, 57(6), 1179–1186.  https://doi.org/10.1016/S0006-3495(90)82637-0.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Gaus, K., Zech, T., & Harder, T. (2006). Visualizing membrane microdomains by Laurdan 2-photon microscopy. Molecular Membrane Biology, 23(1), 41–48.  https://doi.org/10.1080/09687860500466857.PubMedCrossRefGoogle Scholar
  219. 219.
    Owen, D. M., Magenau, A., Majumdar, A., & Gaus, K. (2010). Imaging membrane lipid order in whole, living vertebrate organisms. Biophysical Journal, 99(1), L7–L9.  https://doi.org/10.1016/j.bpj.2010.04.022.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Baumgart, T., Hammond, A. T., Sengupta, P., Hess, S. T., Holowka, D. A., Baird, B. A., et al. (2007). Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3165–3170.  https://doi.org/10.1073/pnas.0611357104.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Sengupta, P., Hammond, A., Holowka, D., & Baird, B. (2008). Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles. Biochimica et Biophysica Acta, 1778(1), 20–32.  https://doi.org/10.1016/j.bbamem.2007.08.028.PubMedCrossRefGoogle Scholar
  222. 222.
    Owen, D. M., Oddos, S., Kumar, S., Davis, D. M., Neil, M. A., French, P. M., et al. (2010). High plasma membrane lipid order imaged at the immunological synapse periphery in live T cells. Molecular Membrane Biology, 27(4–6), 178–189.  https://doi.org/10.3109/09687688.2010.495353.PubMedCrossRefGoogle Scholar
  223. 223.
    Miguel, L., Owen, D. M., Lim, C., Liebig, C., Evans, J., Magee, A. I., et al. (2011). Primary human CD4+ T cells have diverse levels of membrane lipid order that correlate with their function. Journal of Immunology, 186(6), 3505–3516.  https://doi.org/10.4049/jimmunol.1002980.CrossRefGoogle Scholar
  224. 224.
    Lingwood, D., & Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science, 327(5961), 46–50.  https://doi.org/10.1126/science.1174621.PubMedCrossRefGoogle Scholar
  225. 225.
    Gowrishankar, K., Ghosh, S., Saha, S.C, R., Mayor, S., & Rao, M. (2012). Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell, 149(6), 1353–1367,  https://doi.org/10.1016/j.cell.2012.05.008.
  226. 226.
    Ibach, J., Radon, Y., Gelleri, M., Sonntag, M. H., Brunsveld, L., Bastiaens, P. I., et al. (2015). Single particle tracking reveals that EGFR signaling activity is amplified in Clathrin-coated pits. PLoS One, 10(11), e0143162.  https://doi.org/10.1371/journal.pone.0143162.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Valentine, C. D., & Haggie, P. M. (2011). Confinement of beta(1)- and beta(2)-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae. Molecular Biology of the Cell, 22(16), 2970–2982.  https://doi.org/10.1091/mbc.E11-01-0034.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Jordan, S., & Rodgers, W. (2003). T cell glycolipid-enriched membrane domains are constitutively assembled as membrane patches that translocate to immune synapses. Journal of Immunology, 171(1), 78–87.CrossRefGoogle Scholar
  229. 229.
    Ng, X. W., Teh, C., Korzh, V., & Wohland, T. (2016). The secreted signaling protein Wnt3 is associated with membrane domains in vivo: a SPIM-FCS study. Biophysical Journal, 111(2), 418–429.  https://doi.org/10.1016/j.bpj.2016.06.021.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Lommerse, P. H., Snaar-Jagalska, B. E., Spaink, H. P., & Schmidt, T. (2005). Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. Journal of Cell Science, 118(Pt 9), 1799–1809.  https://doi.org/10.1242/jcs.02300.PubMedCrossRefGoogle Scholar
  231. 231.
    Sengupta, P., Baird, B., & Holowka, D. (2007). Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Seminars in Cell & Developmental Biology, 18(5), 583–590.  https://doi.org/10.1016/j.semcdb.2007.07.010.CrossRefGoogle Scholar
  232. 232.
    Haack, F., Lemcke, H., Ewald, R., Rharass, T., & Uhrmacher, A. M. (2015). Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells. PLoS Computational Biology, 11(3), e1004106.  https://doi.org/10.1371/journal.pcbi.1004106.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Pirruccello, J., & Kathiresan, S. (2010). Genetics of lipid disorders. Current Opinion in Cardiology, 25(3), 238–242.  https://doi.org/10.1097/HCO.0b013e328338574d.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    De Bont, R., & van Larebeke, N. (2004). Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis, 19(3), 169–185.  https://doi.org/10.1093/mutage/geh025.PubMedCrossRefGoogle Scholar
  235. 235.
    Llado, V., Lopez, D. J., Ibarguren, M., Alonso, M., Soriano, J. B., Escriba, P. V., et al. (2014). Regulation of the cancer cell membrane lipid composition by NaCHOleate: effects on cell signaling and therapeutical relevance in glioma. Biochim Biophys Acta, 1838(6), 1619–1627,  https://doi.org/10.1016/j.bbamem.2014.01.027.
  236. 236.
    Zalba, S., & Ten Hagen, T. L. (2017). Cell membrane modulation as adjuvant in cancer therapy. Cancer Treatment Reviews, 52, 48–57.  https://doi.org/10.1016/j.ctrv.2016.10.008.PubMedCrossRefGoogle Scholar
  237. 237.
    Galeotti, T., Borrello, S., Minotti, G., & Masotti, L. (1986). Membrane alterations in cancer cells: the role of oxy radicals. Annals of the New York Academy of Sciences, 488, 468–480.PubMedCrossRefGoogle Scholar
  238. 238.
    Peetla, C., Bhave, R., Vijayaraghavalu, S., Stine, A., Kooijman, E., & Labhasetwar, V. (2010). Drug resistance in breast cancer cells: biophysical characterization of and doxorubicin interactions with membrane lipids. Molecular Pharmaceutics, 7(6), 2334–2348.  https://doi.org/10.1021/mp100308n.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Peetla, C., Vijayaraghavalu, S., & Labhasetwar, V. (2013). Biophysics of cell membrane lipids in cancer drug resistance: implications for drug transport and drug delivery with nanoparticles. Advanced Drug Delivery Reviews, 65(13–14), 1686–1698.  https://doi.org/10.1016/j.addr.2013.09.004.PubMedCrossRefGoogle Scholar
  240. 240.
    Niero, E. L., Rocha-Sales, B., Lauand, C., Cortez, B. A., de Souza, M. M., Rezende-Teixeira, P., et al. (2014). The multiple facets of drug resistance: one history, different approaches. Journal of Experimental & Clinical Cancer Research, 33, 37.  https://doi.org/10.1186/1756-9966-33-37.CrossRefGoogle Scholar
  241. 241.
    Sherbet, G. V. (1989). Membrane fluidity and cancer metastasis. Experimental Cell Biology, 57(4), 198–205.PubMedGoogle Scholar
  242. 242.
    Sok, M., Sentjurc, M., Schara, M., Stare, J., & Rott, T. (2002). Cell membrane fluidity and prognosis of lung cancer. The Annals of Thoracic Surgery, 73(5), 1567–1571.PubMedCrossRefGoogle Scholar
  243. 243.
    Campanella, R. (1992). Membrane lipids modifications in human gliomas of different degree of malignancy. Journal of Neurosurgical Sciences, 36(1), 11–25.PubMedGoogle Scholar
  244. 244.
    Takahashi, K., Hosono, M., Sato, I., Hata, K., Wada, T., Yamaguchi, K., et al. (2015). Sialidase NEU3 contributes neoplastic potential on colon cancer cells as a key modulator of gangliosides by regulating Wnt signaling. International Journal of Cancer, 137(7), 1560–1573.  https://doi.org/10.1002/ijc.29527.PubMedCrossRefGoogle Scholar
  245. 245.
    Peckys, D. B., Korf, U., & de Jonge, N. (2015). Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Science Advances, 1(6), e1500165.  https://doi.org/10.1126/sciadv.1500165.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Posada, I. M. D., Lectez, B., Sharma, M., Oetken-Lindholm, C., Yetukuri, L., Zhou, Y., et al. (2017). Rapalogs can promote cancer cell stemness in vitro in a galectin-1 and H-ras-dependent manner. Oncotarget, 8(27), 44550–44566.  https://doi.org/10.18632/oncotarget.17819. PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Chen, J., Liu, T., Gao, J., Gao, L., Zhou, L., Cai, M., et al. (2016). Variation in carbohydrates between cancer and normal cell membranes revealed by super-resolution fluorescence imaging. Advanced Science (Weinh), 3(12), 1600270.  https://doi.org/10.1002/advs.201600270.CrossRefGoogle Scholar
  248. 248.
    Wu, K. L., Huang, E. Y., Yeh, W. L., Hsiao, C. C., & Kuo, C. M. (2017). Synergistic interaction between galectin-3 and carcinoembryonic antigen promotes colorectal cancer metastasis. Oncotarget, 8(37), 61935–61943.  https://doi.org/10.18632/oncotarget.18721.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Song, S., Ji, B., Ramachandran, V., Wang, H., Hafley, M., Logsdon, C., et al. (2012). Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling. PLoS One, 7(8), e42699.  https://doi.org/10.1371/journal.pone.0042699.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Liu, F. T., & Rabinovich, G. A. (2005). Galectins as modulators of tumour progression. Nature Reviews Cancer, 5(1), 29–41.  https://doi.org/10.1038/nrc1527.PubMedCrossRefGoogle Scholar
  251. 251.
    Dennis, J. W., Nabi, I. R., & Demetriou, M. (2009). Metabolism, cell surface organization, and disease. Cell, 139(7), 1229–1241.  https://doi.org/10.1016/j.cell.2009.12.008.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Ahmad, N., Gabius, H. J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., et al. (2004). Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. The Journal of Biological Chemistry, 279(12), 10841–10847.  https://doi.org/10.1074/jbc.M312834200.PubMedCrossRefGoogle Scholar
  253. 253.
    Brewer, C. F., Miceli, M. C., & Baum, L. G. (2002). Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Current Opinion in Structural Biology, 12(5), 616–623.PubMedCrossRefGoogle Scholar
  254. 254.
    Rabinovich, G. A., Toscano, M. A., Jackson, S. S., & Vasta, G. R. (2007). Functions of cell surface galectin-glycoprotein lattices. Current Opinion in Structural Biology, 17(5), 513–520.  https://doi.org/10.1016/j.sbi.2007.09.002.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Hernandez, J. D., Nguyen, J. T., He, J., Wang, W., Ardman, B., Green, J. M., et al. (2006). Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. Journal of Immunology, 177(8), 5328–5336.CrossRefGoogle Scholar
  256. 256.
    Riedl, S., Rinner, B., Asslaber, M., Schaider, H., Walzer, S., Novak, A., et al. (2011). In search of a novel target—phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochimica et Biophysica Acta, 1808(11), 2638–2645.  https://doi.org/10.1016/j.bbamem.2011.07.026.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Birge, R. B., Boeltz, S., Kumar, S., Carlson, J., Wanderley, J., Calianese, D., et al. (2016). Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death and Differentiation, 23(6), 962–978.  https://doi.org/10.1038/cdd.2016.11.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Utsugi, T., Schroit, A. J., Connor, J., Bucana, C. D., & Fidler, I. J. (1991). Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Research, 51(11), 3062–3066.PubMedGoogle Scholar
  259. 259.
    Wang, L., Habib, A. A., Mintz, A., Li, K. C., & Zhao, D. (2017). Phosphatidylserine-targeted nanotheranostics for brain tumor imaging and therapeutic potential. Molecular Imaging, 16, 1536012117708722.  https://doi.org/10.1177/1536012117708722.PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    He, J., Luster, T. A., & Thorpe, P. E. (2007). Radiation-enhanced vascular targeting of human lung cancers in mice with a monoclonal antibody that binds anionic phospholipids. Clinical Cancer Research, 13(17), 5211–5218.  https://doi.org/10.1158/1078-0432.CCR-07-0793.PubMedCrossRefGoogle Scholar
  261. 261.
    He, J., Yin, Y., Luster, T. A., Watkins, L., & Thorpe, P. E. (2009). Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma. Clinical Cancer Research, 15(22), 6871–6880.  https://doi.org/10.1158/1078-0432.CCR-09-1499.PubMedCrossRefGoogle Scholar
  262. 262.
    Huang, X., Bennett, M., & Thorpe, P. E. (2005). A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice. Cancer Research, 65(10), 4408–4416.  https://doi.org/10.1158/0008-5472.CAN-05-0031.PubMedCrossRefGoogle Scholar
  263. 263.
    Zhang, L., Habib, A. A., & Zhao, D. (2016). Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging. Oncotarget, 7(25), 38693–38706,  https://doi.org/10.18632/oncotarget.9584.
  264. 264.
    Zhou, H., Stafford, J. H., Hallac, R. R., Zhang, L., Huang, G., Mason, R. P., et al. (2014). Phosphatidylserine-targeted molecular imaging of tumor vasculature by magnetic resonance imaging. Journal of Biomedical Nanotechnology, 10(5), 846–855.PubMedCrossRefGoogle Scholar
  265. 265.
    Zhang, L., Zhou, H., Belzile, O., Thorpe, P., & Zhao, D. (2014). Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. Journal of Controlled Release, 183, 114–123.  https://doi.org/10.1016/j.jconrel.2014.03.043.PubMedCrossRefGoogle Scholar
  266. 266.
    Poyry, S., & Vattulainen, I. (2016). Role of charged lipids in membrane structures—insight given by simulations. Biochimica et Biophysica Acta, 1858(10), 2322–2333.  https://doi.org/10.1016/j.bbamem.2016.03.016.PubMedCrossRefGoogle Scholar
  267. 267.
    van den Bogaart, G., Meyenberg, K., Risselada, H. J., Amin, H., Willig, K. I., Hubrich, B. E., et al. (2011). Membrane protein sequestering by ionic protein-lipid interactions. Nature, 479(7374), 552–555.  https://doi.org/10.1038/nature10545.PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Koldso, H., Shorthouse, D., Helie, J., & Sansom, M. S. (2014). Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers. PLoS Computational Biology, 10(10), e1003911.  https://doi.org/10.1371/journal.pcbi.1003911.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Wang, J., & Richards, D. A. (2012). Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biology Open, 1(9), 857–862.  https://doi.org/10.1242/bio.20122071.PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Honigmann, A., van den Bogaart, G., Iraheta, E., Risselada, H. J., Milovanovic, D., Mueller, V., et al. (2013). Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nature Structural & Molecular Biology, 20(6), 679–686.  https://doi.org/10.1038/nsmb.2570.CrossRefGoogle Scholar
  271. 271.
    Coussens, L. M., Zitvogel, L., & Palucka, A. K. (2013). Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science, 339(6117), 286–291.  https://doi.org/10.1126/science.1232227.PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Song, M., Wu, K., Meyerhardt, J. A., Ogino, S., Wang, M., Fuchs, C. S., et al. (2018). Fiber intake and survival after colorectal cancer diagnosis. JAMA Oncology, 4(1), 71–79.  https://doi.org/10.1001/jamaoncol.2017.3684.PubMedCrossRefGoogle Scholar
  273. 273.
    Vargas, A. J., & Thompson, P. A. (2012). Diet and nutrient factors in colorectal cancer risk. Nutrition in Clinical Practice, 27(5), 613–623.PubMedCrossRefGoogle Scholar
  274. 274.
    Chapkin, R. S., McMurray, D. N., & Lupton, J. R. (2007). Colon cancer, fatty acids and anti-inflammatory compounds. Current Opinion in Gastroenterology, 23(1), 48–54.  https://doi.org/10.1097/MOG.0b013e32801145d7.PubMedCrossRefGoogle Scholar
  275. 275.
    Shaikh, S. R., & Edidin, M. (2008). Polyunsaturated fatty acids and membrane organization: elucidating mechanisms to balance immunotherapy and susceptibility to infection. Chemistry and Physics of Lipids, 153(1), 24–33.  https://doi.org/10.1016/j.chemphyslip.2008.02.008.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Knapp, H. R., Hullin, F., & Salem Jr., N. (1994). Asymmetric incorporation of dietary n-3 fatty acids into membrane aminophospholipids of human erythrocytes. Journal of Lipid Research, 35(7), 1283–1291.PubMedGoogle Scholar
  277. 277.
    Wassall, S. R., Brzustowicz, M. R., Shaikh, S. R., Cherezov, V., Caffrey, M., & Stillwell, W. (2004). Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation. Chemistry and Physics of Lipids, 132(1), 79–88.  https://doi.org/10.1016/j.chemphyslip.2004.09.007.PubMedCrossRefGoogle Scholar
  278. 278.
    Strobel, C., Jahreis, G., & Kuhnt, K. (2012). Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products. Lipids in Health and Disease, 11, 144.  https://doi.org/10.1186/1476-511X-11-144.PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Baker, E. J., Miles, E. A., Burdge, G. C., Yaqoob, P., & Calder, P. C. (2016). Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Progress in Lipid Research, 64, 30–56.  https://doi.org/10.1016/j.plipres.2016.07.002.PubMedCrossRefGoogle Scholar
  280. 280.
    Arterburn, L. M., Hall, E. B., & Oken, H. (2006). Distribution, interconversion, and dose response of n-3 fatty acids in humans. The American Journal of Clinical Nutrition, 83(6 Suppl), 1467S–1476S.PubMedCrossRefGoogle Scholar
  281. 281.
    Patterson, E., Wall, R., Fitzgerald, G. F., Ross, R. P., & Stanton, C. (2012). Health implications of high dietary omega-6 polyunsaturated fatty acids. Journal Nutrition Metabolism, 2012, 539426.  https://doi.org/10.1155/2012/539426.CrossRefGoogle Scholar
  282. 282.
    Chapkin, R. S., Kim, W., Lupton, J. R., & McMurray, D. N. (2009). Dietary docosahexaenoic and eicosapentaenoic acid: emerging mediators of inflammation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 81(2–3), 187–191.  https://doi.org/10.1016/j.plefa.2009.05.010.PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Cockbain, A. J., Toogood, G. J., & Hull, M. A. (2012). Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut, 61(1), 135–149.  https://doi.org/10.1136/gut.2010.233718.PubMedCrossRefGoogle Scholar
  284. 284.
    Anti, M., Marra, G., Armelao, F., Bartoli, G. M., Ficarelli, R., Percesepe, A., et al. (1992). Effect of omega-3 fatty acids on rectal mucosal cell proliferation in subjects at risk for colon cancer. Gastroenterology, 103(3), 883–891.PubMedCrossRefGoogle Scholar
  285. 285.
    Anti, M., Armelao, F., Marra, G., Percesepe, A., Bartoli, G. M., Palozza, P., et al. (1994). Effects of different doses of fish oil on rectal cell proliferation in patients with sporadic colonic adenomas. Gastroenterology, 107(6), 1709–1718.PubMedCrossRefGoogle Scholar
  286. 286.
    Bartram, H. P., Gostner, A., Scheppach, W., Reddy, B. S., Rao, C. V., Dusel, G., et al. (1993). Effects of fish oil on rectal cell proliferation, mucosal fatty acids, and prostaglandin E2 release in healthy subjects. Gastroenterology, 105(5), 1317–1322.PubMedCrossRefGoogle Scholar
  287. 287.
    Hall, M. N., Chavarro, J. E., Lee, I. M., Willett, W. C., & Ma, J. (2008). A 22-year prospective study of fish, n-3 fatty acid intake, and colorectal cancer risk in men. Cancer Epidemiology, Biomarkers & Prevention, 17(5), 1136–1143.  https://doi.org/10.1158/1055-9965.EPI-07-2803.CrossRefGoogle Scholar
  288. 288.
    Courtney, E. D., Matthews, S., Finlayson, C., Di Pierro, D., Belluzzi, A., Roda, E., et al. (2007). Eicosapentaenoic acid (EPA) reduces crypt cell proliferation and increases apoptosis in normal colonic mucosa in subjects with a history of colorectal adenomas. International Journal of Colorectal Disease, 22(7), 765–776.  https://doi.org/10.1007/s00384-006-0240-4.PubMedCrossRefGoogle Scholar
  289. 289.
    Baron, J. A., Sandler, R. S., Bresalier, R. S., Lanas, A., Morton, D. G., Riddell, R., et al. (2008). Cardiovascular events associated with rofecoxib: final analysis of the APPROVe trial. Lancet, 372(9651), 1756–1764.  https://doi.org/10.1016/S0140-6736(08)61490-7.PubMedCrossRefGoogle Scholar
  290. 290.
    Graham, D. J. (2006). COX-2 inhibitors, other NSAIDs, and cardiovascular risk: the seduction of common sense. JAMA, 296(13), 1653–1656.  https://doi.org/10.1001/jama.296.13.jed60058.PubMedCrossRefGoogle Scholar
  291. 291.
    West, N. J., Clark, S. K., Phillips, R. K. S., Hutchinson, J. M., Leicester, R. J., Belluzzi, A., et al. (2010). Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut, 59(7), 918–925.PubMedCrossRefGoogle Scholar
  292. 292.
    Leitzmann, M. F., Stampfer, M. J., Michaud, D. S., Augustsson, K., Colditz, G. C., Willett, W. C., et al. (2004). Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer. The American Journal of Clinical Nutrition, 80(1), 204–216.  https://doi.org/10.1093/ajcn/80.1.204.PubMedCrossRefGoogle Scholar
  293. 293.
    Liang, P., & Gao, M. (2017). Fish oil and prostate cancer: effects and clinical relevance. [review]. Cancer Translational Medicine, 3(3), 80–86.  https://doi.org/10.4103/ctm.ctm_63_16.CrossRefGoogle Scholar
  294. 294.
    Saw, C. L., Huang, Y., & Kong, A. N. (2010). Synergistic anti-inflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: docosahexaenoic acid or eicosapentaenoic acid. Biochemical Pharmacology, 79(3), 421–430.  https://doi.org/10.1016/j.bcp.2009.08.030.PubMedCrossRefGoogle Scholar
  295. 295.
    Vasudevan, A., Yu, Y., Banerjee, S., Woods, J., Farhana, L., Rajendra, S. G., et al. (2014). Omega-3 fatty acid is a potential preventive agent for recurrent colon cancer. Cancer Prevention Research (Philadelphia, Pa.), 7(11), 1138–1148.  https://doi.org/10.1158/1940-6207.CAPR-14-0177.CrossRefGoogle Scholar
  296. 296.
    Kawamori, T., Lubet, R., Steele, V. E., Kelloff, G. J., Kaskey, R. B., Rao, C. V., et al. (1999). Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Research, 59(3), 597–601.PubMedGoogle Scholar
  297. 297.
    Chen, A., Xu, J., & Johnson, A. C. (2006). Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene, 25(2), 278–287.  https://doi.org/10.1038/sj.onc.1209019.PubMedCrossRefGoogle Scholar
  298. 298.
    Hanai, H., Iida, T., Takeuchi, K., Watanabe, F., Maruyama, Y., Andoh, A., et al. (2006). Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clinical Gastroenterology and Hepatology, 4(12), 1502–1506.  https://doi.org/10.1016/j.cgh.2006.08.008.PubMedCrossRefGoogle Scholar
  299. 299.
    Cruz-Correa, M., Shoskes, D. A., Sanchez, P., Zhao, R., Hylind, L. M., Wexner, S. D., et al. (2006). Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clinical Gastroenterology and Hepatology, 4(8), 1035–1038.  https://doi.org/10.1016/j.cgh.2006.03.020.PubMedCrossRefGoogle Scholar
  300. 300.
    Sharma, R. A., Euden, S. A., Platton, S. L., Cooke, D. N., Shafayat, A., Hewitt, H. R., et al. (2004). Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clinical Cancer Research, 10(20), 6847–6854.  https://doi.org/10.1158/1078-0432.CCR-04-0744.PubMedCrossRefGoogle Scholar
  301. 301.
    Nautiyal, J., Banerjee, S., Kanwar, S. S., Yu, Y., Patel, B. B., Sarkar, F. H., et al. (2011). Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells. International Journal of Cancer, 128(4), 951–961,  https://doi.org/10.1002/ijc.25410.
  302. 302.
    Hatcher, H., Planalp, R., Cho, J., Torti, F. M., & Torti, S. V. (2008). Curcumin: from ancient medicine to current clinical trials. Cellular and Molecular Life Sciences, 65(11), 1631–1652.  https://doi.org/10.1007/s00018-008-7452-4.PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Park, W., Amin, A. R., Chen, Z. G., & Shin, D. M. (2013). New perspectives of curcumin in cancer prevention. Cancer Prevention Research (Philadelphia, Pa.), 6(5), 387–400.  https://doi.org/10.1158/1940-6207.CAPR-12-0410.CrossRefGoogle Scholar
  304. 304.
    Alrawi, S. J., Schiff, M., Carroll, R. E., Dayton, M., Gibbs, J. F., Kulavlat, M., et al. (2006). Aberrant crypt foci. Anticancer Research, 26(1A), 107–119.PubMedGoogle Scholar
  305. 305.
    Carroll, R. E., Benya, R. V., Turgeon, D. K., Vareed, S., Neuman, M., Rodriguez, L., et al. (2011). Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prevention Research (Philadelphia, Pa.), 4(3), 354–364.  https://doi.org/10.1158/1940-6207.CAPR-10-0098.CrossRefGoogle Scholar
  306. 306.
    Irving, G. R., Howells, L. M., Sale, S., Kralj-Hans, I., Atkin, W. S., Clark, S. K., et al. (2013). Prolonged biologically active colonic tissue levels of curcumin achieved after oral administration—a clinical pilot study including assessment of patient acceptability. Cancer Prevention Research (Philadelphia, Pa.), 6(2), 119–128.  https://doi.org/10.1158/1940-6207.CAPR-12-0281.CrossRefGoogle Scholar
  307. 307.
    Ariel, A., & Serhan, C. N. (2007). Resolvins and protectins in the termination program of acute inflammation. Trends in Immunology, 28(4), 176–183.  https://doi.org/10.1016/j.it.2007.02.007.PubMedCrossRefGoogle Scholar
  308. 308.
    Bazan, N. G. (2007). Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Current Opinion in Clinical Nutrition and Metabolic Care, 10(2), 136–141.  https://doi.org/10.1097/MCO.0b013e32802b7030.PubMedCrossRefGoogle Scholar
  309. 309.
    de Urquiza, A. M., Liu, S., Sjoberg, M., Zetterstrom, R. H., Griffiths, W., Sjovall, J., et al. (2000). Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science, 290(5499), 2140–2144.PubMedCrossRefGoogle Scholar
  310. 310.
    Fan, Y. Y., Spencer, T. E., Wang, N., Moyer, M. P., & Chapkin, R. S. (2003). Chemopreventive n-3 fatty acids activate RXRalpha in colonocytes. Carcinogenesis, 24(9), 1541–1548.  https://doi.org/10.1093/carcin/bgg110.PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    Davidson, L. A., Nguyen, D. V., Hokanson, R. M., Callaway, E. S., Isett, R. B., Turner, N. D., et al. (2004). Chemopreventive n-3 polyunsaturated fatty acids reprogram genetic signatures during colon cancer initiation and progression in the rat. Cancer Research, 64(18), 6797–6804.  https://doi.org/10.1158/0008-5472.CAN-04-1068.PubMedPubMedCentralCrossRefGoogle Scholar
  312. 312.
    Jump, D. B., Botolin, D., Wang, Y., Xu, J., Christian, B., & Demeure, O. (2005). Fatty acid regulation of hepatic gene transcription. The Journal of Nutrition, 135(11), 2503–2506.  https://doi.org/10.1093/jn/135.11.2503.PubMedCrossRefGoogle Scholar
  313. 313.
    Fuentes, N. R., Kim, E., Fan, Y. Y., & Chapkin, R. S. (2018). Omega-3 fatty acids, membrane remodeling and cancer prevention. Molecular Aspects of Medicine.  https://doi.org/10.1016/j.mam.2018.04.001.
  314. 314.
    Chapkin, R. S., Akoh, C. C., & Miller, C. C. (1991). Influence of dietary n-3 fatty acids on macrophage glycerophospholipid molecular species and peptidoleukotriene synthesis. Journal of Lipid Research, 32(7), 1205–1213.PubMedGoogle Scholar
  315. 315.
    Williams, J. A., Batten, S. E., Harris, M., Rockett, B. D., Shaikh, S. R., Stillwell, W., et al. (2012). Docosahexaenoic and eicosapentaenoic acids segregate differently between raft and nonraft domains. Biophysical Journal, 103(2), 228–237.  https://doi.org/10.1016/j.bpj.2012.06.016.PubMedPubMedCentralCrossRefGoogle Scholar
  316. 316.
    Levental, K. R., Lorent, J. H., Lin, X., Skinkle, A. D., Surma, M. A., Stockenbojer, E. A., et al. (2016). Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophysical Journal, 110(8), 1800–1810.  https://doi.org/10.1016/j.bpj.2016.03.012.PubMedPubMedCentralCrossRefGoogle Scholar
  317. 317.
    Ma, D. W., Seo, J., Davidson, L. A., Callaway, E. S., Fan, Y. Y., Lupton, J. R., et al. (2004). n-3 PUFA alter caveolae lipid composition and resident protein localization in mouse colon. The FASEB Journal, 18(9), 1040–1042.  https://doi.org/10.1096/fj.03-1430fje.PubMedCrossRefGoogle Scholar
  318. 318.
    Seo, J., Barhoumi, R., Johnson, A. E., Lupton, J. R., & Chapkin, R. S. (2006). Docosahexaenoic acid selectively inhibits plasma membrane targeting of lipidated proteins. The FASEB Journal, 20(6), 770–772.  https://doi.org/10.1096/fj.05-4683fje.PubMedCrossRefGoogle Scholar
  319. 319.
    Hou, T. Y., Davidson, L. A., Kim, E., Fan, Y. Y., Fuentes, N. R., Triff, K., et al. (2016). Nutrient-gene interaction in colon cancer, from the membrane to cellular physiology. Annual Review of Nutrition, 36, 543–570.  https://doi.org/10.1146/annurev-nutr-071715-051039.PubMedPubMedCentralCrossRefGoogle Scholar
  320. 320.
    Stillwell, W., & Wassall, S. R. (2003). Docosahexaenoic acid: membrane properties of a unique fatty acid. Chemistry and Physics of Lipids, 126(1), 1–27.PubMedCrossRefGoogle Scholar
  321. 321.
    Fan, Y. Y., Fuentes, N. R., Hou, T. Y., Barhoumi, R., Li, X. C., Deutz, N. E. P., et al. (2018). Remodelling of primary human CD4+ T cell plasma membrane order by n-3 PUFA. The British Journal of Nutrition, 119(2), 163–175.  https://doi.org/10.1017/S0007114517003385.PubMedCrossRefGoogle Scholar
  322. 322.
    Turk, H. F., Barhoumi, R., & Chapkin, R. S. (2012). Alteration of EGFR spatiotemporal dynamics suppresses signal transduction. PLoS One, 7(6), e39682.  https://doi.org/10.1371/journal.pone.0039682.PubMedPubMedCentralCrossRefGoogle Scholar
  323. 323.
    Rogers, K. R., Kikawa, K. D., Mouradian, M., Hernandez, K., McKinnon, K. M., Ahwah, S. M., et al. (2010). Docosahexaenoic acid alters epidermal growth factor receptor-related signaling by disrupting its lipid raft association. Carcinogenesis, 31(9), 1523–1530.  https://doi.org/10.1093/carcin/bgq111.PubMedCrossRefGoogle Scholar
  324. 324.
    Normanno, N., Tejpar, S., Morgillo, F., De Luca, A., Van Cutsem, E., & Ciardiello, F. (2009). Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nature Reviews. Clinical Oncology, 6(9), 519–527.  https://doi.org/10.1038/nrclinonc.2009.111.PubMedCrossRefGoogle Scholar
  325. 325.
    Sondermann, H., Soisson, S. M., Boykevisch, S., Yang, S. S., Bar-Sagi, D., & Kuriyan, J. (2004). Structural analysis of autoinhibition in the Ras activator son of sevenless. Cell, 119(3), 393–405.  https://doi.org/10.1016/j.cell.2004.10.005.PubMedCrossRefGoogle Scholar
  326. 326.
    Lee, Y. K., Low-Nam, S. T., Chung, J. K., Hansen, S. D., Lam, H. Y. M., Alvarez, S., et al. (2017). Mechanism of SOS PR-domain autoinhibition revealed by single-molecule assays on native protein from lysate. Nature Communications, 8, 15061.  https://doi.org/10.1038/ncomms15061.PubMedPubMedCentralCrossRefGoogle Scholar
  327. 327.
    Hou, T. Y., Monk, J. M., Fan, Y. Y., Barhoumi, R., Chen, Y. Q., Rivera, G. M., et al. (2012). n-3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation. The Biochemical Journal, 443(1), 27–37.  https://doi.org/10.1042/BJ20111589. PubMedCrossRefGoogle Scholar
  328. 328.
    Cromm, P. M., Spiegel, J., Grossmann, T. N., & Waldmann, H. (2015). Direct modulation of small GTPase activity and function. Angewandte Chemie (International Ed. in English), 54(46), 13516–13537.  https://doi.org/10.1002/anie.201504357.CrossRefGoogle Scholar
  329. 329.
    Sun, Q., Burke, J. P., Phan, J., Burns, M. C., Olejniczak, E. T., Waterson, A. G., et al. (2012). Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angewandte Chemie (International Ed. in English), 51(25), 6140–6143.  https://doi.org/10.1002/anie.201201358.CrossRefGoogle Scholar
  330. 330.
    Maurer, T., Garrenton, L. S., Oh, A., Pitts, K., Anderson, D. J., Skelton, N. J., et al. (2012). Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proceedings of the National Academy of Sciences of the United States of America, 109(14), 5299–5304.  https://doi.org/10.1073/pnas.1116510109.PubMedPubMedCentralCrossRefGoogle Scholar
  331. 331.
    Grabocka, E., Pylayeva-Gupta, Y., Jones, M. J., Lubkov, V., Yemanaberhan, E., Taylor, L., et al. (2014). Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell, 25(2), 243–256.  https://doi.org/10.1016/j.ccr.2014.01.005.PubMedPubMedCentralCrossRefGoogle Scholar
  332. 332.
    Jeng, H. H., Taylor, L. J., & Bar-Sagi, D. (2012). Sos-mediated cross-activation of wild-type Ras by oncogenic Ras is essential for tumorigenesis. Nature Communications, 3, 1168.  https://doi.org/10.1038/ncomms2173.PubMedPubMedCentralCrossRefGoogle Scholar
  333. 333.
    Stephen, A. G., Esposito, D., Bagni, R. K., & McCormick, F. (2014). Dragging ras back in the ring. Cancer Cell, 25(3), 272–281.  https://doi.org/10.1016/j.ccr.2014.02.017.PubMedCrossRefGoogle Scholar
  334. 334.
    Phipps, A. I., Buchanan, D. D., Makar, K. W., Win, A. K., Baron, J. A., Lindor, N. M., et al. (2013). KRAS-mutation status in relation to colorectal cancer survival: the joint impact of correlated tumour markers. British Journal of Cancer, 108(8), 1757–1764.  https://doi.org/10.1038/bjc.2013.118.PubMedPubMedCentralCrossRefGoogle Scholar
  335. 335.
    Collett, E. D., Davidson, L. A., Fan, Y. Y., Lupton, J. R., & Chapkin, R. S. (2001). n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. American Journal of Physiology. Cell Physiology, 280(5), C1066–C1075.PubMedCrossRefGoogle Scholar
  336. 336.
    Fasano, E., Serini, S., Piccioni, E., Toesca, A., Monego, G., Cittadini, A. R., et al. (2012). DHA induces apoptosis by altering the expression and cellular location of GRP78 in colon cancer cell lines. Biochimica et Biophysica Acta, 1822(11), 1762–1772.  https://doi.org/10.1016/j.bbadis.2012.08.003.PubMedCrossRefGoogle Scholar
  337. 337.
    Schonberg, S. A., Lundemo, A. G., Fladvad, T., Holmgren, K., Bremseth, H., Nilsen, A., et al. (2006). Closely related colon cancer cell lines display different sensitivity to polyunsaturated fatty acids, accumulate different lipid classes and downregulate sterol regulatory element-binding protein 1. The FEBS Journal, 273(12), 2749–2765.  https://doi.org/10.1111/j.1742-4658.2006.05292.x.PubMedCrossRefGoogle Scholar
  338. 338.
    Mohammed, A., Janakiram, N. B., Brewer, M., Duff, A., Lightfoot, S., Brush, R. S., et al. (2012). Endogenous n-3 polyunsaturated fatty acids delay progression of pancreatic ductal adenocarcinoma in Fat-1-p48(Cre/+)-LSL-Kras(G12D/+) mice. Neoplasia (New York, N.Y.), 14(12), 1249–1259.CrossRefGoogle Scholar
  339. 339.
    Strouch, M. J., Ding, Y., Salabat, M. R., Melstrom, L. G., Adrian, K., Quinn, C., et al. (2011). A high omega-3 fatty acid diet mitigates murine pancreatic precancer development. The Journal of Surgical Research, 165(1), 75–81.  https://doi.org/10.1016/j.jss.2009.04.022.PubMedCrossRefGoogle Scholar
  340. 340.
    Muratcioglu, S., Chavan, T. S., Freed, B. C., Jang, H., Khavrutskii, L., Freed, R. N., et al. (2015). GTP-dependent K-Ras dimerization. Structure, 23(7), 1325–1335.  https://doi.org/10.1016/j.str.2015.04.019.PubMedPubMedCentralCrossRefGoogle Scholar
  341. 341.
    Nan, X., Tamguney, T. M., Collisson, E. A., Lin, L. J., Pitt, C., Galeas, J., et al. (2015). Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 7996–8001.  https://doi.org/10.1073/pnas.1509123112.PubMedPubMedCentralCrossRefGoogle Scholar
  342. 342.
    Cho, K. J., & Hancock, J. F. (2013). Ras nanoclusters: a new drug target? Small GTPases, 4(1), 57–60.  https://doi.org/10.4161/sgtp.23145.PubMedPubMedCentralCrossRefGoogle Scholar
  343. 343.
    Chapkin, R. S., Wang, N., Fan, Y. Y., Lupton, J. R., & Prior, I. A. (2008). Docosahexaenoic acid alters the size and distribution of cell surface microdomains. Biochimica et Biophysica Acta, 1778(2), 466–471.  https://doi.org/10.1016/j.bbamem.2007.11.003.PubMedCrossRefGoogle Scholar
  344. 344.
    Kim, W., Khan, N. A., McMurray, D. N., Prior, I. A., Wang, N., & Chapkin, R. S. (2010). Regulatory activity of polyunsaturated fatty acids in T-cell signaling. Progress in Lipid Research, 49(3), 250–261.  https://doi.org/10.1016/j.plipres.2010.01.002.PubMedPubMedCentralCrossRefGoogle Scholar
  345. 345.
    Krausova, M., & Korinek, V. (2014). Wnt signaling in adult intestinal stem cells and cancer. Cellular Signalling, 26(3), 570–579.  https://doi.org/10.1016/j.cellsig.2013.11.032.PubMedCrossRefGoogle Scholar
  346. 346.
    Gregorieff, A., & Clevers, H. (2005). Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes & Development, 19(8), 877–890.  https://doi.org/10.1101/gad.1295405.CrossRefGoogle Scholar
  347. 347.
    White, B. D., Chien, A. J., & Dawson, D. W. (2012). Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology, 142(2), 219–232.  https://doi.org/10.1053/j.gastro.2011.12.001.PubMedCrossRefGoogle Scholar
  348. 348.
    Lucijanic, M., Livun, A., Tomasovic-Loncaric, C., Stoos-Veic, T., Pejsa, V., Jaksic, O., et al. (2016). Canonical Wnt/beta-catenin signaling pathway is dysregulated in patients with primary and secondary myelofibrosis. Clinical Lymphoma, Myeloma & Leukemia, 16(9), 523–526.  https://doi.org/10.1016/j.clml.2016.06.004.CrossRefGoogle Scholar
  349. 349.
    Guinot, A., Oeztuerk-Winder, F., & Ventura, J. J. (2016). miR-17-92/p38alpha dysregulation enhances Wnt signaling and selects Lgr6+ cancer stem-like cells during lung adenocarcinoma progression. Cancer Research, 76(13), 4012–4022.  https://doi.org/10.1158/0008-5472.CAN-15-3302.PubMedCrossRefGoogle Scholar
  350. 350.
    Mitsui, Y., Yasumoto, H., Nagami, T., Hiraki, M., Arichi, N., Ishikawa, N., et al. (2014). Extracellular activation of Wnt signaling through epigenetic dysregulation of Wnt inhibitory factor-1 (Wif-1) is associated with pathogenesis of adrenocortical tumor. Oncotarget, 5(8), 2198–2207.  https://doi.org/10.18632/oncotarget.1889. PubMedPubMedCentralCrossRefGoogle Scholar
  351. 351.
    Wu, W. K., Wang, X. J., Cheng, A. S., Luo, M. X., Ng, S. S., To, K. F, et al. (2013). Dysregulation and crosstalk of cellular signaling pathways in colon carcinogenesis. Critical Reviews in Oncology/Hematology, 86(3), 251–277.  https://doi.org/10.1016/j.critrevonc.2012.11.009.PubMedCrossRefGoogle Scholar
  352. 352.
    Chan, D. W., Mak, C. S., Leung, T. H., Chan, K. K., & Ngan, H. Y. (2012). Down-regulation of Sox7 is associated with aberrant activation of Wnt/b-catenin signaling in endometrial cancer. Oncotarget, 3(12), 1546–1556,  https://doi.org/10.18632/oncotarget.667.
  353. 353.
    Gao, B. (2012). Wnt regulation of planar cell polarity (PCP). Current Topics in Developmental Biology, 101, 263–295.  https://doi.org/10.1016/B978-0-12-394592-1.00008-9.PubMedCrossRefGoogle Scholar
  354. 354.
    Komiya, Y., & Habas, R. (2008). Wnt signal transduction pathways. Organogenesis, 4(2), 68–75.PubMedPubMedCentralCrossRefGoogle Scholar
  355. 355.
    Schepers, A., & Clevers, H. (2012). Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harbor Perspectives in Biology, 4(4), a007989.  https://doi.org/10.1101/cshperspect.a007989.PubMedPubMedCentralCrossRefGoogle Scholar
  356. 356.
    Fodde, R., & Brabletz, T. (2007). Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Current Opinion in Cell Biology, 19(2), 150–158.  https://doi.org/10.1016/j.ceb.2007.02.007.PubMedCrossRefGoogle Scholar
  357. 357.
    Famili, F., Brugman, M. H., Taskesen, E., Naber, B. E., Fodde, R., & Staal, F. J. (2016). High levels of canonical Wnt signaling lead to loss of stemness and increased differentiation in hematopoietic stem cells. Stem Cell Reports, 6(5), 652–659.  https://doi.org/10.1016/j.stemcr.2016.04.009.PubMedPubMedCentralCrossRefGoogle Scholar
  358. 358.
    Oren, O., & Smith, B. D. (2016). Eliminating cancer stem cells by targeting embryonic signaling pathways. Stem Cell Reviews.  https://doi.org/10.1007/s12015-016-9691-3.
  359. 359.
    Lesko, A. C., Goss, K. H., & Prosperi, J. R. (2014). Exploiting APC function as a novel cancer therapy. Current Drug Targets, 15(1), 90–102.PubMedCrossRefGoogle Scholar
  360. 360.
    Foley, P. J., Scheri, R. P., Smolock, C. J., Pippin, J., Green, D. W., & Drebin, J. A. (2008). Targeted suppression of beta-catenin blocks intestinal adenoma formation in APC Min mice. Journal of Gastrointestinal Surgery, 12(8), 1452–1458.  https://doi.org/10.1007/s11605-008-0519-6.PubMedCrossRefGoogle Scholar
  361. 361.
    Lepourcelet, M., Chen, Y. N., France, D. S., Wang, H., Crews, P., Petersen, F., et al. (2004). Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell, 5(1), 91–102.PubMedCrossRefGoogle Scholar
  362. 362.
    Emami, K. H., Nguyen, C., Ma, H., Kim, D. H., Jeong, K. W., Eguchi, M., et al. (2004). A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12682–12687.  https://doi.org/10.1073/pnas.0404875101. PubMedPubMedCentralCrossRefGoogle Scholar
  363. 363.
    Inoue, K., Fry, E. A., & Taneja, P. (2013). Recent progress in mouse models for tumor suppressor genes and its implications in human cancer. Clinical Medicine Insights Oncology, 7, 103–122.  https://doi.org/10.4137/CMO.S10358.PubMedPubMedCentralCrossRefGoogle Scholar
  364. 364.
    Buchanan, F. G., Holla, V., Katkuri, S., Matta, P., & DuBois, R. N. (2007). Targeting cyclooxygenase-2 and the epidermal growth factor receptor for the prevention and treatment of intestinal cancer. Cancer Research, 67(19), 9380–9388.  https://doi.org/10.1158/0008-5472.CAN-07-0710.PubMedCrossRefGoogle Scholar
  365. 365.
    Vogelstein, B., & Kinzler, K. W. (2012). Winning the war: science parkour. Science Translational Medicine, 4(127), 127ed122.  https://doi.org/10.1126/scitranslmed.3004019.CrossRefGoogle Scholar
  366. 366.
    Moses 3rd, H., Dorsey, E. R., Matheson, D. H., & Thier, S. O. (2005). Financial anatomy of biomedical research. JAMA, 294(11), 1333–1342.  https://doi.org/10.1001/jama.294.11.1333.PubMedCrossRefGoogle Scholar
  367. 367.
    Coussens, L. M., Zitvogel, L., & Palucka, A. K. (2013). Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science, 339(6117), 286.  https://doi.org/10.1126/science.1232227.PubMedPubMedCentralCrossRefGoogle Scholar
  368. 368.
    Ford, E. S., Bergmann, M. M., Boeing, H., Li, C., & Capewell, S. (2012). Healthy lifestyle behaviors and all-cause mortality among adults in the United States. Preventive Medicine, 55(1), 23–27.  https://doi.org/10.1016/j.ypmed.2012.04.016.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alfredo Erazo-Oliveras
    • 1
    • 2
  • Natividad R. Fuentes
    • 1
    • 2
  • Rachel C. Wright
    • 1
    • 2
  • Robert S. Chapkin
    • 1
    • 2
    • 3
  1. 1.Program in Integrative Nutrition & Complex DiseasesTexas A&M UniversityCollege StationUSA
  2. 2.Department of Nutrition and Food ScienceTexas A&M UniversityCollege StationUSA
  3. 3.Center for Translational Environmental Health ResearchTexas A&M UniversityCollege StationUSA

Personalised recommendations