Cancer and Metastasis Reviews

, Volume 37, Issue 1, pp 45–53 | Cite as

Diagnostic and therapeutic applications of miRNA-based strategies to cancer immunotherapy

  • Gabriele RomanoEmail author
  • Lawrence N. Kwong


Cancer immunotherapy has shown impressive clinical results in the last decade, improving both solid and hematologic cancer patients’ overall survival. Nevertheless, most of the molecular aspects underlying the response to this approach are still under investigation. miRNAs in particular have been described as regulators of a plethora of different immunologic processes and thus have the potential to be key in the future developments of immunotherapy. In this review, we summarize and discuss the emerging role of miRNAs in the diagnosis and therapeutics of the four principal cancer immunotherapy approaches: immune checkpoint blockade, adoptive cell therapy, cancer vaccines, and cytokine therapy. In particular, this review is focused on potential roles for miRNAs to be adjuvants in soluble factor- and cell-based therapies, with the aim of helping to increase specificity and decrease toxicity, and on the potential for rationally identified miRNA-based diagnostic approaches to aid in precision clinical immunooncology.


Cancer immunotherapy miRNAs Immune-based therapies Cancer diagnostics 



The figures were produced, in part, by using Servier Medical Art.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Khalil, D. N., Smith, E. L., Brentjens, R. J., & Wolchok, J. D. (2016). The future of cancer treatment: immunomodulation, cars and combination immunotherapy. Nature Reviews. Clinical Oncology, 13, 273–290.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Farkona, S., Diamandis, E. P., & Blasutig, I. M. (2016). Cancer immunotherapy: the beginning of the end of cancer? BMC Medicine, 14, 73.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Postow, M. A., Callahan, M. K., & Wolchok, J. D. (2015). Immune checkpoint blockade in cancer therapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 33, 1974–1982.CrossRefGoogle Scholar
  4. 4.
    Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2015). Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 27, 450–461.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Restifo, N. P., Dudley, M. E., & Rosenberg, S. A. (2012). Adoptive immunotherapy for cancer: harnessing the t cell response. Nature Reviews. Immunology, 12, 269–281.CrossRefPubMedGoogle Scholar
  6. 6.
    Rosenberg, S. A., & Restifo, N. P. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 348, 62–68.CrossRefPubMedGoogle Scholar
  7. 7.
    van der Burg, S. H., Arens, R., Ossendorp, F., van Hall, T., & Melief, C. J. (2016). Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nature Reviews. Cancer, 16, 219–233.CrossRefPubMedGoogle Scholar
  8. 8.
    Guo, C., Manjili, M. H., Subjeck, J. R., Sarkar, D., Fisher, P. B., & Wang, X. Y. (2013). Therapeutic cancer vaccines: past, present, and future. Advances in Cancer Research, 119, 421–475.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dranoff, G. (2004). Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews. Cancer, 4, 11–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Parker, B. S., Rautela, J., & Hertzog, P. J. (2016). Antitumour actions of interferons: implications for cancer therapy. Nature Reviews. Cancer, 16, 131–144.CrossRefPubMedGoogle Scholar
  11. 11.
    Kelderman, S., Schumacher, T. N., & Haanen, J. B. (2014). Acquired and intrinsic resistance in cancer immunotherapy. Molecular Oncology, 8, 1132–1139.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sharma, P., Hu-Lieskovan, S., Wargo, J. A., & Ribas, A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 168, 707–723.CrossRefPubMedGoogle Scholar
  13. 13.
    O'Donnell, J. S., Smyth, M. J., & Teng, M. W. (2016). Acquired resistance to anti-pd1 therapy: checkmate to checkpoint blockade? Genome Medicine, 8, 111.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Abba, M. L., Patil, N., Leupold, J. H., Moniuszko, M., Utikal, J., Niklinski, J., & Allgayer, H. (2017). Micrornas as novel targets and tools in cancer therapy. Cancer Letters, 387, 84–94.CrossRefPubMedGoogle Scholar
  15. 15.
    Iorio, M. V., & Croce, C. M. (2012). Microrna dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Molecular Medicine, 4, 143–159.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rupaimoole, R., & Slack, F. J. (2017). Microrna therapeutics: towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery, 16, 203–222.CrossRefPubMedGoogle Scholar
  17. 17.
    Eggermont, A. M., Chiarion-Sileni, V., Grob, J. J., Dummer, R., Wolchok, J. D., Schmidt, H., Hamid, O., Robert, C., Ascierto, P. A., Richards, J. M., et al. (2016). Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. The New England Journal of Medicine, 375, 1845–1855.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Eggermont, A. M. M., Chiarion-Sileni, V., Grob, J.-J., Dummer, R., Wolchok, J. D., Schmidt, H., Hamid, O., Robert, C., Ascierto, P. A., Richards, J. M., et al. (2015). Adjuvant ipilimumab versus placebo after complete resection of high-risk stage iii melanoma (eortc 18071): a randomised, double-blind, phase 3 trial. The Lancet Oncology, 16, 522–530.CrossRefPubMedGoogle Scholar
  19. 19.
    Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373, 23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Maio, M., Grob, J. J., Aamdal, S., Bondarenko, I., Robert, C., Thomas, L., Garbe, C., Chiarion-Sileni, V., Testori, A., Chen, T. T., et al. (2015). Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase iii trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 33, 1191–1196.CrossRefGoogle Scholar
  21. 21.
    Margolin, K. (2012). Ipilimumab in a phase ii trial of melanoma patients with brain metastases. Oncoimmunology, 1, 1197–1199.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Postow, M. A., Chesney, J., Pavlick, A. C., Robert, C., Grossmann, K., McDermott, D., Linette, G. P., Meyer, N., Giguere, J. K., Agarwala, S. S., et al. (2015). Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. The New England Journal of Medicine, 372, 2006–2017.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Smolle, M. A., Calin, H. N., Pichler, M., & Calin, G. A. (2017). Noncoding rnas and immune checkpoints-clinical implications as cancer therapeutics. The FEBS Journal, 284, 1952–1966.CrossRefPubMedGoogle Scholar
  24. 24.
    Chen, L., & Han, X. (2015). Anti-pd-1/pd-l1 therapy of human cancer: past, present, and future. The Journal of Clinical Investigation, 125, 3384–3391.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zou, W., Wolchok, J. D., & Chen, L. (2016). Pd-l1 (b7-h1) and pd-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Science Translational Medicine, 8, 328rv324.CrossRefGoogle Scholar
  26. 26.
    Wang, Q., Liu, F., & Liu, L. (2017). Prognostic significance of pd-l1 in solid tumor: an updated meta-analysis. Medicine (Baltimore), 96, e6369.CrossRefGoogle Scholar
  27. 27.
    Zhou, C., Tang, J., Sun, H., Zheng, X., Li, Z., Sun, T., Li, J., Wang, S., Zhou, X., Sun, H., et al. (2017). Pd-l1 expression as poor prognostic factor in patients with non-squamous non-small cell lung cancer. Oncotarget, 8, 58457–58468.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhou, Y., Shi, D., Miao, J., Wu, H., Chen, J., Zhou, X., Hu, D., Zhao, C., Deng, W., & Xie, C. (2017). Pd-l1 predicts poor prognosis for nasopharyngeal carcinoma irrespective of pd-1 and ebv-DNA load. Scientific Reports, 7, 43627.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xue, S., Song, G., & Yu, J. (2017). The prognostic significance of pd-l1 expression in patients with glioma: a meta-analysis. Scientific Reports, 7, 4231.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sun, J. M., Zhou, W., Choi, Y. L., Choi, S. J., Kim, S. E., Wang, Z., Dolled-Filhart, M., Emancipator, K., Wu, D., Weiner, R., et al. (2016). Prognostic significance of pd-l1 in patients with non-small cell lung cancer: a large cohort study of surgically resected cases. Journal of Thoracic Oncology, 11, 1003–1011.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen, L., Gibbons, D. L., Goswami, S., Cortez, M. A., Ahn, Y. H., Byers, L. A., Zhang, X., Yi, X., Dwyer, D., Lin, W., et al. (2014). Metastasis is regulated via microrna-200/zeb1 axis control of tumour cell pd-l1 expression and intratumoral immunosuppression. Nature Communications, 5, 5241.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cortez, M.A., Ivan, C., Valdecanas, D., Wang, X., Peltier, H.J., Ye, Y., Araujo, L., Carbone, D.P., Shilo, K., Giri, D.K., et al. (2016). Pdl1 regulation by p53 via mir-34. Journal of the National Cancer Institute, 108.Google Scholar
  33. 33.
    Wang, X., Li, J., Dong, K., Lin, F., Long, M., Ouyang, Y., Wei, J., Chen, X., Weng, Y., He, T., et al. (2015). Tumor suppressor mir-34a targets pd-l1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cellular Signalling, 27, 443–452.CrossRefPubMedGoogle Scholar
  34. 34.
    Pyzer, A. R., Stroopinsky, D., Rosenblatt, J., Anastasiadou, E., Rajabi, H., Washington, A., Tagde, A., Chu, J. H., Coll, M., Jiao, A. L., et al. (2017). Muc1 inhibition leads to decrease in pd-l1 levels via upregulation of mirnas. Leukemia.Google Scholar
  35. 35.
    Kao, S. C., Cheng, Y. Y., Williams, M., Kirschner, M. B., Madore, J., Lum, T., Sarun, K. H., Linton, A., McCaughan, B., Klebe, S., et al. (2017). Tumor suppressor micrornas contribute to the regulation of pd-l1 expression in malignant pleural mesothelioma. Journal of Thoracic Oncology, 12, 1421–1433.CrossRefPubMedGoogle Scholar
  36. 36.
    Jia, L., Xi, Q., Wang, H., Zhang, Z., Liu, H., Cheng, Y., Guo, X., Zhang, J., Zhang, Q., Zhang, L., et al. (2017). Mir-142-5p regulates tumor cell pd-l1 expression and enhances anti-tumor immunity. Biochemical and Biophysical Research Communications, 488, 425–431.CrossRefPubMedGoogle Scholar
  37. 37.
    Audrito, V., Serra, S., Stingi, A., Orso, F., Gaudino, F., Bologna, C., Neri, F., Garaffo, G., Nassini, R., Baroni, G., et al. (2017). Pd-l1 up-regulation in melanoma increases disease aggressiveness and is mediated through mir-17-5p. Oncotarget, 8, 15894–15911.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhao, L., Yu, H., Yi, S., Peng, X., Su, P., Xiao, Z., Liu, R., Tang, A., Li, X., Liu, F., et al. (2016). The tumor suppressor mir-138-5p targets pd-l1 in colorectal cancer. Oncotarget, 7, 45370–45384.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhu, J., Chen, L., Zou, L., Yang, P., Wu, R., Mao, Y., Zhou, H., Li, R., Wang, K., Wang, W., et al. (2014). Mir-20b, -21, and -130b inhibit pten expression resulting in b7-h1 over-expression in advanced colorectal cancer. Human Immunology, 75, 348–353.CrossRefPubMedGoogle Scholar
  40. 40.
    Fujita, Y., Yagishita, S., Hagiwara, K., Yoshioka, Y., Kosaka, N., Takeshita, F., Fujiwara, T., Tsuta, K., Nokihara, H., Tamura, T., et al. (2015). The clinical relevance of the mir-197/cks1b/stat3-mediated pd-l1 network in chemoresistant non-small-cell lung cancer. Molecular therapy: the journal of the American Society of Gene Therapy, 23, 717–727.CrossRefGoogle Scholar
  41. 41.
    Wei, J., Nduom, E. K., Kong, L. Y., Hashimoto, Y., Xu, S., Gabrusiewicz, K., Ling, X., Huang, N., Qiao, W., Zhou, S., et al. (2016). Mir-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro-Oncology, 18, 639–648.CrossRefPubMedGoogle Scholar
  42. 42.
    Li, Q., Johnston, N., Zheng, X., Wang, H., Zhang, X., Gao, D., & Min, W. (2016). Mir-28 modulates exhaustive differentiation of t cells through silencing programmed cell death-1 and regulating cytokine secretion. Oncotarget, 7, 53735–53750.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Zimmermann, T. S., Lee, A. C., Akinc, A., Bramlage, B., Bumcrot, D., Fedoruk, M. N., Harborth, J., Heyes, J. A., Jeffs, L. B., John, M., et al. (2006). Rnai-mediated gene silencing in non-human primates. Nature, 441, 111–114.CrossRefPubMedGoogle Scholar
  44. 44.
    Zatsepin, T. S., Kotelevtsev, Y. V., & Koteliansky, V. (2016). Lipid nanoparticles for targeted sirna delivery—going from bench to bedside. International Journal of Nanomedicine, 11, 3077–3086.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sadelain, M. (2017). Chimeric antigen receptors: a paradigm shift in immunotherapy. Annual Review of Cancer Biology, 1, 447–466.CrossRefGoogle Scholar
  46. 46.
    Jackson, H. J., Rafiq, S., & Brentjens, R. J. (2016). Driving car t-cells forward. Nature Reviews. Clinical Oncology, 13, 370–383.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wei, J., Wang, F., Kong, L. Y., Xu, S., Doucette, T., Ferguson, S. D., Yang, Y., McEnery, K., Jethwa, K., Gjyshi, O., et al. (2013). Mir-124 inhibits stat3 signaling to enhance t cell-mediated immune clearance of glioma. Cancer Research, 73, 3913–3926.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gattinoni, L., Finkelstein, S. E., Klebanoff, C. A., Antony, P. A., Palmer, D. C., Spiess, P. J., Hwang, L. N., Yu, Z., Wrzesinski, C., Heimann, D. M., et al. (2005). Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific cd8+ t cells. The Journal of Experimental Medicine, 202, 907–912.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ji, Y., Wrzesinski, C., Yu, Z., Hu, J., Gautam, S., Hawk, N. V., Telford, W. G., Palmer, D. C., Franco, Z., Sukumar, M., et al. (2015). Mir-155 augments cd8+ t-cell antitumor activity in lymphoreplete hosts by enhancing responsiveness to homeostatic gammac cytokines. Proceedings of the National Academy of Sciences of the United States of America, 112, 476–481.CrossRefPubMedGoogle Scholar
  50. 50.
    Lin, R., Chen, L., Chen, G., Hu, C., Jiang, S., Sevilla, J., Wan, Y., Sampson, J. H., Zhu, B., & Li, Q. J. (2014). Targeting mir-23a in cd8+ cytotoxic t lymphocytes prevents tumor-dependent immunosuppression. The Journal of Clinical Investigation, 124, 5352–5367.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Melief, C. J., van Hall, T., Arens, R., Ossendorp, F., & van der Burg, S. H. (2015). Therapeutic cancer vaccines. The Journal of Clinical Investigation, 125, 3401–3412.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hazama, S., Nakamura, Y., Takenouchi, H., Suzuki, N., Tsunedomi, R., Inoue, Y., Tokuhisa, Y., Iizuka, N., Yoshino, S., Takeda, K., et al. (2014). A phase i study of combination vaccine treatment of five therapeutic epitope-peptides for metastatic colorectal cancer; safety, immunological response, and clinical outcome. Journal of Translational Medicine, 12, 63.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tanaka, H., Hazama, S., Iida, M., Tsunedomi, R., Takenouchi, H., Nakajima, M., Tokumitsu, Y., Kanekiyo, S., Shindo, Y., Tomochika, S., et al. (2017). Mir-125b-1 and mir-378a are predictive biomarkers for the efficacy of vaccine treatment against colorectal cancer. Cancer Science, 108, 2229–2238.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kijima, T., Hazama, S., Tsunedomi, R., Tanaka, H., Takenouchi, H., Kanekiyo, S., Inoue, Y., Nakashima, M., Iida, M., Sakamoto, K., et al. (2017). Microrna-6826 and -6875 in plasma are valuable noninvasive biomarkers that predict the efficacy of vaccine treatment against metastatic colorectal cancer. Oncology Reports, 37, 23–30.CrossRefPubMedGoogle Scholar
  55. 55.
    Birkhauser, F. D., Koya, R. C., Neufeld, C., Rampersaud, E. N., Lu, X., Micewicz, E. D., Chodon, T., Atefi, M., Kroeger, N., Chandramouli, G. V., et al. (2013). Dendritic cell-based immunotherapy in prevention and treatment of renal cell carcinoma: efficacy, safety, and activity of ad-gm.Caix in immunocompetent mouse models. Journal of Immunotherapy, 36, 102–111.CrossRefPubMedGoogle Scholar
  56. 56.
    Holmstrom, K., Pedersen, A. W., Claesson, M. H., Zocca, M. B., & Jensen, S. S. (2010). Identification of a microrna signature in dendritic cell vaccines for cancer immunotherapy. Human Immunology, 71, 67–73.CrossRefPubMedGoogle Scholar
  57. 57.
    Jin, P., Han, T. H., Ren, J., Saunders, S., Wang, E., Marincola, F. M., & Stroncek, D. F. (2010). Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies. Journal of Translational Medicine, 8, 4.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Liang, X., Liu, Y., Mei, S., Zhang, M., Xin, J., Zhang, Y., & Yang, R. (2015). Microrna-22 impairs anti-tumor ability of dendritic cells by targeting p38. PLoS One, 10, e0121510.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Liu, L., Yi, H., Wang, C., He, H., Li, P., Pan, H., Sheng, N., Ji, M., Cai, L., & Ma, Y. (2016). Integrated nanovaccine with microrna-148a inhibition reprograms tumor-associated dendritic cells by modulating mir-148a/dnmt1/socs1 axis. Journal of Immunology, 197, 1231–1241.CrossRefGoogle Scholar
  60. 60.
    He, X., Wang, J., Zhao, F., Yu, F., Chen, D., Cai, K., Yang, C., Chen, J., & Dou, J. (2012). Antitumor efficacy of viable tumor vaccine modified by heterogenetic esat-6 antigen and cytokine il-21 in melanomatous mouse. Immunologic Research, 52, 240–249.CrossRefPubMedGoogle Scholar
  61. 61.
    Wang, X., Zhao, F., He, X., Wang, J., Zhang, Y., Zhang, H., Ni, Y., Sun, J., Wang, X., & Dou, J. (2015). Combining tgf-beta1 knockdown and mir200c administration to optimize antitumor efficacy of b16f10/gpi-il-21 vaccine. Oncotarget, 6, 12493–12504.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Wang, X., Zhao, F., Shi, F., He, X., Pan, M., Wu, D., Li, M., Zhang, Y., & Dou, J. (2016). Reinforcing b16f10/gpi-il-21 vaccine efficacy against melanoma by injecting mice with shzeb1 plasmid or mir200c agomir. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 80, 136–144.CrossRefGoogle Scholar
  63. 63.
    Lee, S., & Margolin, K. (2011). Cytokines in cancer immunotherapy. Cancers (Basel), 3, 3856–3893.CrossRefGoogle Scholar
  64. 64.
    Minn, A. J. (2015). Interferons and the immunogenic effects of cancer therapy. Trends in Immunology, 36, 725–737.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sun, H. C., Tang, Z. Y., Wang, L., Qin, L. X., Ma, Z. C., Ye, Q. H., Zhang, B. H., Qian, Y. B., Wu, Z. Q., Fan, J., et al. (2006). Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of hbv-related hepatocellular carcinoma: a randomized clinical trial. Journal of Cancer Research and Clinical Oncology, 132, 458–465.CrossRefPubMedGoogle Scholar
  66. 66.
    Clavien, P. A. (2007). Interferon: the magic bullet to prevent hepatocellular carcinoma recurrence after resection? Annals of Surgery, 245, 843–845.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lo, C. M., Liu, C. L., Chan, S. C., Lam, C. M., Poon, R. T., Ng, I. O., Fan, S. T., & Wong, J. (2007). A randomized, controlled trial of postoperative adjuvant interferon therapy after resection of hepatocellular carcinoma. Annals of Surgery, 245, 831–842.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ji, J., Shi, J., Budhu, A., Yu, Z., Forgues, M., Roessler, S., Ambs, S., Chen, Y., Meltzer, P. S., Croce, C. M., et al. (2009). Microrna expression, survival, and response to interferon in liver cancer. The New England Journal of Medicine, 361, 1437–1447.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ji, J., Yu, L., Yu, Z., Forgues, M., Uenishi, T., Kubo, S., Wakasa, K., Zhou, J., Fan, J., Tang, Z. Y., et al. (2013). Development of a mir-26 companion diagnostic test for adjuvant interferon-alpha therapy in hepatocellular carcinoma. International Journal of Biological Sciences, 9, 303–312.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Li, A., Qian, J., He, J., Zhang, Q., Zhai, A., Song, W., Li, Y., Ling, H., Zhong, Z., & Zhang, F. (2013). Modulation of mir122 expression affects the interferon response in human hepatoma cells. Molecular Medicine Reports, 7, 585–590.CrossRefPubMedGoogle Scholar
  71. 71.
    Tomokuni, A., Eguchi, H., Tomimaru, Y., Wada, H., Kawamoto, K., Kobayashi, S., Marubashi, S., Tanemura, M., Nagano, H., Mori, M., et al. (2011). Mir-146a suppresses the sensitivity to interferon-alpha in hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications, 414, 675–680.CrossRefPubMedGoogle Scholar
  72. 72.
    Uka, K., Aikata, H., Takaki, S., Miki, D., Jeong, S. C., Hiramatsu, A., Kodama, H., Shirakawa, H., Kawakami, Y., Takahashi, S., et al. (2007). Similar effects of recombinant interferon-alpha-2b and natural interferon-alpha when combined with intra-arterial 5-fluorouracil for the treatment of advanced hepatocellular carcinoma. Liver International, 27, 1209–1216.PubMedGoogle Scholar
  73. 73.
    Obi, S., Yoshida, H., Toune, R., Unuma, T., Kanda, M., Sato, S., Tateishi, R., Teratani, T., Shiina, S., & Omata, M. (2006). Combination therapy of intraarterial 5-fluorouracil and systemic interferon-alpha for advanced hepatocellular carcinoma with portal venous invasion. Cancer, 106, 1990–1997.CrossRefPubMedGoogle Scholar
  74. 74.
    Tomimaru, Y., Eguchi, H., Nagano, H., Wada, H., Tomokuni, A., Kobayashi, S., Marubashi, S., Takeda, Y., Tanemura, M., Umeshita, K., et al. (2010). Microrna-21 induces resistance to the anti-tumour effect of interferon-alpha/5-fluorouracil in hepatocellular carcinoma cells. British Journal of Cancer, 103, 1617–1626.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Tanaka, T., Arai, M., Jiang, X., Sugaya, S., Kanda, T., Fujii, K., Kita, K., Sugita, K., Imazeki, F., Miyashita, T., et al. (2014). Downregulation of microrna-431 by human interferon-beta inhibits viability of medulloblastoma and glioblastoma cells via upregulation of socs6. International Journal of Oncology, 44, 1685–1690.CrossRefPubMedGoogle Scholar
  76. 76.
    Yuan, L., Zhou, C., Lu, Y., Hong, M., Zhang, Z., Zhang, Z., Chang, Y., Zhang, C., & Li, X. (2015). Ifn-gamma-mediated irf1/mir-29b feedback loop suppresses colorectal cancer cell growth and metastasis by repressing igf1. Cancer Letters, 359, 136–147.CrossRefPubMedGoogle Scholar
  77. 77.
    Trifari, S., Pipkin, M. E., Bandukwala, H. S., Aijo, T., Bassein, J., Chen, R., Martinez, G. J., & Rao, A. (2013). Microrna-directed program of cytotoxic cd8+ t-cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 110, 18608–18613.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Stittrich, A. B., Haftmann, C., Sgouroudis, E., Kuhl, A. A., Hegazy, A. N., Panse, I., Riedel, R., Flossdorf, M., Dong, J., Fuhrmann, F., et al. (2010). The microrna mir-182 is induced by il-2 and promotes clonal expansion of activated helper t lymphocytes. Nature Immunology, 11, 1057–1062.CrossRefPubMedGoogle Scholar
  79. 79.
    Xue, Q., Guo, Z. Y., Li, W., Wen, W. H., Meng, Y. L., Jia, L. T., Wang, J., Yao, L. B., Jin, B. Q., Wang, T., et al. (2011). Human activated cd4(+) t lymphocytes increase il-2 expression by downregulating microrna-181c. Molecular Immunology, 48, 592–599.CrossRefPubMedGoogle Scholar
  80. 80.
    Coenen, M., Hinze, A. V., Mengel, M., Fuhrmann, C., Ludenbach, B., Zimmermann, J., Dykstra, V., Fimmers, R., Viviani, R., Stingl, J., et al. (2015). Immune- and mirna-response to recombinant interferon beta-1a: a biomarker evaluation study to guide the development of novel type I interferon- based therapies. BMC Pharmacology and Toxicology, 16, 25.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Beg, M. S., Brenner, A. J., Sachdev, J., Borad, M., Kang, Y. K., Stoudemire, J., Smith, S., Bader, A. G., Kim, S., & Hong, D. S. (2017). Phase I study of mrx34, a liposomal mir-34a mimic, administered twice weekly in patients with advanced solid tumors. Investigational New Drugs, 35, 180–188.CrossRefPubMedGoogle Scholar
  82. 82.
    Querfeld, C., Pacheco, T., Foss, F. M., Halwani, A. S., Porcu, P., Seto, A. G., Ruckman, J., Landry, M. L., Jackson, A. L., Pestano, L. A., et al. (2016). Preliminary results of a phase 1 trial evaluating mrg-106, a synthetic microrna antagonist (lna antimir) of microrna-155, in patients with ctcl. Blood, 128, 1829–1829.CrossRefGoogle Scholar
  83. 83.
    van der Ree, M. H., van der Meer, A. J., van Nuenen, A. C., de Bruijne, J., Ottosen, S., Janssen, H. L., Kootstra, N. A., & Reesink, H. W. (2016). Miravirsen dosing in chronic hepatitis c patients results in decreased microrna-122 levels without affecting other micrornas in plasma. Alimentary Pharmacology & Therapeutics, 43, 102–113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Translational Molecular PathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations