Advertisement

Cancer and Metastasis Reviews

, Volume 36, Issue 4, pp 561–584 | Cite as

The proteasome and proteasome inhibitors in multiple myeloma

  • Sara Gandolfi
  • Jacob P. Laubach
  • Teru Hideshima
  • Dharminder Chauhan
  • Kenneth C. Anderson
  • Paul G. Richardson
Article

Abstract

Proteasome inhibitors are one of the most important classes of agents to have emerged for the treatment of multiple myeloma in the past two decades, and now form one of the backbones of treatment. Three agents in this class have been approved by the United States Food and Drug Administration—the first-in-class compound bortezomib, the second-generation agent carfilzomib, and the first oral proteasome inhibitor, ixazomib. The success of this class of agents is due to the exquisite sensitivity of myeloma cells to the inhibition of the 26S proteasome, which plays a critical role in the pathogenesis and proliferation of the disease. Proteasome inhibition results in multiple downstream effects, including the inhibition of NF-κB signaling, the accumulation of misfolded and unfolded proteins, resulting in endoplasmic reticulum stress and leading to the unfolded protein response, the downregulation of growth factor receptors, suppression of adhesion molecule expression, and inhibition of angiogenesis; resistance to proteasome inhibition may arise through cellular responses mediating these downstream effects. These multiple biologic consequences of proteasome inhibition result in synergistic or additive activity with other chemotherapeutic and targeted agents for myeloma, and proteasome inhibitor-based combination regimens have become established as a cornerstone of therapy throughout the myeloma treatment algorithm, incorporating agents from the other key classes of antimyeloma agents, including the immunomodulatory drugs, monoclonal antibodies, and histone deacetylase inhibitors. This review gives an overview of the critical role of the proteasome in myeloma and the characteristics of the different proteasome inhibitors and provides a comprehensive summary of key clinical efficacy and safety data with the currently approved proteasome inhibitors.

Keywords

20S proteasome Proteasome inhibitor Ubiquitin-proteasome system Multiple myeloma Tumor progression 

Notes

Funding source statement

Development of this review was funded by Dana-Farber Cancer Institute.

Authors’ contributions

PGR led the development of this review. All other authors contributed equally to this review.

Compliance with ethical standards

Conflict of interest

Sara Gandolfi, Teru Hideshima, and Dharminder Chauhan have no conflict of interest to disclose.

Jacob P. Laubach has research funding from Celgene and consulting fees from Takeda.

Kenneth C. Anderson is an advisor for Celgene, Millennium Pharmaceuticals, and Gilead Sciences, and is a Scientific Founder of OncoPep, Acetylon, and C4 Therapeutics.

Paul G. Richardson is an advisor for Millennium Takeda, Celgene, and Janssen, and received research funding from Millennium Takeda, Celgene, and Bristol Myers-Squibb.

References

  1. 1.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: a Cancer Journal for Clinicians, 67(1), 7–30.  https://doi.org/10.3322/caac.21387.Google Scholar
  2. 2.
    Kyle, R. A., Gertz, M. A., Witzig, T. E., Lust, J. A., Lacy, M. Q., Dispenzieri, A., et al. (2003). Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clinic Proceedings, 78(1), 21–33.  https://doi.org/10.4065/78.1.21.PubMedCrossRefGoogle Scholar
  3. 3.
    National Cancer Institute (2016). SEER Cancer Statistics Review, 1975–2014, based on November 2016 SEER data submission, posted to the SEER web site, April 2017. Table 18.9, Myeloma, SEER relative survival (percent) by year of diagnosis, all races, males and females 2017. National Cancer Institute, Bethesda.Google Scholar
  4. 4.
    Kumar, S. K., Dispenzieri, A., Lacy, M. Q., Gertz, M. A., Buadi, F. K., Pandey, S., et al. (2014). Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia, 28(5), 1122–1128.  https://doi.org/10.1038/leu.2013.313.PubMedCrossRefGoogle Scholar
  5. 5.
    Pulte, D., Redaniel, M. T., Brenner, H., Jansen, L., & Jeffreys, M. (2014). Recent improvement in survival of patients with multiple myeloma: variation by ethnicity. Leukemia & Lymphoma, 55(5), 1083–1089.  https://doi.org/10.3109/10428194.2013.827188.CrossRefGoogle Scholar
  6. 6.
    Barlogie, B., Mitchell, A., van Rhee, F., Epstein, J., Morgan, G. J., & Crowley, J. (2014). Curing myeloma at last: defining criteria and providing the evidence. Blood, 124(20), 3043–3051.  https://doi.org/10.1182/blood-2014-07-552059.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Rollig, C., Knop, S., & Bornhauser, M. (2015). Multiple myeloma. Lancet, 385(9983), 2197–2208.  https://doi.org/10.1016/S0140-6736(14)60493-1.PubMedCrossRefGoogle Scholar
  8. 8.
    Larsen, J. T., & Kumar, S. (2015). Evolving paradigms in the management of multiple myeloma: novel agents and targeted therapies. Rare Cancers and Therapy, 3, 47–68.  https://doi.org/10.1007/s40487-015-0009-4.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Boudreault, J. S., Touzeau, C., & Moreau, P. (2017). Triplet combinations in relapsed/refractory myeloma: update on recent phase 3 trials. Expert Review of Hematology, 10(3), 207–215.  https://doi.org/10.1080/17474086.2017.1285694.PubMedCrossRefGoogle Scholar
  10. 10.
    Anderson, K. C. (2016). Progress and paradigms in multiple myeloma. Clinical Cancer Research, 22(22), 5419–5427.  https://doi.org/10.1158/1078-0432.CCR-16-0625.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sun, Z., Zheng, F., Wu, S., Liu, Y., Guo, H., & Liu, Y. (2017). Triplet versus doublet combination regimens for the treatment of relapsed or refractory multiple myeloma: a meta-analysis of phase III randomized controlled trials. Critical Reviews in Oncology/Hematology, 113, 249–255.  https://doi.org/10.1016/j.critrevonc.2017.03.018.PubMedCrossRefGoogle Scholar
  12. 12.
    Moreau, P., & de Wit, E. (2017). Recent progress in relapsed multiple myeloma therapy: implications for treatment decisions. British Journal of Haematology.  https://doi.org/10.1111/bjh.14780.
  13. 13.
    Musto, P., & Montefusco, V. (2016). Are maintenance and continuous therapies indicated for every patient with multiple myeloma? Expert Review of Hematology, 9(8), 743–751.  https://doi.org/10.1080/17474086.2016.1196127.PubMedCrossRefGoogle Scholar
  14. 14.
    Dimopoulos, M. A., Richardson, P. G., Moreau, P., & Anderson, K. C. (2015). Current treatment landscape for relapsed and/or refractory multiple myeloma. Nature Reviews. Clinical Oncology, 12(1), 42–54.  https://doi.org/10.1038/nrclinonc.2014.200.PubMedCrossRefGoogle Scholar
  15. 15.
    Manier, S., Salem, K. Z., Park, J., Landau, D. A., Getz, G., & Ghobrial, I. M. (2017). Genomic complexity of multiple myeloma and its clinical implications. Nature Reviews. Clinical Oncology, 14(2), 100–113.  https://doi.org/10.1038/nrclinonc.2016.122.PubMedCrossRefGoogle Scholar
  16. 16.
    Morgan, G. J., Walker, B. A., & Davies, F. E. (2012). The genetic architecture of multiple myeloma. Nature Reviews. Cancer, 12(5), 335–348.  https://doi.org/10.1038/nrc3257.PubMedCrossRefGoogle Scholar
  17. 17.
    Hideshima, T., & Anderson, K. C. (2012). Biologic impact of proteasome inhibition in multiple myeloma cells—from the aspects of preclinical studies. Seminars in Hematology, 49(3), 223–227.  https://doi.org/10.1053/j.seminhematol.2012.04.006.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chauhan, D., Bianchi, G., & Anderson, K. C. (2008). Targeting the UPS as therapy in multiple myeloma. BMC Biochem, 9(Suppl 1), S1.  https://doi.org/10.1186/1471-2091-9-S1-S1.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Adams, J. (2004). The proteasome: a suitable antineoplastic target. Nature Reviews. Cancer, 4(5), 349–360.  https://doi.org/10.1038/nrc1361.PubMedCrossRefGoogle Scholar
  20. 20.
    Adams, J. (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell, 5(5), 417–421.PubMedCrossRefGoogle Scholar
  21. 21.
    Burger, A. M., & Seth, A. K. (2004). The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. European Journal of Cancer, 40(15), 2217–2229.  https://doi.org/10.1016/j.ejca.2004.07.006.PubMedCrossRefGoogle Scholar
  22. 22.
    Hideshima, T., Chauhan, D., Kiziltepe, T., Ikeda, H., Okawa, Y., Podar, K., et al. (2009). Biologic sequelae of I{kappa}B kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood, 113(21), 5228–5236.  https://doi.org/10.1182/blood-2008-06-161505.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cottini, F., Guidetti, A., Paba Prada, C., Hideshima, T., Maglio, M., Varga, C., et al. (2014). Chapter 2: Resistance to proteasome inhibitors in multiple myeloma. In: Dou, Q.P. (ed). Resistance to Proteasome Inhibitors in Cancer, Resistance to Targeted Anti-Cancer Therapeutics. Springer International Publishing, Switzerland, 2014.  https://doi.org/10.1007/978-3-319-06752-0_2.
  24. 24.
    Kuhn, D. J., & Orlowski, R. Z. (2012). The immunoproteasome as a target in hematologic malignancies. Seminars in Hematology, 49(3), 258–262.  https://doi.org/10.1053/j.seminhematol.2012.04.003.PubMedCrossRefGoogle Scholar
  25. 25.
    Chauhan, D., Tian, Z., Zhou, B., Kuhn, D., Orlowski, R., Raje, N., et al. (2011). In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clinical Cancer Research, 17(16), 5311–5321.  https://doi.org/10.1158/1078-0432.CCR-11-0476.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Demo, S. D., Kirk, C. J., Aujay, M. A., Buchholz, T. J., Dajee, M., Ho, M. N., et al. (2007). Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Research, 67(13), 6383–6391.  https://doi.org/10.1158/0008-5472.CAN-06-4086.PubMedCrossRefGoogle Scholar
  27. 27.
    Kupperman, E., Lee, E. C., Cao, Y., Bannerman, B., Fitzgerald, M., Berger, A., et al. (2010). Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Research, 70(5), 1970–1980.  https://doi.org/10.1158/0008-5472.CAN-09-2766.PubMedCrossRefGoogle Scholar
  28. 28.
    Williamson, M. J., Blank, J. L., Bruzzese, F. J., Cao, Y., Daniels, J. S., Dick, L. R., et al. (2006). Comparison of biochemical and biological effects of ML858 (salinosporamide A) and bortezomib. Molecular Cancer Therapeutics, 5(12), 3052–3061.  https://doi.org/10.1158/1535-7163.MCT-06-0185.PubMedCrossRefGoogle Scholar
  29. 29.
    Chauhan, D., Catley, L., Li, G., Podar, K., Hideshima, T., Velankar, M., et al. (2005). A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell, 8(5), 407–419.  https://doi.org/10.1016/j.ccr.2005.10.013.PubMedCrossRefGoogle Scholar
  30. 30.
    Millennium Pharmaceuticals Inc. (2017). VELCADE® (bortezomib) for injection, for subcutaneous or intravenous use.Google Scholar
  31. 31.
    Onyx Pharmaceuticals Inc. (2017). KYPROLIS® (carfilzomib) for injection, for intravenous use.Google Scholar
  32. 32.
    Millennium Pharmaceuticals Inc. (2016). NINLARO® (ixazomib) capsules, for oral use.Google Scholar
  33. 33.
    Zhou, H. J., Aujay, M. A., Bennett, M. K., Dajee, M., Demo, S. D., Fang, Y., et al. (2009). Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). Journal of Medicinal Chemistry, 52(9), 3028–3038.  https://doi.org/10.1021/jm801329v.PubMedCrossRefGoogle Scholar
  34. 34.
    Orlowski, R. Z., Stinchcombe, T. E., Mitchell, B. S., Shea, T. C., Baldwin, A. S., Stahl, S., et al. (2002). Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. Journal of Clinical Oncology, 20(22), 4420–4427.  https://doi.org/10.1200/JCO.2002.01.133.PubMedCrossRefGoogle Scholar
  35. 35.
    Hideshima, T., Chauhan, D., Richardson, P., Mitsiades, C., Mitsiades, N., Hayashi, T., et al. (2002). NF-kappa B as a therapeutic target in multiple myeloma. The Journal of Biological Chemistry, 277(19), 16639–16647.  https://doi.org/10.1074/jbc.M200360200.PubMedCrossRefGoogle Scholar
  36. 36.
    Hideshima, T., Richardson, P., Chauhan, D., Palombella, V. J., Elliott, P. J., Adams, J., et al. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research, 61(7), 3071–3076.PubMedGoogle Scholar
  37. 37.
    LeBlanc, R., Catley, L. P., Hideshima, T., Lentzsch, S., Mitsiades, C. S., Mitsiades, N., et al. (2002). Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Research, 62(17), 4996–5000.PubMedGoogle Scholar
  38. 38.
    Mitsiades, N., Mitsiades, C. S., Poulaki, V., Chauhan, D., Fanourakis, G., Gu, X., et al. (2002). Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14374–14379.  https://doi.org/10.1073/pnas.202445099.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hideshima, T., Mitsiades, C., Akiyama, M., Hayashi, T., Chauhan, D., Richardson, P., et al. (2003). Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood, 101(4), 1530–1534.  https://doi.org/10.1182/blood-2002-08-2543.PubMedCrossRefGoogle Scholar
  40. 40.
    Roccaro, A. M., Hideshima, T., Raje, N., Kumar, S., Ishitsuka, K., Yasui, H., et al. (2006). Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Research, 66(1), 184–191.  https://doi.org/10.1158/0008-5472.CAN-05-1195.PubMedCrossRefGoogle Scholar
  41. 41.
    Chauhan, D., Singh, A. V., Ciccarelli, B., Richardson, P. G., Palladino, M. A., & Anderson, K. C. (2010). Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma. Blood, 115(4), 834–845.  https://doi.org/10.1182/blood-2009-03-213009.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kuhn, D. J., Chen, Q., Voorhees, P. M., Strader, J. S., Shenk, K. D., Sun, C. M., et al. (2007). Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood, 110(9), 3281–3290.  https://doi.org/10.1182/blood-2007-01-065888.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Matthews, G. M., de Matos Simoes, R., Dhimolea, E., Sheffer, M., Gandolfi, S., Dashevsky, O., et al. (2016). NF-kappaB dysregulation in multiple myeloma. Seminars in Cancer Biology, 39, 68–76.  https://doi.org/10.1016/j.semcancer.2016.08.005.PubMedCrossRefGoogle Scholar
  44. 44.
    Hideshima, T., Ikeda, H., Chauhan, D., Okawa, Y., Raje, N., Podar, K., et al. (2009). Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood, 114(5), 1046–1052.  https://doi.org/10.1182/blood-2009-01-199604.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mitsiades, N., Mitsiades, C. S., Poulaki, V., Chauhan, D., Richardson, P. G., Hideshima, T., et al. (2002). Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood, 99(11), 4079–4086.PubMedCrossRefGoogle Scholar
  46. 46.
    Hideshima, T., Richardson, P. G., & Anderson, K. C. (2011). Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Molecular Cancer Therapeutics, 10(11), 2034–2042.  https://doi.org/10.1158/1535-7163.MCT-11-0433.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mitsiades, N., Mitsiades, C. S., Richardson, P. G., Poulaki, V., Tai, Y. T., Chauhan, D., et al. (2003). The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood, 101(6), 2377–2380.  https://doi.org/10.1182/blood-2002-06-1768.PubMedCrossRefGoogle Scholar
  48. 48.
    Ma, M. H., Yang, H. H., Parker, K., Manyak, S., Friedman, J. M., Altamirano, C., et al. (2003). The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clinical Cancer Research, 9(3), 1136–1144.PubMedGoogle Scholar
  49. 49.
    Wang, M., Han, X. H., Zhang, L., Yang, J., Qian, J. F., Shi, Y. K., et al. (2008). Bortezomib is synergistic with rituximab and cyclophosphamide in inducing apoptosis of mantle cell lymphoma cells in vitro and in vivo. Leukemia, 22(1), 179–185.  https://doi.org/10.1038/sj.leu.2404959.PubMedCrossRefGoogle Scholar
  50. 50.
    Teicher, B. A., Ara, G., Herbst, R., Palombella, V. J., & Adams, J. (1999). The proteasome inhibitor PS-341 in cancer therapy. Clinical Cancer Research, 5(9), 2638–2645.PubMedGoogle Scholar
  51. 51.
    Sanchez, E., Li, M., Steinberg, J. A., Wang, C., Shen, J., Bonavida, B., et al. (2010). The proteasome inhibitor CEP-18770 enhances the anti-myeloma activity of bortezomib and melphalan. British Journal of Haematology, 148(4), 569–581.  https://doi.org/10.1111/j.1365-2141.2009.08008.x.PubMedCrossRefGoogle Scholar
  52. 52.
    Ashley, J. D., Quinlan, C. J., Schroeder, V. A., Suckow, M. A., Pizzuti, V. J., Kiziltepe, T., et al. (2016). Dual carfilzomib and doxorubicin-loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Molecular Cancer Therapeutics, 15(7), 1452–1459.  https://doi.org/10.1158/1535-7163.MCT-15-0867.PubMedCrossRefGoogle Scholar
  53. 53.
    Gu, J. J., Hernandez-Ilizaliturri, F. J., Mavis, C., Czuczman, N. M., Deeb, G., Gibbs, J., et al. (2013). MLN2238, a proteasome inhibitor, induces caspase-dependent cell death, cell cycle arrest, and potentiates the cytotoxic activity of chemotherapy agents in rituximab-chemotherapy-sensitive or rituximab-chemotherapy-resistant B-cell lymphoma preclinical models. Anti-Cancer Drugs, 24(10), 1030–1038.  https://doi.org/10.1097/CAD.0000000000000008.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Mitsiades, N., Mitsiades, C. S., Poulaki, V., Chauhan, D., Richardson, P. G., Hideshima, T., et al. (2002). Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood, 99(12), 4525–4530.PubMedCrossRefGoogle Scholar
  55. 55.
    Das, D. S., Ray, A., Song, Y., Richardson, P., Trikha, M., Chauhan, D., et al. (2015). Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD immunomodulatory drug pomalidomide. British Journal of Haematology, 171(5), 798–812.  https://doi.org/10.1111/bjh.13780.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Quach, H., Ritchie, D., Stewart, A. K., Neeson, P., Harrison, S., Smyth, M. J., et al. (2010). Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia, 24(1), 22–32.  https://doi.org/10.1038/leu.2009.236.PubMedCrossRefGoogle Scholar
  57. 57.
    Mishima, Y., Santo, L., Eda, H., Cirstea, D., Nemani, N., Yee, A. J., et al. (2015). Ricolinostat (ACY-1215) induced inhibition of aggresome formation accelerates carfilzomib-induced multiple myeloma cell death. British Journal of Haematology, 169(3), 423–434.  https://doi.org/10.1111/bjh.13315.PubMedCrossRefGoogle Scholar
  58. 58.
    Gao, L., Gao, M., Yang, G., Tao, Y., Kong, Y., Yang, R., et al. (2015). Synergistic activity of carfilzomib and panobinostat in multiple myeloma cells via modulation of ROS generation and ERK1/2. BioMed Research International, 2015, 459052.  https://doi.org/10.1155/2015/459052.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ocio, E. M., Vilanova, D., Atadja, P., Maiso, P., Crusoe, E., Fernandez-Lazaro, D., et al. (2010). In vitro and in vivo rationale for the triple combination of panobinostat (LBH589) and dexamethasone with either bortezomib or lenalidomide in multiple myeloma. Haematologica, 95(5), 794–803.  https://doi.org/10.3324/haematol.2009.015495.PubMedCrossRefGoogle Scholar
  60. 60.
    Hideshima, T., Bradner, J. E., Wong, J., Chauhan, D., Richardson, P., Schreiber, S. L., et al. (2005). Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 102(24), 8567–8572.  https://doi.org/10.1073/pnas.0503221102.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Catley, L., Weisberg, E., Kiziltepe, T., Tai, Y. T., Hideshima, T., Neri, P., et al. (2006). Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood, 108(10), 3441–3449.  https://doi.org/10.1182/blood-2006-04-016055.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Santo, L., Hideshima, T., Kung, A. L., Tseng, J. C., Tamang, D., Yang, M., et al. (2012). Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood, 119(11), 2579–2589.  https://doi.org/10.1182/blood-2011-10-387365.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hideshima, T., Chauhan, D., Ishitsuka, K., Yasui, H., Raje, N., Kumar, S., et al. (2005). Molecular characterization of PS-341 (bortezomib) resistance: implications for overcoming resistance using lysophosphatidic acid acyltransferase (LPAAT)-beta inhibitors. Oncogene, 24(19), 3121–3129.  https://doi.org/10.1038/sj.onc.1208522.PubMedCrossRefGoogle Scholar
  64. 64.
    Hideshima, T., Qi, J., Paranal, R. M., Tang, W., Greenberg, E., West, N., et al. (2016). Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 113(46), 13162–13167.  https://doi.org/10.1073/pnas.1608067113.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Shah, S. P., Lonial, S., & Boise, L. H. (2015). When cancer fights back: multiple myeloma, proteasome inhibition, and the heat-shock response. Molecular Cancer Research, 13(8), 1163–1173.  https://doi.org/10.1158/1541-7786.MCR-15-0135.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Chauhan, D., Li, G., Shringarpure, R., Podar, K., Ohtake, Y., Hideshima, T., et al. (2003). Blockade of Hsp27 overcomes bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Research, 63(19), 6174–6177.PubMedGoogle Scholar
  67. 67.
    Mitsiades, C. S., Mitsiades, N. S., McMullan, C. J., Poulaki, V., Kung, A. L., Davies, F. E., et al. (2006). Antimyeloma activity of heat shock protein-90 inhibition. Blood, 107(3), 1092–1100.  https://doi.org/10.1182/blood-2005-03-1158.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ling, S. C., Lau, E. K., Al-Shabeeb, A., Nikolic, A., Catalano, A., Iland, H., et al. (2012). Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica, 97(1), 64–72.  https://doi.org/10.3324/haematol.2011.043331.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Niewerth, D., Jansen, G., Assaraf, Y. G., Zweegman, S., Kaspers, G. J., & Cloos, J. (2015). Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resistance Updates, 18, 18–35.  https://doi.org/10.1016/j.drup.2014.12.001.PubMedCrossRefGoogle Scholar
  70. 70.
    Jagannathan, S., Abdel-Malek, M. A., Malek, E., Vad, N., Latif, T., Anderson, K. C., et al. (2015). Pharmacologic screens reveal metformin that suppresses GRP78-dependent autophagy to enhance the anti-myeloma effect of bortezomib. Leukemia, 29(11), 2184–2191.  https://doi.org/10.1038/leu.2015.157.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Fristedt Duvefelt, C., Lub, S., Agarwal, P., Arngarden, L., Hammarberg, A., Maes, K., et al. (2015). Increased resistance to proteasome inhibitors in multiple myeloma mediated by cIAP2—implications for a combinatorial treatment. Oncotarget, 6(24), 20621–20635.  10.18632/oncotarget.4139.PubMedCrossRefGoogle Scholar
  72. 72.
    Zaal, E. A., Wu, W., Jansen, G., Zweegman, S., Cloos, J., & Berkers, C. R. (2017). Bortezomib resistance in multiple myeloma is associated with increased serine synthesis. Cancer & Metabolism, 5, 7.  https://doi.org/10.1186/s40170-017-0169-9.CrossRefGoogle Scholar
  73. 73.
    Muz, B., Kusdono, H. D., Azab, F., de la Puente, P., Federico, C., Fiala, M., et al. (2017). Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance. Leukemia & Lymphoma, 58(12), 2916–2925.  https://doi.org/10.1080/10428194.2017.1319052.CrossRefGoogle Scholar
  74. 74.
    Besse, A., Stolze, S. C., Rasche, L., Weinhold, N., Morgan, G. J., Kraus, M., et al. (2017). Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma. Leukemia.  https://doi.org/10.1038/leu.2017.212.
  75. 75.
    Soriano, G. P., Besse, L., Li, N., Kraus, M., Besse, A., Meeuwenoord, N., et al. (2016). Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia, 30(11), 2198–2207.  https://doi.org/10.1038/leu.2016.102.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Qiang, Y. W., Ye, S., Chen, Y., Buros, A. F., Edmonson, R., van Rhee, F., et al. (2016). MAF protein mediates innate resistance to proteasome inhibition therapy in multiple myeloma. Blood, 128(25), 2919–2930.  https://doi.org/10.1182/blood-2016-03-706077.PubMedCrossRefGoogle Scholar
  77. 77.
    Dytfeld, D., Luczak, M., Wrobel, T., Usnarska-Zubkiewicz, L., Brzezniakiewicz, K., Jamroziak, K., et al. (2016). Comparative proteomic profiling of refractory/relapsed multiple myeloma reveals biomarkers involved in resistance to bortezomib-based therapy. Oncotarget, 7(35), 56726–56736.  10.18632/oncotarget.11059.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mitra, A. K., Harding, T., Mukherjee, U. K., Jang, J. S., Li, Y., HongZheng, R., et al. (2017). A gene expression signature distinguishes innate response and resistance to proteasome inhibitors in multiple myeloma. Blood Cancer Journal, 7(6), e581.  https://doi.org/10.1038/bcj.2017.56.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Harousseau, J. L., Attal, M., Avet-Loiseau, H., Marit, G., Caillot, D., Mohty, M., et al. (2010). Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 phase III trial. Journal of Clinical Oncology, 28(30), 4621–4629.  https://doi.org/10.1200/JCO.2009.27.9158.PubMedCrossRefGoogle Scholar
  80. 80.
    Cavo, M., Tacchetti, P., Patriarca, F., Petrucci, M. T., Pantani, L., Galli, M., et al. (2010). Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet, 376(9758), 2075–2085.  https://doi.org/10.1016/S0140-6736(10)61424-9.PubMedCrossRefGoogle Scholar
  81. 81.
    Sonneveld, P., Schmidt-Wolf, I. G., van der Holt, B., El Jarari, L., Bertsch, U., Salwender, H., et al. (2012). Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/GMMG-HD4 trial. Journal of Clinical Oncology, 30(24), 2946–2955.  https://doi.org/10.1200/JCO.2011.39.6820.PubMedCrossRefGoogle Scholar
  82. 82.
    Sonneveld, P., Salwender, J.-J., Van Der Holt, B., el Jarari, L., Bertsch, U., Blau, I. W., et al. (2015). Bortezomib induction and maintenance in patients with newly diagnosed multiple myeloma: long-term follow-up of the HOVON-65/GMMG-HD4 trial. Blood, 126(23), 27.Google Scholar
  83. 83.
    Rosinol, L., Oriol, A., Teruel, A. I., Hernandez, D., Lopez-Jimenez, J., de la Rubia, J., et al. (2012). Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood, 120(8), 1589–1596.  https://doi.org/10.1182/blood-2012-02-408922.PubMedCrossRefGoogle Scholar
  84. 84.
    Moreau, P., Avet-Loiseau, H., Facon, T., Attal, M., Tiab, M., Hulin, C., et al. (2011). Bortezomib plus dexamethasone versus reduced-dose bortezomib, thalidomide plus dexamethasone as induction treatment before autologous stem cell transplantation in newly diagnosed multiple myeloma. Blood, 118(22), 5752–5758.  https://doi.org/10.1182/blood-2011-05-355081.PubMedCrossRefGoogle Scholar
  85. 85.
    Moreau, P., Hulin, C., Macro, M., Caillot, D., Chaleteix, C., Roussel, M., et al. (2016). VTD is superior to VCD prior to intensive therapy in multiple myeloma: results of the prospective IFM2013-04 trial. Blood, 127(21), 2569–2574.  https://doi.org/10.1182/blood-2016-01-693580.PubMedCrossRefGoogle Scholar
  86. 86.
    Attal, M., Lauwers-Cances, V., Hulin, C., Leleu, X., Caillot, D., Escoffre, M., et al. (2017). Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. The New England Journal of Medicine, 376(14), 1311–1320.  https://doi.org/10.1056/NEJMoa1611750.PubMedCrossRefGoogle Scholar
  87. 87.
    San Miguel, J. F., Schlag, R., Khuageva, N. K., Dimopoulos, M. A., Shpilberg, O., Kropff, M., et al. (2008). Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. The New England Journal of Medicine, 359(9), 906–917.  https://doi.org/10.1056/NEJMoa0801479.PubMedCrossRefGoogle Scholar
  88. 88.
    San Miguel, J. F., Schlag, R., Khuageva, N. K., Dimopoulos, M. A., Shpilberg, O., Kropff, M., et al. (2013). Persistent overall survival benefit and no increased risk of second malignancies with bortezomib-melphalan-prednisone versus melphalan-prednisone in patients with previously untreated multiple myeloma. Journal of Clinical Oncology, 31(4), 448–455.  https://doi.org/10.1200/JCO.2012.41.6180.PubMedCrossRefGoogle Scholar
  89. 89.
    Palumbo, A., Bringhen, S., Rossi, D., Cavalli, M., Larocca, A., Ria, R., et al. (2010). Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: a randomized controlled trial. Journal of Clinical Oncology, 28(34), 5101–5109.  https://doi.org/10.1200/JCO.2010.29.8216.PubMedCrossRefGoogle Scholar
  90. 90.
    Mateos, M. V., Oriol, A., Martinez-Lopez, J., Gutierrez, N., Teruel, A. I., de Paz, R., et al. (2010). Bortezomib, melphalan, and prednisone versus bortezomib, thalidomide, and prednisone as induction therapy followed by maintenance treatment with bortezomib and thalidomide versus bortezomib and prednisone in elderly patients with untreated multiple myeloma: a randomised trial. The Lancet Oncology, 11(10), 934–941.  https://doi.org/10.1016/S1470-2045(10)70187-X.PubMedCrossRefGoogle Scholar
  91. 91.
    Mateos, M. V., Oriol, A., Martinez-Lopez, J., Teruel, A. I., Lopez de la Guia, A., Lopez, J., et al. (2014). GEM2005 trial update comparing VMP/VTP as induction in elderly multiple myeloma patients: do we still need alkylators? Blood, 124(12), 1887–1893.  https://doi.org/10.1182/blood-2014-05-573733.PubMedCrossRefGoogle Scholar
  92. 92.
    Niesvizky, R., Flinn, I. W., Rifkin, R., Gabrail, N., Charu, V., Clowney, B., et al. (2015). Community-based phase IIIB trial of three UPFRONT bortezomib-based myeloma regimens. Journal of Clinical Oncology, 33(33), 3921–3929.  https://doi.org/10.1200/JCO.2014.58.7618.PubMedCrossRefGoogle Scholar
  93. 93.
    Durie, B. G., Hoering, A., Abidi, M. H., Rajkumar, S. V., Epstein, J., Kahanic, S. P., et al. (2017). Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet, 389(10068), 519–527.  https://doi.org/10.1016/S0140-6736(16)31594-X.PubMedCrossRefGoogle Scholar
  94. 94.
    Facon, T., Lee, J. H., Moreau, P., Niesvizky, R., Dimopoulos, M. A., Hajek, R., et al. (2017). Phase 3 study (CLARION) of carfilzomib, melphalan, prednisone (KMP) v bortezomib, melphalan, prednisone (VMP) in newly diagnosed multiple myeloma (NDMM). Clinical Lymphoma, Myeloma & Leukemia, 17(1), e26–e27.CrossRefGoogle Scholar
  95. 95.
    Richardson, P. G., Sonneveld, P., Schuster, M., Irwin, D., Stadtmauer, E., Facon, T., et al. (2007). Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood, 110(10), 3557–3560.  https://doi.org/10.1182/blood-2006-08-036947.PubMedCrossRefGoogle Scholar
  96. 96.
    Richardson, P. G., Sonneveld, P., Schuster, M. W., Irwin, D., Stadtmauer, E. A., Facon, T., et al. (2005). Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. The New England Journal of Medicine, 352(24), 2487–2498.  https://doi.org/10.1056/NEJMoa043445.PubMedCrossRefGoogle Scholar
  97. 97.
    Moreau, P., Pylypenko, H., Grosicki, S., Karamanesht, I., Leleu, X., Grishunina, M., et al. (2011). Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. The Lancet Oncology, 12(5), 431–440.  https://doi.org/10.1016/S1470-2045(11)70081-X.PubMedCrossRefGoogle Scholar
  98. 98.
    Arnulf, B., Pylypenko, H., Grosicki, S., Karamanesht, I., Leleu, X., van de Velde, H., et al. (2012). Updated survival analysis of a randomized phase III study of subcutaneous versus intravenous bortezomib in patients with relapsed multiple myeloma. Haematologica, 97(12), 1925–1928.  https://doi.org/10.3324/haematol.2012.067793.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Orlowski, R. Z., Nagler, A., Sonneveld, P., Blade, J., Hajek, R., Spencer, A., et al. (2007). Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. Journal of Clinical Oncology, 25(25), 3892–3901.  https://doi.org/10.1200/JCO.2006.10.5460.PubMedCrossRefGoogle Scholar
  100. 100.
    Orlowski, R. Z., Nagler, A., Sonneveld, P., Blade, J., Hajek, R., Spencer, A., et al. (2016). Final overall survival results of a randomized trial comparing bortezomib plus pegylated liposomal doxorubicin with bortezomib alone in patients with relapsed or refractory multiple myeloma. Cancer, 122(13), 2050–2056.  https://doi.org/10.1002/cncr.30026.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Garderet, L., Iacobelli, S., Moreau, P., Dib, M., Lafon, I., Niederwieser, D., et al. (2012). Superiority of the triple combination of bortezomib-thalidomide-dexamethasone over the dual combination of thalidomide-dexamethasone in patients with multiple myeloma progressing or relapsing after autologous transplantation: the MMVAR/IFM 2005-04 Randomized Phase III Trial from the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Journal of Clinical Oncology, 30(20), 2475–2482.  https://doi.org/10.1200/JCO.2011.37.4918.PubMedCrossRefGoogle Scholar
  102. 102.
    Palumbo, A., Chanan-Khan, A., Weisel, K., Nooka, A. K., Masszi, T., Beksac, M., et al. (2016). Daratumumab, bortezomib, and dexamethasone for multiple myeloma. The New England Journal of Medicine, 375(8), 754–766.  https://doi.org/10.1056/NEJMoa1606038.PubMedCrossRefGoogle Scholar
  103. 103.
    San-Miguel, J. F., Hungria, V. T., Yoon, S. S., Beksac, M., Dimopoulos, M. A., Elghandour, A., et al. (2014). Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. The Lancet Oncology, 15(11), 1195–1206.  https://doi.org/10.1016/S1470-2045(14)70440-1.PubMedCrossRefGoogle Scholar
  104. 104.
    San-Miguel, J. F., Hungria, V. T., Yoon, S. S., Beksac, M., Dimopoulos, M. A., Elghandour, A., et al. (2016). Overall survival of patients with relapsed multiple myeloma treated with panobinostat or placebo plus bortezomib and dexamethasone (the PANORAMA 1 trial): a randomised, placebo-controlled, phase 3 trial. The Lancet. Haematology, 3(11), e506–e515.  https://doi.org/10.1016/S2352-3026(16)30147-8.PubMedCrossRefGoogle Scholar
  105. 105.
    Stewart, A. K., Rajkumar, S. V., Dimopoulos, M. A., Masszi, T., Spicka, I., Oriol, A., et al. (2015). Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. The New England Journal of Medicine, 372(2), 142–152.  https://doi.org/10.1056/NEJMoa1411321 PubMedCrossRefGoogle Scholar
  106. 106.
    Amgen (2017). Second phase 3 study shows KYPROLIS® (carfilzomib) regimen significantly improves overall survival in patients with relapsed multiple myeloma (Vol. News release). http://www.amgen.com/en-gb/media/news-releases/2017/07/second-phase-3-study-shows-kyprolis-carfilzomib-regimen-significantly-improves-overall-survival-in-patients-with-relapsed-multiple-myeloma/:Amgen
  107. 107.
    Dimopoulos, M. A., Moreau, P., Palumbo, A., Joshua, D., Pour, L., Hajek, R., et al. (2016). Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. The Lancet Oncology, 17(1), 27–38.  https://doi.org/10.1016/S1470-2045(15)00464-7.PubMedCrossRefGoogle Scholar
  108. 108.
    Siegel, D. S., Oriol, A., Rajnics, P., Minarik, J., Hungria, V., Lee, J. H., et al. (2017). Updated results from ASPIRE and ENDEAVOR, randomized, open-label, multicenter phase 3 studies of carfilzomib in patients (pts) with relapsed/refractory multiple myeloma (RRMM). Proceedings of the 2017 International Myeloma Workshop (IMW), 16th IMW(abstract PS-254), e211–e212.Google Scholar
  109. 109.
    Hajek, R., Masszi, T., Petrucci, M. T., Palumbo, A., Rosinol, L., Nagler, A., et al. (2017). A randomized phase III study of carfilzomib vs low-dose corticosteroids with optional cyclophosphamide in relapsed and refractory multiple myeloma (FOCUS). Leukemia, 31(1), 107–114.  https://doi.org/10.1038/leu.2016.176.PubMedCrossRefGoogle Scholar
  110. 110.
    Moreau, P., Masszi, T., Grzasko, N., Bahlis, N. J., Hansson, M., Pour, L., et al. (2016). Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. The New England Journal of Medicine, 374(17), 1621–1634.  https://doi.org/10.1056/NEJMoa1516282.PubMedCrossRefGoogle Scholar
  111. 111.
    Kumar, S., Flinn, I., Richardson, P. G., Hari, P., Callander, N., Noga, S. J., et al. (2012). Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood, 119(19), 4375–4382.  https://doi.org/10.1182/blood-2011-11-395749.PubMedCrossRefGoogle Scholar
  112. 112.
    Reeder, C. B., Reece, D. E., Kukreti, V., Chen, C., Trudel, S., Laumann, K., et al. (2010). Once- versus twice-weekly bortezomib induction therapy with CyBorD in newly diagnosed multiple myeloma. Blood, 115(16), 3416–3417.  https://doi.org/10.1182/blood-2010-02-271676.PubMedCrossRefGoogle Scholar
  113. 113.
    Reeder, C. B., Reece, D. E., Kukreti, V., Mikhael, J. R., Chen, C., Trudel, S., et al. (2014). Long-term survival with cyclophosphamide, bortezomib and dexamethasone induction therapy in patients with newly diagnosed multiple myeloma. British Journal of Haematology, 167(4), 563–565.  https://doi.org/10.1111/bjh.13004.PubMedCrossRefGoogle Scholar
  114. 114.
    Jakubowiak, A. J., Dytfeld, D., Griffith, K. A., Lebovic, D., Vesole, D. H., Jagannath, S., et al. (2012). A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood, 120(9), 1801–1809.  https://doi.org/10.1182/blood-2012-04-422683.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Sonneveld, P., Asselbergs, E., Zweegman, S., van der Holt, B., Kersten, M. J., Vellenga, E., et al. (2015). Phase 2 study of carfilzomib, thalidomide, and dexamethasone as induction/consolidation therapy for newly diagnosed multiple myeloma. Blood, 125(3), 449–456.  https://doi.org/10.1182/blood-2014-05-576256.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Bringhen, S., Petrucci, M. T., Larocca, A., Conticello, C., Rossi, D., Magarotto, V., et al. (2014). Carfilzomib, cyclophosphamide, and dexamethasone in patients with newly diagnosed multiple myeloma: a multicenter, phase 2 study. Blood, 124(1), 63–69.  https://doi.org/10.1182/blood-2014-03-563759.PubMedCrossRefGoogle Scholar
  117. 117.
    Moreau, P., Hulin, C., Caillot, D., Marit, G., Perrot, A., Garderet, L., et al. (2016). Ixazomib-lenalidomide-dexamethasone (IRd) combination before and after autologous stem cell transplantation (ASCT) followed by Ixazomib maintenance in patients with newly diagnosed multiple myeloma (NDMM): a phase 2 study from the Intergroupe Francophone Du MyéLome (IFM). Blood, 128(22), 674.Google Scholar
  118. 118.
    Kumar, S. K., Berdeja, J. G., Niesvizky, R., Lonial, S., Laubach, J. P., Hamadani, M., et al. (2014). Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. The Lancet Oncology, 15(13), 1503–1512.  https://doi.org/10.1016/S1470-2045(14)71125-8.PubMedCrossRefGoogle Scholar
  119. 119.
    San Miguel, J., Echeveste Gutierrez, M. A., Špicka, I., Mateos, M.-V., Song, K., Craig, M., et al. (2017). The oral proteasome inhibitor ixazomib in combination with melphalan-prednisone for patients with newly diagnosed multiple myeloma: phase 1/2 dose-escalation study (NCT01335685). Haematologica, 102(s2), 102–103.Google Scholar
  120. 120.
    Dimopoulos, M. A., Grosicki, S., Jędrzejczak, W., Nahi, H., Gruber, A., Hansson, M., et al. (2017). An open-label, phase 2 study to evaluate the oral combination of ixazomib, cyclophosphamide and dexamethasone in transplant-eligible patients with newly diagnosed multiple myeloma. Haematologica, 102(s2), 111.Google Scholar
  121. 121.
    Dimopoulos, M. A., Orlowski, R. Z., Facon, T., Sonneveld, P., Anderson, K. C., Beksac, M., et al. (2015). Retrospective matched-pairs analysis of bortezomib plus dexamethasone versus bortezomib monotherapy in relapsed multiple myeloma. Haematologica, 100(1), 100–106.  https://doi.org/10.3324/haematol.2014.112037.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Richardson, P. G., Xie, W., Jagannath, S., Jakubowiak, A., Lonial, S., Raje, N. S., et al. (2014). A phase 2 trial of lenalidomide, bortezomib, and dexamethasone in patients with relapsed and relapsed/refractory myeloma. Blood, 123(10), 1461–1469.  https://doi.org/10.1182/blood-2013-07-517276.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Paludo, J., Mikhael, J. R., LaPlant, B. R., Halvorson, A. E., Kumar, S., Gertz, M. A., et al. (2017). Pomalidomide, bortezomib and dexamethasone (PVD) for patients with relapsed, lenalidomide refractory multiple myeloma. Blood.  https://doi.org/10.1182/blood-2017-05-782961.
  124. 124.
    Richardson, P. G., Hofmeister, C. C., Raje, N. S., Siegel, D. S., Lonial, S., Laubach, J., et al. (2017). Pomalidomide, bortezomib and low-dose dexamethasone in lenalidomide-refractory and proteasome inhibitor-exposed myeloma. Leukemia.  https://doi.org/10.1038/leu.2017.173.
  125. 125.
    de Waal, E. G., de Munck, L., Hoogendoorn, M., Woolthuis, G., van der Velden, A., Tromp, Y., et al. (2015). Combination therapy with bortezomib, continuous low-dose cyclophosphamide and dexamethasone followed by one year of maintenance treatment for relapsed multiple myeloma patients. British Journal of Haematology, 171(5), 720–725.  https://doi.org/10.1111/bjh.13653.PubMedCrossRefGoogle Scholar
  126. 126.
    Ludwig, H., Kasparu, H., Leitgeb, C., Rauch, E., Linkesch, W., Zojer, N., et al. (2014). Bendamustine-bortezomib-dexamethasone is an active and well-tolerated regimen in patients with relapsed or refractory multiple myeloma. Blood, 123(7), 985–991.  https://doi.org/10.1182/blood-2013-08-521468.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Jakubowiak, A., Offidani, M., Pegourie, B., De La Rubia, J., Garderet, L., Laribi, K., et al. (2016). Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. Blood, 127(23), 2833–2840.  https://doi.org/10.1182/blood-2016-01-694604.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Siegel, D. S., Martin, T., Wang, M., Vij, R., Jakubowiak, A. J., Lonial, S., et al. (2012). A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood, 120(14), 2817–2825.  https://doi.org/10.1182/blood-2012-05-425934.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Vij, R., Wang, M., Kaufman, J. L., Lonial, S., Jakubowiak, A. J., Stewart, A. K., et al. (2012). An open-label, single-arm, phase 2 (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood, 119(24), 5661–5670.  https://doi.org/10.1182/blood-2012-03-414359.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Shah, J. J., Stadtmauer, E. A., Abonour, R., Cohen, A. D., Bensinger, W. I., Gasparetto, C., et al. (2015). Carfilzomib, pomalidomide, and dexamethasone for relapsed or refractory myeloma. Blood, 126(20), 2284–2290.  https://doi.org/10.1182/blood-2015-05-643320.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Bringhen, S., Oliva, S., Liberati, A. M., Belotti, A., Larocca, A., Bonello, F., et al. (2017). Carfilzomib, pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma patients: a multicenter, open-label, phase 1/2 study. Clinical Lymphoma, Myeloma & Leukemia, 17(1 Suppl), e59.CrossRefGoogle Scholar
  132. 132.
    Gramatzki, M., Günther, A., Offidani, M., Engelhardt, M., Corradini, P., Gentili, S., et al. (2016). Carfilzomib in combination with bendamustine and dexamethasone (CBd) in relapsed and/or refractory patients with multiple myeloma: the phase I/II EMN09 study. Blood, 128(22), 3334.Google Scholar
  133. 133.
    Kumar, S. K., LaPlant, B., Roy, V., Reeder, C. B., Lacy, M. Q., Gertz, M. A., et al. (2015). Phase 2 trial of ixazomib in patients with relapsed multiple myeloma not refractory to bortezomib. Blood Cancer Journal, 5, e338.  https://doi.org/10.1038/bcj.2015.60.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kumar, S. K., LaPlant, B. R., Reeder, C. B., Roy, V., Halvorson, A. E., Buadi, F., et al. (2016). Randomized phase 2 trial of ixazomib and dexamethasone in relapsed multiple myeloma not refractory to bortezomib. Blood, 128(20), 2415–2422.  https://doi.org/10.1182/blood-2016-05-717769.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ludwig, H., Poenisch, W., Knop, S., Schreder, M., Lechner, D., Hajek, R., et al. (2017). All oral combination of ixazomib plus thalidomide and dexamethasone for relapsed or refractory multiple myeloma: interim data of an ongoing phase II trial. Haematologica, 102(s2), 110.Google Scholar
  136. 136.
    Krishnan, A., Kapoor, P., Palmer, J., Tsai, N.-C., Kumar, S., Lonial, S., et al. (2016). A phase I/II trial of ixazomib (Ix), pomalidomide (POM), and dexamethasone (DEX), in relapsed/refractory (R/R) multiple myeloma (MM) patients: responses in double/triple refractory myeloma and poor risk cytogenetics. Blood, 128(22), 3316.Google Scholar
  137. 137.
    Kumar, S., Grzasko, N., Delimpasi, S., Jędrzejczak, W. W., Grosicki, S., Kyrtsonis, M.-C., et al. (2016). Phase 2 study of the all-oral combination of ixazomib plus cyclophosphamide and low-dose dexamethasone (ICd) in patients (Pts) with relapsed/refractory multiple myeloma (RRMM). Blood, 128(22), 3327.Google Scholar
  138. 138.
    Ghobrial, I. M., Savona, M. R., Vij, R., Siegel, D. S., Badros, A., Kaufman, J. L., et al. (2016). Final results from a multicenter, open-label, dose-escalation phase 1b/2 study of single-agent oprozomib in patients with hematologic malignancies. Blood, 128(22), 2110.Google Scholar
  139. 139.
    Shah, J., Niesvizky, R., Stadtmauer, E., Rifkin, R. M., Berenson, J., Berdeja, J. G., et al. (2015). Oprozomib, pomalidomide, and dexamethasone (OPomd) in patients (pts) with relapsed and/or refractory multiple myeloma (RRMM): initial results of a phase 1b study (NCT01999335). Blood, 126(23), 378.Google Scholar
  140. 140.
    Richardson, P. G., Zimmerman, T. M., Hofmeister, C. C., Talpaz, M., Chanan-Khan, A. A., Kaufman, J. L., et al. (2016). Phase 1 study of marizomib in relapsed or relapsed and refractory multiple myeloma: NPI-0052-101 part 1. Blood, 127(22), 2693–2700.  https://doi.org/10.1182/blood-2015-12-686378.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Harrison, S. J., Mainwaring, P., Price, T., Millward, M. J., Padrik, P., Underhill, C. R., et al. (2016). Phase I clinical trial of marizomib (NPI-0052) in patients with advanced malignancies including multiple myeloma: study NPI-0052-102 final results. Clinical Cancer Research, 22(18), 4559–4566.  https://doi.org/10.1158/1078-0432.CCR-15-2616.PubMedCrossRefGoogle Scholar
  142. 142.
    Spencer, A., Harrison, S., Laubach, J. P., Zonder, J., Badros, A. Z., Bergin, K., et al. (2016). Pmd-107: marizomib, pomalidomide and low dose-dexamethasone combination study in relapsed/refractory multiple myeloma (NCT02103335): full enrollment results from a phase-1 multicenter, open label study. Blood, 128(22), 3326.Google Scholar
  143. 143.
    Richardson, P. G., Barlogie, B., Berenson, J., Singhal, S., Jagannath, S., Irwin, D., et al. (2003). A phase 2 study of bortezomib in relapsed, refractory myeloma. The New England Journal of Medicine, 348(26), 2609–2617.  https://doi.org/10.1056/NEJMoa030288.PubMedCrossRefGoogle Scholar
  144. 144.
    Vij, R., Siegel, D. S., Jagannath, S., Jakubowiak, A. J., Stewart, A. K., McDonagh, K., et al. (2012). An open-label, single-arm, phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. British Journal of Haematology, 158(6), 739–748.  https://doi.org/10.1111/j.1365-2141.2012.09232.x.PubMedCrossRefGoogle Scholar
  145. 145.
    Richardson, P. G., Baz, R., Wang, M., Jakubowiak, A. J., Laubach, J. P., Harvey, R. D., et al. (2014). Phase 1 study of twice-weekly ixazomib, an oral proteasome inhibitor, in relapsed/refractory multiple myeloma patients. Blood, 124(7), 1038–1046.  https://doi.org/10.1182/blood-2014-01-548826.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kumar, S. K., Bensinger, W. I., Zimmerman, T. M., Reeder, C. B., Berenson, J. R., Berg, D., et al. (2014). Phase 1 study of weekly dosing with the investigational oral proteasome inhibitor ixazomib in relapsed/refractory multiple myeloma. Blood, 124(7), 1047–1055.  https://doi.org/10.1182/blood-2014-01-548941.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kortuem, K. M., & Stewart, A. K. (2013). Carfilzomib. Blood, 121(6), 893–897.  https://doi.org/10.1182/blood-2012-10-459883.PubMedCrossRefGoogle Scholar
  148. 148.
    Richardson, P. G., Xie, W., Mitsiades, C., Chanan-Khan, A. A., Lonial, S., Hassoun, H., et al. (2009). Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. Journal of Clinical Oncology, 27(21), 3518–3525.  https://doi.org/10.1200/JCO.2008.18.3087.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Mellqvist, U. H., Gimsing, P., Hjertner, O., Lenhoff, S., Laane, E., Remes, K., et al. (2013). Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma: a Nordic Myeloma Study Group randomized phase 3 trial. Blood, 121(23), 4647–4654.  https://doi.org/10.1182/blood-2012-11-464503.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Jagannath, S., Richardson, P. G., Barlogie, B., Berenson, J. R., Singhal, S., Irwin, D., et al. (2006). Bortezomib in combination with dexamethasone for the treatment of patients with relapsed and/or refractory multiple myeloma with less than optimal response to bortezomib alone. Haematologica, 91(7), 929–934.PubMedGoogle Scholar
  151. 151.
    Kumar, S. K., Callander, N. S., Alsina, M., Atanackovic, D., Biermann, J. S., Chandler, J. C., et al. (2017). Multiple myeloma, version 3.2017, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network, 15(2), 230–269.PubMedCrossRefGoogle Scholar
  152. 152.
    Mikhael, J. R., Belch, A. R., Prince, H. M., Lucio, M. N., Maiolino, A., Corso, A., et al. (2009). High response rate to bortezomib with or without dexamethasone in patients with relapsed or refractory multiple myeloma: results of a global phase 3b expanded access program. British Journal of Haematology, 144(2), 169–175.  https://doi.org/10.1111/j.1365-2141.2008.07409.x.PubMedCrossRefGoogle Scholar
  153. 153.
    Richardson, P. G., Weller, E., Lonial, S., Jakubowiak, A. J., Jagannath, S., Raje, N. S., et al. (2010). Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood, 116(5), 679–686.  https://doi.org/10.1182/blood-2010-02-268862.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Benboubker, L., Dimopoulos, M. A., Dispenzieri, A., Catalano, J., Belch, A. R., Cavo, M., et al. (2014). Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. The New England Journal of Medicine, 371(10), 906–917.  https://doi.org/10.1056/NEJMoa1402551.PubMedCrossRefGoogle Scholar
  155. 155.
    Dytfeld, D., Jasielec, J., Griffith, K. A., Lebovic, D., Vesole, D. H., Jagannath, S., et al. (2014). Carfilzomib, lenalidomide, and low-dose dexamethasone in elderly patients with newly diagnosed multiple myeloma. Haematologica, 99(9), e162–e164.  https://doi.org/10.3324/haematol.2014.110395.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Avet-Loiseau, H., Fonseca, R., Siegel, D., Dimopoulos, M. A., Spicka, I., Masszi, T., et al. (2016). Carfilzomib significantly improves the progression-free survival of high-risk patients in multiple myeloma. Blood, 128(9), 1174–1180.  https://doi.org/10.1182/blood-2016-03-707596.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Dimopoulos, M. A., Stewart, A. K., Masszi, T., Spicka, I., Oriol, A., Hajek, R., et al. (2017). Carfilzomib, lenalidomide, and dexamethasone in patients with relapsed multiple myeloma categorised by age: secondary analysis from the phase 3 ASPIRE study. British Journal of Haematology, 177(3), 404–413.  https://doi.org/10.1111/bjh.14549.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Dimopoulos, M. A., Stewart, A. K., Masszi, T., Spicka, I., Oriol, A., Hajek, R., et al. (2017). Carfilzomib-lenalidomide-dexamethasone vs lenalidomide-dexamethasone in relapsed multiple myeloma by previous treatment. Blood Cancer Journal, 7(4), e554.  https://doi.org/10.1038/bcj.2017.31.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Mateos, M. V., Masszi, T., Grzasko, N., Hansson, M., Sandhu, I., Pour, L., et al. (2016). Efficacy and safety of oral ixazomib-lenalidomide-dexamethasone (IRd) vs placebo-Rd in relapsed/refractory multiple myeloma patients: impact of prior therapy in the phase 3 TOURMALINE-MM1 study. Haematologica, 101(s1), 527.Google Scholar
  160. 160.
    Avet-Loiseau, J., Bahlis, N., Chng, W. J., Masszi, T., Viterbo, L., Pour, L., et al. (2016). Impact of cytogenetic risk status on efficacy and safety of ixaozmib-lenalidomide-dexamethasone (IRd) vs placebo-Rd in relapsed/refractory multiple myeloma patients in the global TOURMALINE-MM1 study. Haematologica, 101(s1), 80.Google Scholar
  161. 161.
    Sonneveld, P., Avet-Loiseau, H., Lonial, S., Usmani, S., Siegel, D., Anderson, K. C., et al. (2016). Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. Blood, 127(24), 2955–2962.  https://doi.org/10.1182/blood-2016-01-631200.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Lacy, M. Q., & McCurdy, A. R. (2013). Pomalidomide. Blood, 122(14), 2305–2309.  https://doi.org/10.1182/blood-2013-05-484782.PubMedCrossRefGoogle Scholar
  163. 163.
    Reeder, C. B., Reece, D. E., Kukreti, V., Chen, C., Trudel, S., Hentz, J., et al. (2009). Cyclophosphamide, bortezomib and dexamethasone induction for newly diagnosed multiple myeloma: high response rates in a phase II clinical trial. Leukemia, 23(7), 1337–1341.  https://doi.org/10.1038/leu.2009.26.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Mai, E. K., Bertsch, U., Durig, J., Kunz, C., Haenel, M., Blau, I. W., et al. (2015). Phase III trial of bortezomib, cyclophosphamide and dexamethasone (VCD) versus bortezomib, doxorubicin and dexamethasone (PAd) in newly diagnosed myeloma. Leukemia, 29(8), 1721–1729.  https://doi.org/10.1038/leu.2015.80.PubMedCrossRefGoogle Scholar
  165. 165.
    Kumar, S. K., Ma, E., Engebretson, A. E., Buadi, F. K., Lacy, M. Q., Dispenzieri, A., et al. (2016). Treatment outcomes, health-care resource utilization and costs of bortezomib and dexamethasone, with cyclophosphamide or lenalidomide, in newly diagnosed multiple myeloma. Leukemia, 30(4), 995–998.  https://doi.org/10.1038/leu.2015.225.PubMedCrossRefGoogle Scholar
  166. 166.
    Richardson, P. G., Hungria, V. T., Yoon, S. S., Beksac, M., Dimopoulos, M. A., Elghandour, A., et al. (2016). Panobinostat plus bortezomib and dexamethasone in previously treated multiple myeloma: outcomes by prior treatment. Blood, 127(6), 713–721.  https://doi.org/10.1182/blood-2015-09-665018.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Moreau, P., Chanan-Khan, A., Roberts, A. W., Agarwal, A. B., Facon, T., Kumar, S., et al. (2017). Promising efficacy and acceptable safety of venetoclax plus bortezomib and dexamethasone in relapsed/ refractory MM. Blood.  https://doi.org/10.1182/blood-2017-06-788323.
  168. 168.
    Siegel, D. S., Dimopoulos, M., Jagannath, S., Goldschmidt, H., Durrant, S., Kaufman, J. L., et al. (2016). VANTAGE 095: an international, multicenter, open-label study of vorinostat (MK-0683) in combination with bortezomib in patients with relapsed and refractory multiple myeloma. Clinical Lymphoma, Myeloma & Leukemia, 16(6), 329–334.e321.  https://doi.org/10.1016/j.clml.2016.02.042.CrossRefGoogle Scholar
  169. 169.
    Vogl, D. T., Raje, N., Jagannath, S., Richardson, P., Hari, P., Orlowski, R., et al. (2017). Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with bortezomib and dexamethasone for relapsed or refractory multiple myeloma. Clinical Cancer Research.  https://doi.org/10.1158/1078-0432.CCR-16-2526.
  170. 170.
    Lendvai, N., Hilden, P., Devlin, S., Landau, H., Hassoun, H., Lesokhin, A. M., et al. (2014). A phase 2 single-center study of carfilzomib 56 mg/m2 with or without low-dose dexamethasone in relapsed multiple myeloma. Blood, 124(6), 899–906.  https://doi.org/10.1182/blood-2014-02-556308.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Petrucci, M. T., Giraldo, P., Corradini, P., Teixeira, A., Dimopoulos, M. A., Blau, I. W., et al. (2013). A prospective, international phase 2 study of bortezomib retreatment in patients with relapsed multiple myeloma. British Journal of Haematology, 160(5), 649–659.  https://doi.org/10.1111/bjh.12198.PubMedCrossRefGoogle Scholar
  172. 172.
    Moreau, P., Joshua, D., Chng, W. J., Palumbo, A., Goldschmidt, H., Hajek, R., et al. (2017). Impact of prior treatment on patients with relapsed multiple myeloma treated with carfilzomib and dexamethasone vs bortezomib and dexamethasone in the phase 3 ENDEAVOR study. Leukemia, 31(1), 115–122.  https://doi.org/10.1038/leu.2016.186.PubMedCrossRefGoogle Scholar
  173. 173.
    Richardson, P. G., Sonneveld, P., Schuster, M. W., Stadtmauer, E. A., Facon, T., Harousseau, J. L., et al. (2009). Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. British Journal of Haematology, 144(6), 895–903.  https://doi.org/10.1111/j.1365-2141.2008.07573.x.PubMedCrossRefGoogle Scholar
  174. 174.
    Lonial, S., Richardson, P. G., San Miguel, J., Sonneveld, P., Schuster, M. W., Blade, J., et al. (2008). Characterisation of haematological profiles and low risk of thromboembolic events with bortezomib in patients with relapsed multiple myeloma. British Journal of Haematology, 143(2), 222–229.  https://doi.org/10.1111/j.1365-2141.2008.07321.x.PubMedCrossRefGoogle Scholar
  175. 175.
    Chanan-Khan, A., Sonneveld, P., Schuster, M. W., Stadtmauer, E. A., Facon, T., Harousseau, J. L., et al. (2008). Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study. Journal of Clinical Oncology, 26(29), 4784–4790.  https://doi.org/10.1200/JCO.2007.14.9641.PubMedCrossRefGoogle Scholar
  176. 176.
    Richardson, P. G., Delforge, M., Beksac, M., Wen, P., Jongen, J. L., Sezer, O., et al. (2012). Management of treatment-emergent peripheral neuropathy in multiple myeloma. Leukemia, 26(4), 595–608.  https://doi.org/10.1038/leu.2011.346.PubMedCrossRefGoogle Scholar
  177. 177.
    Dimopoulos, M. A., Mateos, M. V., Richardson, P. G., Schlag, R., Khuageva, N. K., Shpilberg, O., et al. (2011). Risk factors for, and reversibility of, peripheral neuropathy associated with bortezomib-melphalan-prednisone in newly diagnosed patients with multiple myeloma: subanalysis of the phase 3 VISTA study. European Journal of Haematology, 86(1), 23–31.  https://doi.org/10.1111/j.1600-0609.2010.01533.x.PubMedCrossRefGoogle Scholar
  178. 178.
    Bringhen, S., Larocca, A., Rossi, D., Cavalli, M., Genuardi, M., Ria, R., et al. (2010). Efficacy and safety of once-weekly bortezomib in multiple myeloma patients. Blood, 116(23), 4745–4753.  https://doi.org/10.1182/blood-2010-07-294983.PubMedCrossRefGoogle Scholar
  179. 179.
    Minarik, J., Pavlicek, P., Pour, L., Pika, T., Maisnar, V., Spicka, I., et al. (2015). Subcutaneous bortezomib in multiple myeloma patients induces similar therapeutic response rates as intravenous application but it does not reduce the incidence of peripheral neuropathy. PLoS One, 10(4), e0123866.  https://doi.org/10.1371/journal.pone.0123866.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Kumar, S., Moreau, P., Hari, P., Mateos, M. V., Ludwig, H., Shustik, C., et al. (2017). Management of adverse events associated with ixazomib plus lenalidomide/dexamethasone in relapsed/refractory multiple myeloma. British Journal of Haematology.  https://doi.org/10.1111/bjh.14733.
  181. 181.
    Siegel, D., Martin, T., Nooka, A., Harvey, R. D., Vij, R., Niesvizky, R., et al. (2013). Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica, 98(11), 1753–1761.  https://doi.org/10.3324/haematol.2013.089334.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Lonial, S., Waller, E. K., Richardson, P. G., Jagannath, S., Orlowski, R. Z., Giver, C. R., et al. (2005). Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood, 106(12), 3777–3784.  https://doi.org/10.1182/blood-2005-03-1173.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Nooka, A. K. (2013). Management of hematologic adverse events in patients with relapsed and/or refractory multiple myeloma treated with single-agent carfilzomib. Oncology (Williston Park), 27(Suppl 3), 11–18.Google Scholar
  184. 184.
    Shi, D. S., Smith, M. C., Campbell, R. A., Zimmerman, P. W., Franks, Z. B., Kraemer, B. F., et al. (2014). Proteasome function is required for platelet production. The Journal of Clinical Investigation, 124(9), 3757–3766.  https://doi.org/10.1172/JCI75247.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Murai, K., Kowata, S., Shimoyama, T., Yashima-Abo, A., Fujishima, Y., Ito, S., et al. (2014). Bortezomib induces thrombocytopenia by the inhibition of proplatelet formation of megakaryocytes. European Journal of Haematology, 93(4), 290–296.  https://doi.org/10.1111/ejh.12342.PubMedCrossRefGoogle Scholar
  186. 186.
    Stansborough, R. L., & Gibson, R. J. (2017). Proteasome inhibitor-induced gastrointestinal toxicity. Current Opinion in Supportive and Palliative Care, 11(2), 133–137.  https://doi.org/10.1097/SPC.0000000000000266.PubMedCrossRefGoogle Scholar
  187. 187.
    San Miguel, J., Blade, J., Boccadoro, M., Cavenagh, J., Glasmacher, A., Jagannath, S., et al. (2006). A practical update on the use of bortezomib in the management of multiple myeloma. The Oncologist, 11(1), 51–61.  https://doi.org/10.1634/theoncologist.11-1-51.PubMedCrossRefGoogle Scholar
  188. 188.
    Bockorny, M., Chakravarty, S., Schulman, P., Bockorny, B., & Bona, R. (2012). Severe heart failure after bortezomib treatment in a patient with multiple myeloma: a case report and review of the literature. Acta Haematologica, 128(4), 244–247.  https://doi.org/10.1159/000340050.PubMedCrossRefGoogle Scholar
  189. 189.
    Enrico, O., Gabriele, B., Nadia, C., Sara, G., Daniele, V., Giulia, C., et al. (2007). Unexpected cardiotoxicity in haematological bortezomib treated patients. British Journal of Haematology, 138(3), 396–397.  https://doi.org/10.1111/j.1365-2141.2007.06659.x.PubMedCrossRefGoogle Scholar
  190. 190.
    Honton, B., Despas, F., Dumonteil, N., Rouvellat, C., Roussel, M., Carrie, D., et al. (2014). Bortezomib and heart failure: case-report and review of the French Pharmacovigilance database. Fundamental & Clinical Pharmacology, 28(3), 349–352.  https://doi.org/10.1111/fcp.12039.CrossRefGoogle Scholar
  191. 191.
    Grandin, E. W., Ky, B., Cornell, R. F., Carver, J., & Lenihan, D. J. (2015). Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. Journal of Cardiac Failure, 21(2), 138–144.  https://doi.org/10.1016/j.cardfail.2014.11.008.PubMedCrossRefGoogle Scholar
  192. 192.
    Danhof, S., Schreder, M., Rasche, L., Strifler, S., Einsele, H., & Knop, S. (2016). ‘Real-life’ experience of preapproval carfilzomib-based therapy in myeloma—analysis of cardiac toxicity and predisposing factors. European Journal of Haematology, 97(1), 25–32.  https://doi.org/10.1111/ejh.12677.PubMedCrossRefGoogle Scholar
  193. 193.
    Dimopoulos, M. A., Roussou, M., Gavriatopoulou, M., Psimenou, E., Ziogas, D., Eleutherakis-Papaiakovou, E., et al. (2017). Cardiac and renal complications of carfilzomib in patients with multiple myeloma. Blood Advances, 1(7), 449–454.CrossRefGoogle Scholar
  194. 194.
    Laubach, J. P., Moslehi, J. J., Francis, S. A., San Miguel, J. F., Sonneveld, P., Orlowski, R. Z., et al. (2017). A retrospective analysis of 3954 patients in phase 2/3 trials of bortezomib for the treatment of multiple myeloma: towards providing a benchmark for the cardiac safety profile of proteasome inhibition in multiple myeloma. British Journal of Haematology, 178(4), 547–560.  https://doi.org/10.1111/bjh.14708.PubMedCrossRefGoogle Scholar
  195. 195.
    Rosenthal, A., Luthi, J., Belohlavek, M., Kortum, K. M., Mookadam, F., Mayo, A., et al. (2016). Carfilzomib and the cardiorenal system in myeloma: an endothelial effect? Blood Cancer Journal, 6, e384.  https://doi.org/10.1038/bcj.2015.112.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Koulaouzidis, G., & Lyon, A. R. (2017). Proteasome inhibitors as a potential cause of heart failure. Heart Failure Clinics, 13(2), 289–295.  https://doi.org/10.1016/j.hfc.2016.12.001.PubMedCrossRefGoogle Scholar
  197. 197.
    Jouni, H., Aubry, M. C., Lacy, M. Q., Vincent Rajkumar, S., Kumar, S. K., Frye, R. L., et al. (2017). Ixazomib cardiotoxicity: a possible class effect of proteasome inhibitors. American Journal of Hematology, 92(2), 220–221.  https://doi.org/10.1002/ajh.24608.PubMedCrossRefGoogle Scholar
  198. 198.
    Vickrey, E., Allen, S., Mehta, J., & Singhal, S. (2009). Acyclovir to prevent reactivation of varicella zoster virus (herpes zoster) in multiple myeloma patients receiving bortezomib therapy. Cancer, 115(1), 229–232.  https://doi.org/10.1002/cncr.24006.PubMedCrossRefGoogle Scholar
  199. 199.
    Gavriatopoulou, M., Terpos, E., Kastritis, E., & Dimopoulos, M. A. (2017). Current treatment options and investigational drugs for Waldenstrom’s macroglobulinemia. Expert Opinion on Investigational Drugs, 26(2), 197–205.  https://doi.org/10.1080/13543784.2017.1275561.PubMedCrossRefGoogle Scholar
  200. 200.
    Kapoor, P., Ansell, S. M., Fonseca, R., Chanan-Khan, A., Kyle, R. A., Kumar, S. K., et al. (2017). Diagnosis and management of waldenstrom macroglobulinemia: Mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines 2016. JAMA Oncology.  https://doi.org/10.1001/jamaoncol.2016.5763.
  201. 201.
    Gertz, M. A. (2017). Waldenstrom macroglobulinemia: 2017 update on diagnosis, risk stratification, and management. American Journal of Hematology, 92(2), 209–217.  https://doi.org/10.1002/ajh.24557.PubMedCrossRefGoogle Scholar
  202. 202.
    Leblond, V., Kastritis, E., Advani, R., Ansell, S. M., Buske, C., Castillo, J. J., et al. (2016). Treatment recommendations from the Eighth International Workshop on Waldenstrom’s macroglobulinemia. Blood, 128(10), 1321–1328.  https://doi.org/10.1182/blood-2016-04-711234.PubMedCrossRefGoogle Scholar
  203. 203.
    Zumbo, G., Sadeghi-Alavijeh, O., Hawkins, P. N., & Fontana, M. (2017). New and developing therapies for AL amyloidosis. Expert Opinion on Pharmacotherapy, 18(2), 139–149.  https://doi.org/10.1080/14656566.2016.1274971.PubMedCrossRefGoogle Scholar
  204. 204.
    Reece, D. E., Hegenbart, U., Sanchorawala, V., Merlini, G., Palladini, G., Blade, J., et al. (2014). Long-term follow-up from a phase 1/2 study of single-agent bortezomib in relapsed systemic AL amyloidosis. Blood, 124(16), 2498–2506.  https://doi.org/10.1182/blood-2014-04-568329.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Palladini, G., Sachchithanantham, S., Milani, P., Gillmore, J., Foli, A., Lachmann, H., et al. (2015). A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood, 126(5), 612–615.  https://doi.org/10.1182/blood-2015-01-620302.PubMedCrossRefGoogle Scholar
  206. 206.
    Cohen, A. D., Landau, H., Scott, E. C., Liedtke, M., Kaufman, J. L., Rosenzweig, M., et al. (2016). Safety and efficacy of carfilzomib (CFZ) in previously-treated systemic light-chain (AL) amyloidosis. Blood, 128(22), 645.Google Scholar
  207. 207.
    Sanchorawala, V., Palladini, G., Kukreti, V., Zonder, J. A., Cohen, A. D., Seldin, D. C., et al. (2017). A phase 1/2 study of the oral proteasome inhibitor ixazomib in relapsed or refractory AL amyloidosis. Blood, 130(5), 597–605.  https://doi.org/10.1182/blood-2017-03-771220.PubMedCrossRefGoogle Scholar
  208. 208.
    Fisher, R. I., Bernstein, S. H., Kahl, B. S., Djulbegovic, B., Robertson, M. J., de Vos, S., et al. (2006). Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. Journal of Clinical Oncology, 24(30), 4867–4874.  https://doi.org/10.1200/JCO.2006.07.9665.PubMedCrossRefGoogle Scholar
  209. 209.
    Robak, T., Huang, H., Jin, J., Zhu, J., Liu, T., Samoilova, O., et al. (2015). Bortezomib-based therapy for newly diagnosed mantle-cell lymphoma. The New England Journal of Medicine, 372(10), 944–953.  https://doi.org/10.1056/NEJMoa1412096.PubMedCrossRefGoogle Scholar
  210. 210.
    Huang, X., & Dixit, V. M. (2016). Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Research, 26(4), 484–498.  https://doi.org/10.1038/cr.2016.31.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Yang, Y., Kitagaki, J., Dai, R. M., Tsai, Y. C., Lorick, K. L., Ludwig, R. L., et al. (2007). Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Research, 67(19), 9472–9481.  https://doi.org/10.1158/0008-5472.CAN-07-0568.PubMedCrossRefGoogle Scholar
  212. 212.
    Shah, J. J., Jakubowiak, A. J., O'Connor, O. A., Orlowski, R. Z., Harvey, R. D., Smith, M. R., et al. (2016). Phase I study of the novel investigational NEDD8-activating enzyme inhibitor pevonedistat (MLN4924) in patients with relapsed/refractory multiple myeloma or lymphoma. Clinical Cancer Research, 22(1), 34–43.  https://doi.org/10.1158/1078-0432.CCR-15-1237.PubMedCrossRefGoogle Scholar
  213. 213.
    Kumar, A., Ito, A., Hirohama, M., Yoshida, M., & Zhang, K. Y. (2016). Identification of new SUMO activating enzyme 1 inhibitors using virtual screening and scaffold hopping. Bioorganic & Medicinal Chemistry Letters, 26(4), 1218–1223.  https://doi.org/10.1016/j.bmcl.2016.01.030.CrossRefGoogle Scholar
  214. 214.
    Morrow, J. K., Lin, H. K., Sun, S. C., & Zhang, S. (2015). Targeting ubiquitination for cancer therapies. Future Medicinal Chemistry, 7(17), 2333–2350.  https://doi.org/10.4155/fmc.15.148.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Farshi, P., Deshmukh, R. R., Nwankwo, J. O., Arkwright, R. T., Cvek, B., Liu, J., et al. (2015). Deubiquitinases (DUBs) and DUB inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 25(10), 1191–1208.  https://doi.org/10.1517/13543776.2015.1056737.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Cao, M. N., Zhou, Y. B., Gao, A. H., Cao, J. Y., Gao, L. X., Sheng, L., et al. (2014). Curcusone D, a novel ubiquitin-proteasome pathway inhibitor via ROS-induced DUB inhibition, is synergistic with bortezomib against multiple myeloma cell growth. Biochimica et Biophysica Acta, 1840(6), 2004–2013.  https://doi.org/10.1016/j.bbagen.2014.02.006.PubMedCrossRefGoogle Scholar
  217. 217.
    Wang, X., Stafford, W., Mazurkiewicz, M., Fryknas, M., Brjnic, S., Zhang, X., et al. (2014). The 19S deubiquitinase inhibitor b-AP15 is enriched in cells and elicits rapid commitment to cell death. Molecular Pharmacology, 85(6), 932–945.  https://doi.org/10.1124/mol.113.091322.PubMedCrossRefGoogle Scholar
  218. 218.
    Wang, X., Mazurkiewicz, M., Hillert, E. K., Olofsson, M. H., Pierrou, S., Hillertz, P., et al. (2016). The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Scientific Reports, 6, 26979.  https://doi.org/10.1038/srep26979.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sara Gandolfi
    • 1
  • Jacob P. Laubach
    • 1
  • Teru Hideshima
    • 1
  • Dharminder Chauhan
    • 1
  • Kenneth C. Anderson
    • 1
  • Paul G. Richardson
    • 1
  1. 1.Dana-Farber Cancer InstituteBostonUSA

Personalised recommendations