Advertisement

Cancer and Metastasis Reviews

, Volume 36, Issue 3, pp 547–555 | Cite as

Breast cancer complexity: implications of intratumoral heterogeneity in clinical management

  • Brittany Haynes
  • Ashapurna Sarma
  • Pratima Nangia-Makker
  • Malathy P. Shekhar
NON-THEMATIC REVIEW

Abstract

Generation of intratumoral phenotypic and genetic heterogeneity has been attributed to clonal evolution and cancer stem cells that together give rise to a tumor with complex ecosystems. Each ecosystem contains various tumor cell subpopulations and stromal entities, which, depending upon their composition, can influence survival, therapy responses, and global growth of the tumor. Despite recent advances in breast cancer management, the disease has not been completely eradicated as tumors recur despite initial response to treatment. In this review, using data from clinically relevant breast cancer models, we show that the fates of tumor stem cells/progenitor cells in the individual tumor ecosystems comprising a tumor are predetermined to follow a limited (unipotent) and/or unlimited (multipotent) path of differentiation which create conditions for active generation and maintenance of heterogeneity. The resultant dynamic systems respond differently to treatments, thus disrupting the delicate stability maintained in the heterogeneous tumor. This raises the question whether it is better then to preserve stability by preventing takeover by otherwise dormant ecosystems in the tumor following therapy. The ultimate strategy for personalized therapy would require serial assessments of the patient’s tumor for biomarker validation during the entire course of treatment that is combined with their three-dimensional mapping to the tumor architecture and landscape.

Keywords

Tumor ecosystem Heterogeneity Stem cells Clinical models Breast cancer 

Notes

Compliance with ethical standards

Funding

Work related to the analysis of histologic origins and stromal contributions to therapy response was funded by grants DAMD-17-02-1-0618 and W81XWH-09-1-0608 from the Department of Defense. BH was supported by T32-CA009531 and a fellowship from the DeRoy Testamentary Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Fidler, I. J. (1978). Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Research, 38, 2651–2660.PubMedGoogle Scholar
  2. 2.
    Heppner, G. H., & Miller, B. E. (1983). Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Reviews, 2, 5–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Dexter, D. L., Kowalski, H. M., Blazar, B. A., Fligiel, Z., Vogel, R., & Heppner, G. H. (1978). Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Research, 38, 3174–3181.PubMedGoogle Scholar
  4. 4.
    Marusyk, A., Almendro, V., & Polyak, K. (2012). Intra-tumour heterogeneity: a looking glass for cancer? Nature Reviews Cancer, 12, 323–334.CrossRefPubMedGoogle Scholar
  5. 5.
    Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194, 23–28.CrossRefPubMedGoogle Scholar
  6. 6.
    Heppner, G. H., & Miller, F. R. (1998). The cellular basis of tumor progression. International Reviews in Cytology, 177, 1–56.Google Scholar
  7. 7.
    Merlo, L. M., Pepper, J. W., Reid, B. J., & Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 6, 924–935.CrossRefPubMedGoogle Scholar
  8. 8.
    Wolman, S. R., & Heppner, G. H. (1992). Genetic heterogeneity in breast cancer. Journal of National Cancer Institute, 84, 469–470.CrossRefGoogle Scholar
  9. 9.
    Marusyk, A., & Polyak, K. (2010). Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta, 1805, 105–117.PubMedGoogle Scholar
  10. 10.
    Janiszewska, M., & Polyak, K. (2015). Clonal evolution in cancer: a tale of twisted twines. Cell Stem Cell, 16, 11–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Bapat, S. A. (2007). Evolution of cancer stem cells. Seminars in Cancer Biology, 17, 204–213.CrossRefPubMedGoogle Scholar
  12. 12.
    Bjerkvig, R., Tysnes, B. B., Aboody, K. S., Najbauer, J., & Terzis, A. J. (2005). Opinion: the origin of the cancer stem cell: current controversies and new insights. Nature Reviews Cancer, 5, 899–904.CrossRefPubMedGoogle Scholar
  13. 13.
    Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.CrossRefPubMedGoogle Scholar
  14. 14.
    Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14, 275–291.CrossRefPubMedGoogle Scholar
  15. 15.
    Marjanovic, N. D., Weinberg, R. A., & Chaffer, C. L. (2013). Cell plasticity and heterogeneity in cancer. Clinical Chemistry, 59, 168–179.CrossRefPubMedGoogle Scholar
  16. 16.
    Elshamy, W. M., & Duhe, R. J. (2013). Overview: cellular plasticity, cancer stem cells and metastasis. Cancer Letters, 341, 2–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Rhiannon, F., & Richard, C. (2012). The complex nature of breast cancer stem-like cells: heterogeneity and plasticity. Journal of Stem Cells Research and Therapy. doi: 10.4172/2157-7633.S7-009.
  18. 18.
    Miller, F. R., Soule, H. D., Tait, L., Pauley, R. J., Wolman, S. R., Dawson, P. J., & Heppner, G. H. (1993). Xenograft model of progressive human proliferative breast disease. Journal of National Cancer Institute, 85, 1725–1732.CrossRefGoogle Scholar
  19. 19.
    Miller, F. R. (2000). Xenograft models of premalignant breast disease. Journal of Mammary Gland Biology and Neoplasia, 5, 379–391.CrossRefPubMedGoogle Scholar
  20. 20.
    Shekhar, M. P., Nangia-Makker, P., Wolman, S. R., Tait, L., Heppner, G. H., & Visscher, D. W. (1998). Direct action of estrogen on sequence of progression of human preneoplastic breast disease. American Journal of Pathology, 152, 1129–1132.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Shekhar, P. V., Chen, M. L., Werdell, J., Heppner, G. H., Miller, F. R., & Christman, J. K. (1998). Transcriptional activation of functional endogenous estrogen receptor gene expression in MCF10AT cells: a model for early breast cancer. International Journal of Oncology, 13, 907–915.PubMedGoogle Scholar
  22. 22.
    Visscher, D. W., Nanjia-Makker, P., Heppner, G., & Shekhar, P. V. (2001). Tamoxifen suppresses histologic progression to atypia and DCIS in MCFIOAT xenografts, a model of early human breast cancer. Breast Cancer Research & Treatment, 65, 41–47.CrossRefGoogle Scholar
  23. 23.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of National Academy of Sciences U S A, 100, 3983–3988.CrossRefGoogle Scholar
  24. 24.
    Shekhar, M. P., & Tait, L. Breast cancer stem cell paradigm. In D. W. Parsons (Ed.), Stem cells and cancer (pp. 47–64). New York: Nova Science.Google Scholar
  25. 25.
    Liu, Y., Nenutil, R., Appleyard, M. V., Murray, K., Boylan, M., Thompson, A. M., & Coates, P. J. (2014). Lack of correlation of stem cell markers in breast cancer stem cells. British Journal of Cancer, 110, 2063–2071.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Miller, F. R., Santner, S. J., Tait, L., & Dawson, P. J. (2000). MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. Journal of National Cancer Institute, 92, 1185–1186.CrossRefGoogle Scholar
  27. 27.
    Santner, S. J., Dawson, P. J., Tait, L., Soule, H. D., Eliason, J., Mohamed, A. N., Wolman, S. R., Heppner, G. H., & Miller, F. R. (2001). Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Research & Treatment, 65, 101–110.CrossRefGoogle Scholar
  28. 28.
    Guo, W., Keckesova, Z., Donaher, J. L., Shibue, T., Tischler, V., Reinhardt, F., Itzkovitz, S., Noske, A., Zürrer-Härdi, U., Bell, G., Tam, W. L., Mani, S. A., van Oudenaarden, A., & Weinberg, R. A. (2012). Slug and Sox9 cooperatively determine the mammary stem cell state. Cell, 148, 1015–1028.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shekhar, M. P., Kato, I., Nangia-Makker, P., & Tait, L. (2013). Comedo-DCIS is a precursor lesion for basal-like breast carcinoma: identification of a novel p63/Her2/neu expressing subgroup. Oncotarget, 4, 231–241.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hannemann, J., Velds, A., Halfwerk, J. B., Kreike, B., Peterse, J. L., & van de Vijver, M. J. (2006). Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Research, 8, R61.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yu, K., Lee, C. H., Tan, P. H., & Tan, P. (2004). Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations. Clinical Cancer Research, 10, 5508–5517.CrossRefPubMedGoogle Scholar
  32. 32.
    Bryan, B. B., Schnitt, S. J., & Collins, L. C. (2006). Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Modern Pathology, 19, 617–621.CrossRefPubMedGoogle Scholar
  33. 33.
    Dabbs, D. J., Chivukula, M., Carter, G., & Bhargava, R. (2006). Basal phenotype of ductal carcinoma in situ: recognition and immunohistologic profile. Modern Pathology, 19, 1506–1511.CrossRefPubMedGoogle Scholar
  34. 34.
    Livasy, C. A., Perou, C. M., Karaca, G., Cowan, D. W., Maia, D., Jackson, S., Tse, C. K., Nyante, S., & Millikan, R. C. (2007). Identification of a basal-like subtype of breast ductal carcinoma in situ. Human Pathology, 38, 197–204.CrossRefPubMedGoogle Scholar
  35. 35.
    Paredes, J., Lopes, N., Milanezi, F., & Schmitt, F. C. (2007). P-cadherin and cytokeratin 5: useful adjunct markers to distinguish basal-like ductal carcinomas in situ. Virchows Archives, 450, 73–80.CrossRefGoogle Scholar
  36. 36.
    Tang, P., Wang, X., Schiffhauer, L., Wang, J., Bourne, P., Yang, Q., Quinn, A., & Hajdu, S. I. (2006). Relationship between nuclear grade of ductal carcinoma in situ and cell origin markers. Annals of Clinical Laboratory Science, 36, 16–22.PubMedGoogle Scholar
  37. 37.
    Bertucci, F., Finetti, P., & Birnbaum, D. (2012). Basal breast cancer: a complex and deadly molecular subtype. Current Molecular Medicine, 12, 96–110.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Beachy, P. A., Karhadkar, S. S., & Berman, D. M. (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432, 324–331.CrossRefPubMedGoogle Scholar
  39. 39.
    Hanley, C. J., Noble, F., Ward, M., Bullock, M., Drifka, C., Mellone, M., Manousopoulou, A., Johnston, H. E., Hayden, A., Thirdborough, S., Liu, Y., Smith, D. M., Mellows, T., Kao, W. J., Garbis, S. D., Mirnezami, A., Underwood, T. J., Eliceiri, K. W., & Thomas, G. J. (2016). A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers. Oncotarget, 7, 6159–6174.CrossRefPubMedGoogle Scholar
  40. 40.
    He, K., Lv, W., Zheng, D., Cheng, F., Zhou, T., Ye, S., Ban, Q., Ying, Q., Huang, B., Chen, L., Wu, G., & Liu, D. (2015). The stromal genome heterogeneity between breast and prostate tumors revealed by a comparative transcriptomic analysis. Oncotarget, 6, 8687–8697.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Junk, D. J., Cipriano, R., Bryson, B. L., Gilmore, H. L., & Jackson, M. W. (2013). Tumor microenvironmental signaling elicits epithelial-mesenchymal plasticity through cooperation with transforming genetic events. Neoplasia, 15, 1100–1109.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Natrajan, R., Sailem, H., Mardakheh, F. K., Arias Garcia, M., Tape, C. J., Dowsett, M., Bakal, C., & Yuan, Y. (2016). Microenvironmental heterogeneity parallels breast cancer progression: a histology-genomic integration analysis. PLoS Medicine, 13, e1001961.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Roman-Perez, E., Casbas-Hernandez, P., Pirone, J. R., Rein, J., Carey, L. A., Lubet, R. A., Mani, S. A., Amos, K. D., & Troester, M. A. (2012). Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients. Breast Cancer Research, 14, R51.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sugimoto, H., Mundel, T. M., Kieran, M. W., & Kalluri, R. (2006). Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biology & Therapy, 5, 1640–1646.CrossRefGoogle Scholar
  45. 45.
    Shekhar, M. P., Werdell, J., Santner, S. J., Pauley, R. J., & Tait, L. (2001). Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Research, 61, 1320–1326.PubMedGoogle Scholar
  46. 46.
    Shekhar, M. P., Santner, S., Carolin, K. A., & Tait, L. (2007). Direct involvement of breast tumor fibroblasts in the modulation of tamoxifen sensitivity. American Journal Pathology, 170, 1546–1560.CrossRefGoogle Scholar
  47. 47.
    Harahap, W.A., Daan Khambri, R., Haryono, S., & Nindrea, R.D. (2017). Outcomes of trastuzumab therapy for 6 and 12 months in Indonesian national health insurance system clients with operable HER2-positive breast cancer. Asian Pacific Journal of Cancer Prevention, 18, 1151–1156.Google Scholar
  48. 48.
    Cheng, Y. C., Shi, Y., Zhang, M. J., Brazauskas, R., Hemmer, M. T., Bishop, M. R., Nieto, Y., Stadtmauer, E., Ayash, L., Gale, R. P., Lazarus, H., Holmberg, L., Lill, M., Olsson, R. F., Wirk, B. M., Arora, M., Hari, P., & Ueno, N. (2017). Long-term outcome of inflammatory breast cancer compared to non-inflammatory breast cancer in the setting of high-dose chemotherapy with autologous hematopoietic cell transplantation. Journal of Cancer, 8, 1009–1017.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nasir, A., Holzer, T. R., Chen, M., Man, M. Z., & Schade, A. E. (2017). Differential expression of VEGFR2 protein in HER2 positive primary human breast cancer: potential relevance to anti-angiogenic therapies. Cancer Cell International, 17, 56.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rier, H. N., Levin, M. D., van Rosmalen, J., Bos, M., Drooger, J. C., de Jong, P., Portielje, J.E.A., Elsten, E.M.P., Ten Tije, A.J., Sleijfer, S., & Jager, A. (2017). First-line palliative HER2-targeted therapy in HER2-positive metastatic breast cancer is less effective after previous adjuvant trastuzumab-based therapy. Oncologist. doi: 10.1634/the oncologist.2016-0448.
  51. 51.
    Yu, X., Wang, L., Shen, Y., Wang, C., Zhang, Y., Meng, Y., Yang, Y., Liang, B., Zhou, B., Wang, H., Wei, H., Lei, C., Hu, S., & Li, B. (2017). Targeting EGFR/HER2 heterodimerization with a novel anti-HER2 domain II/III antibody. Molecular Immunology, 87, 300–307.CrossRefPubMedGoogle Scholar
  52. 52.
    Drakaki, A., & Hurvitz, S.A. (2015). Her2-positive breast cancer: Update on new and emerging agents. The American Journal of Hematology/Oncology, 11, 17-23.Google Scholar
  53. 53.
    Dickler, M. N., Tolaney, S., Rugo, H. S., Cortes, J., Dieras, V., Patt, D. A., Wildiers, H., Hudis, C. A., O, Shaughnessy, J. A., Zamora, E., Yardley, D., Frenzel, M., Koustenis, A. G., & Baselga, J. (2017). MONARCH 1, a phase 2 study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2− metastatic breast cancer. Clinical Cancer Research. doi: 10.1158/1078-0432.CCR-17-0754 Epub ahead of print.
  54. 54.
    Dean, L. (2012). Pertuzumab therapy and ERBB2 (HER2) genotype. In V. Pratt, H. McLeod, L. Dean, A. Malheiro, & W. Rubinstein (Eds.), Medical genetics summaries. Bethesda: National Center for Biotechnology Information.Google Scholar
  55. 55.
    Dean, L. (2012). Trastuzumab (herceptin) therapy and ERBB2 (HER2) genotype. In V. Pratt, H. McLeod, L. Dean, A. Malheiro, & W. Rubinstein (Eds.), Medical genetics summaries. Bethesda: National Center for Biotechnology Information.Google Scholar
  56. 56.
    Dean, L. (2012). Tamoxifen therapy and CYP2D6 genotype. In V. Pratt, H. McLeod, L. Dean, A. Malheiro, & W. Rubinstein (Eds.), Medical genetics summaries. Bethesda: National Center for Biotechnology Information.Google Scholar
  57. 57.
    Gu, G., Dustin, D., & Fuqua, S. A. (2016). Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Current Opinion in Pharmacology, 31, 97–103.CrossRefPubMedGoogle Scholar
  58. 58.
    Yap, T. A., Omlin, A., & de Bono, J. S. (2013). Development of therapeutic combinations targeting major cancer signaling pathways. Journal of Clinical Oncology, 31, 1592–1605.CrossRefPubMedGoogle Scholar
  59. 59.
    Tryfonidis, K., Senkus, E., Cardoso, M. J., & Cardoso, F. (2015). Management of locally advanced breast cancer—perspectives and future directions. Nature Reviews Clinical Oncology, 12, 147–162.CrossRefPubMedGoogle Scholar
  60. 60.
    Cristofanilli, M., Turner, N. C., Bondarenko, I., Ro, J., Im, S. A., Masuda, N., Colleoni, M., DeMichele, A., Loi, S., Verma, S., Iwata, H., Harbeck, N., Zhang, K., Theall, K. P., Jiang, Y., Bartlett, C. H., Koehler, M., & Slamon, D. (2016). Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncology, 17, 425–439.CrossRefPubMedGoogle Scholar
  61. 61.
    Swain, S. M., Baselga, J., Kim, S. B., Ro, J., Semiglazov, V., Campone, M., Ciruelos, E., Ferrero, J. M., Schneeweiss, A., Heeson, S., Clark, E., Ross, G., Benyunes, M. C., Cortés, J., & CLEOPATRA Study Group. (2015). Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. New England Journal of Medicine, 372, 724–734.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ates, O., Sunar, V., Aslan, A., Karatas, F., Sahin, S., & Altundag, K. (2017). The short-term safety of adjuvant paclitaxel plus trastuzumab—a single centre experience. J Balkan Union of Oncology, 22, 320–324.Google Scholar
  63. 63.
    Liu, Z., He, K., Ma, Q., Yu, Q., Liu, C., Ndege, I., Wang, X., & Yu, Z. (2017). Autophagy inhibitor facilitates gefitinib sensitivity in vitro and in vivo by activating mitochondrial apoptosis in triple negative breast cancer. PLoS One, 12(5), e0177694.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Di Nicolantonio, F., Mercer, S. J., Knight, L. A., Gabriel, F. G., Whitehouse, P. A., Sharma, S., Fernando, A., Glaysher, S., Di Palma, S., Johnson, P., Somers, S. S., Toh, S., Higgins, B., Lamont, A., Gulliford, T., Hurren, J., Yiangou, C., & Cree, I. A. (2005). Cancer cell adaptation to chemotherapy. BMC Cancer, 5, 78.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Tan, S. H., Sapari, N. S., Miao, H., Hartman, M., Loh, M., Chng, W. J., Iau, P., Buhari, S. A., Soong, R., & Lee, S. C. (2015). High-throughput mutation profiling changes before and 3 weeks after chemotherapy in newly diagnosed breast cancer patients. PLoS One, 10, e0142466.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Murphy, C., & Dickler, M. (2016). Endocrine resistance in hormone responsive breast cancer: mechanisms and therapeutic strategies. Endocrine Related Cancer, 23, R337-352.Google Scholar
  67. 67.
    Jeselsohn, R., & Brown, M. (2016). How drug resistance takes shape. eLife, 5, e14973. doi: 10.7554/eLife.14973.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ter Brugge, P., Kristel, P., van der Burg, E., Boon, U., de Maaker, M., Lips, E., Mulder, L., de Ruiter, J., Moutinho, C., Gevensleben, H., Marangoni, E., Majewski, I., Józwiak, K., Kloosterman, W., van Roosmalen, M., Duran, K., Hogervorst, F., Turner, N., Esteller, M., Cuppen, E., Wesseling, J., & Jonkers, J. (2016). Mechanisms of therapy resistance in patient-derived xenograft models of BRCA1-deficient breast cancer. Journal of National Cancer Institute, 108, djw148. doi: 10.1093/jnci/djw148.CrossRefGoogle Scholar
  69. 69.
    Edwards, S. L., Brough, R., Lord, C. J., Natrajan, R., Vatcheva, R., Levine, D. A., Boyd, J., Reis-Filho, J. S., & Ashworth, A. (2008). Resistance to therapy caused by intragenic deletion in BRCA2. Nature, 451, 1111–1115.CrossRefPubMedGoogle Scholar
  70. 70.
    Sakai, W., Swisher, E. M., Karlan, B. Y., Agarwal, M. K., Higgins, J., Friedman, C., Villegas, E., Jacquemont, C., Farrugia, D. J., Couch, F. J., Urban, N., & Taniguchi, T. (2008). Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature, 451, 1116–1120.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Creighton, C. J., Li, X., Landis, M., Dixon, J. M., Neumeister, V. M., Sjolund, A., Rimm, D. L., Wong, H., Rodriguez, A., Herschkowitz, J. I., Fan, C., Zhang, X., He, X., Pavlick, A., Gutierrez, M. C., Renshaw, L., Larionov, A. A., Faratian, D., Hilsenbeck, S. G., Perou, C. M., Lewis, M. T., Rosen, J. M., & Chang, J. C. (2009). Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proceedings of National Academy of Sciences U S A, 106, 13820–13825.CrossRefGoogle Scholar
  72. 72.
    Leder, K., Holland, E. C., & Michor, F. (2010). The therapeutic implications of plasticity of the cancer stem cell phenotype. PLoS One, 5, e14366.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., Hilsenbeck, S. G., Pavlick, A., Zhang, X., Chamness, G. C., Wong, H., Rosen, J., & Chang, J. C. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of National Cancer Institute, 100, 672–679.CrossRefGoogle Scholar
  74. 74.
    Iwasa, Y., Nowak, M. A., & Michor, F. (2006). Evolution of resistance during clonal expansion. Genetics, 174, 2557–2566.Google Scholar
  75. 75.
    Zhou, X., Zhang, J., Yun, H., Shi, R., Wang, Y., Wang, W., Lagercrantz, S. B., & Mu, K. (2015). Alterations of biomarker profiles after neoadjuvant chemotherapy in breast cancer: tumor heterogeneity should be taken into consideration. Oncotarget, 6, 36894–36902.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Miller, B. E., Miller, F. R., Wilburn, D., & Heppner, G. H. (1988). Dominance of a tumor subpopulation line in mixed heterogeneous mouse mammary tumors. Cancer Research, 48, 5747–5753.PubMedGoogle Scholar
  77. 77.
    Crespi, B., Foster, K., & Ubeda, F. (2014). First principles of Hamiltonian medicine. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 369, 20130366.CrossRefPubMedGoogle Scholar
  78. 78.
    Gerard, B., Tait, L., Nangia-Makker, P., & Shekhar, M. P. (2011). Rad6B acts downstream of Wnt signaling to stabilize beta-catenin: implications for a novel Wnt/beta-catenin target. Journal of Molecular Signaling, 6, 6.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Shekhar, M. P., Gerard, B., Pauley, R. J., Williams, B. O., & Tait, L. (2008). Rad6B is a positive regulator of beta-catenin stabilization. Cancer Research, 68, 1741–1750.CrossRefPubMedGoogle Scholar
  80. 80.
    Marusyk, A., Tabassum, D. P., Altrock, P. M., Almendro, V., Michor, F., & Polyak, K. (2014). Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature, 514, 54–58.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Parikh, J., Selmi, M., Charles-Edwards, G., Glendenning, J., Ganeshan, B., Verma, H., Mansi, J., Harries, M., Tutt, A., & Goh, V. (2014). Changes in primary breast cancer heterogeneity may augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy. Radiology, 272, 100–112.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Brittany Haynes
    • 1
    • 2
  • Ashapurna Sarma
    • 1
    • 2
  • Pratima Nangia-Makker
    • 1
    • 2
  • Malathy P. Shekhar
    • 1
    • 2
    • 3
  1. 1.Department of OncologyWayne State University School of MedicineDetroitUSA
  2. 2.Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA
  3. 3.Department of PathologyWayne State University School of MedicineDetroitUSA

Personalised recommendations