Cancer and Metastasis Reviews

, Volume 36, Issue 1, pp 53–75 | Cite as

The impact of melanoma genetics on treatment response and resistance in clinical and experimental studies

Article

Abstract

Recent attempts to characterize the melanoma mutational landscape using high-throughput sequencing technologies have identified new genes and pathways involved in the molecular pathogenesis of melanoma. Apart from mutated BRAF, NRAS, and KIT, a series of new recurrently mutated candidate genes with impact on signaling pathways have been identified such as NF1, PTEN, IDH1, RAC1, ARID2, and TP53. Under targeted treatment using BRAF and MEK1/2 inhibitors either alone or in combination, a majority of patients experience recurrences, which are due to different genetic mechanisms such as gene amplifications of BRAF or NRAS, MEK1/2 and PI3K mutations. In principle, resistance mechanisms converge on two signaling pathways, MAPK and PI3K-AKT-mTOR pathways. Resistance may be due to small subsets of resistant cells within a heterogeneous tumor mass not identified by sequencing of the bulk tumor. Future sequencing studies addressing tumor heterogeneity, e.g., by using single-cell sequencing technology, will most likely improve this situation. Gene expression patterns of metastatic lesions were also shown to predict treatment response, e.g., a MITF-low/NF-κB-high melanoma phenotype is resistant against classical targeted therapies. Finally, more recent treatment approaches using checkpoint inhibitors directed against PD-1 and CTLA-4 are very effective in melanoma and other tumor entities. Here, the mutational and neoantigen load of melanoma lesions may help to predict treatment response. Taken together, the new sequencing, molecular, and bioinformatic technologies exploiting the melanoma genome for treatment decisions have significantly improved our understanding of melanoma pathogenesis, treatment response, and resistance for either targeted treatment or immune checkpoint blockade.

Keywords

BRAF Checkpoint blockade Melanoma phenotype NRAS Resistance mechanisms 

Notes

Compliance with ethical standards

Conflict of interest

M. Kunz has received honoraria from the Speakers Bureau of Roche Pharma and travel support from Novartis Pharma GmbH and Bristol-Myers Squibb GmbH. Pharma. M. Hölzel declares no conflict of interest.

References

  1. 1.
    Schadendorf, D., Fisher, D. E., Garbe, C., Gershenwald, J. E., Grob, J.-J., Halpern, A., Herlyn, M., Marchetti, M. A., McArthur, G., Ribas, A., Roesch, A., & Hauschild, A. (2015). Melanoma. Nature Reviews. Disease Primers, 1, 15003. doi: 10.1038/nrdp.2015.3.PubMedCrossRefGoogle Scholar
  2. 2.
    Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W. C., Leung, S. Y., Yuen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Marais, R., Marshall, C. J., Wooster, R., Stratton, M. R., & Futreal, P. A. (2002). Mutations of the BRAF gene in human cancer. Nature, 417(6892), 949–954. doi: 10.1038/nature00766.PubMedCrossRefGoogle Scholar
  3. 3.
    Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., O'Dwyer, P. J., Lee, R. J., Grippo, J. F., Nolop, K., & Chapman, P. B. (2010). Inhibition of mutated, activated BRAF in metastatic melanoma. The New England Journal of Medicine, 363(9), 809–819. doi: 10.1056/NEJMoa1002011.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., Dummer, R., Garbe, C., Testori, A., Maio, M., Hogg, D., Lorigan, P., Lebbe, C., Jouary, T., Schadendorf, D., Ribas, A., O'Day, S. J., Sosman, J. A., Kirkwood, J. M., Eggermont, A. M. M., Dreno, B., Nolop, K., Li, J., Nelson, B., Hou, J., Lee, R. J., Flaherty, K. T., & McArthur, G. A. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England Journal of Medicine, 364(26), 2507–2516. doi: 10.1056/NEJMoa1103782.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Garbe, C., Abusaif, S., & Eigentler, T. K. (2014). Vemurafenib. Recent Results in Cancer Research, 201, 215–225. doi: 10.1007/978-3-642-54490-3_13.PubMedCrossRefGoogle Scholar
  6. 6.
    Sullivan, R. J., & Flaherty, K. T. (2015). New strategies in melanoma: entering the era of combinatorial therapy. Clinical Cancer Research, 21(11), 2424–2435. doi: 10.1158/1078-0432.CCR-14-1650.PubMedCrossRefGoogle Scholar
  7. 7.
    Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., Ferrucci, P. F., Hill, A., Wagstaff, J., Carlino, M. S., Haanen, J. B., Maio, M., Marquez-Rodas, I., McArthur, G. A., Ascierto, P. A., Long, G. V., Callahan, M. K., Postow, M. A., Grossmann, K., Sznol, M., Dreno, B., Bastholt, L., Yang, A., Rollin, L. M., Horak, C., Hodi, F. S., & Wolchok, J. D. (2015). Combined nivolumab and Ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373(1), 23–34. doi: 10.1056/NEJMoa1504030.PubMedCrossRefGoogle Scholar
  8. 8.
    Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., Garbe, C., Jouary, T., Hauschild, A., Grob, J.-J., Chiarion-Sileni, V., Lebbe, C., Mandala, M., Millward, M., Arance, A., Bondarenko, I., Haanen, J. B. A. G., Hansson, J., Utikal, J., Ferraresi, V., Kovalenko, N., Mohr, P., Probachai, V., Schadendorf, D., Nathan, P., Robert, C., Ribas, A., DeMarini, D. J., Irani, J. G., Swann, S., Legos, J. J., Jin, F., Mookerjee, B., & Flaherty, K. (2015). Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet, 386(9992), 444–451. doi: 10.1016/S0140-6736(15)60898-4.PubMedCrossRefGoogle Scholar
  9. 9.
    Robert, C., Long, G. V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., Hassel, J. C., Rutkowski, P., McNeil, C., Kalinka-Warzocha, E., Savage, K. J., Hernberg, M. M., Lebbe, C., Charles, J., Mihalcioiu, C., Chiarion-Sileni, V., Mauch, C., Cognetti, F., Arance, A., Schmidt, H., Schadendorf, D., Gogas, H., Lundgren-Eriksson, L., Horak, C., Sharkey, B., Waxman, I. M., Atkinson, V., & Ascierto, P. A. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. The New England Journal of Medicine, 372(4), 320–330. doi: 10.1056/NEJMoa1412082.PubMedCrossRefGoogle Scholar
  10. 10.
    Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., Garbe, C., Jouary, T., Hauschild, A., Grob, J. J., Chiarion Sileni, V., Lebbe, C., Mandala, M., Millward, M., Arance, A., Bondarenko, I., Haanen, J. B. A. G., Hansson, J., Utikal, J., Ferraresi, V., Kovalenko, N., Mohr, P., Probachai, V., Schadendorf, D., Nathan, P., Robert, C., Ribas, A., DeMarini, D. J., Irani, J. G., Casey, M., Ouellet, D., Martin, A.-M., Le, N., Patel, K., & Flaherty, K. (2014). Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. The New England Journal of Medicine, 371(20), 1877–1888. doi: 10.1056/NEJMoa1406037.PubMedCrossRefGoogle Scholar
  11. 11.
    Cheng, Y., Zhang, G., & Li, G. (2013). Targeting MAPK pathway in melanoma therapy. Cancer Metastasis Reviews, 32(3–4), 567–584. doi: 10.1007/s10555-013-9433-9.PubMedCrossRefGoogle Scholar
  12. 12.
    Thota, R., Johnson, D. B., & Sosman, J. A. (2015). Trametinib in the treatment of melanoma. Expert Opinion on Biological Therapy, 15(5), 735–747. doi: 10.1517/14712598.2015.1026323.PubMedCrossRefGoogle Scholar
  13. 13.
    Rizos, H., Menzies, A. M., Pupo, G. M., Carlino, M. S., Fung, C., Hyman, J., Haydu, L. E., Mijatov, B., Becker, T. M., Boyd, S. C., Howle, J., Saw, R., Thompson, J. F., Kefford, R. F., Scolyer, R. A., & Long, G. V. (2014). BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clinical Cancer Research, 20(7), 1965–1977. doi: 10.1158/1078-0432.CCR-13-3122.PubMedCrossRefGoogle Scholar
  14. 14.
    Hugo, W., Shi, H., Sun, L., Piva, M., Song, C., Kong, X., Moriceau, G., Hong, A., Dahlman, K. B., Johnson, D. B., Sosman, J. A., Ribas, A., & Lo, R. S. (2015). Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell, 162(6), 1271–1285. doi: 10.1016/j.cell.2015.07.061.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Johnson, D. B., Menzies, A. M., Zimmer, L., Eroglu, Z., Ye, F., Zhao, S., Rizos, H., Sucker, A., Scolyer, R. A., Gutzmer, R., Gogas, H., Kefford, R. F., Thompson, J. F., Becker, J. C., Berking, C., Egberts, F., Loquai, C., Goldinger, S. M., Pupo, G. M., Hugo, W., Kong, X., Garraway, L. A., Sosman, J. A., Ribas, A., Lo, R. S., Long, G. V., & Schadendorf, D. (2015). Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. European Journal of Cancer, 51(18), 2792–2799. doi: 10.1016/j.ejca.2015.08.022.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Postow, M. A., Hamid, O., & Carvajal, R. D. (2012). Mucosal melanoma: pathogenesis, clinical behavior, and management. Current Oncology Reports, 14(5), 441–448. doi: 10.1007/s11912-012-0244-x.PubMedCrossRefGoogle Scholar
  17. 17.
    Carvajal, R. D., Antonescu, C. R., Wolchok, J. D., Chapman, P. B., Roman, R.-A., Teitcher, J., Panageas, K. S., Busam, K. J., Chmielowski, B., Lutzky, J., Pavlick, A. C., Fusco, A., Cane, L., Takebe, N., Vemula, S., Bouvier, N., Bastian, B. C., & Schwartz, G. K. (2011). KIT as a therapeutic target in metastatic melanoma. JAMA, 305, 2327–2334. doi: 10.1001/jama.2011.746.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lau, P. K. H., Ascierto, P. A., & McArthur, G. (2016). Melanoma: the intersection of molecular targeted therapy and immune checkpoint inhibition. Current Opinion in Immunology, 39, 30–38. doi: 10.1016/j.coi.2015.12.006.PubMedCrossRefGoogle Scholar
  19. 19.
    van Allen, E. M., Miao, D., Schilling, B., Shukla, S. A., Blank, C., Zimmer, L., Sucker, A., Hillen, U., Geukes Foppen, M. H., Goldinger, S. M., Utikal, J., Hassel, J. C., Weide, B., Kaehler, K. C., Loquai, C., Mohr, P., Gutzmer, R., Dummer, R., Gabriel, S., Wu, C. J., Schadendorf, D., & Garraway, L. A. (2015). Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 350(6257), 207–211. doi: 10.1126/science.aad0095.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J. M., Desrichard, A., Walsh, L. A., Postow, M. A., Wong, P., Ho, T. S., Hollmann, T. J., Bruggeman, C., Kannan, K., Li, Y., Elipenahli, C., Liu, C., Harbison, C. T., Wang, L., Ribas, A., Wolchok, J. D., & Chan, T. A. (2014). Genetic basis for clinical response to CTLA-4 blockade in melanoma. The New England Journal of Medicine, 371(23), 2189–2199. doi: 10.1056/NEJMoa1406498.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hugo, W., Zaretsky, J. M., Sun, L., Song, C., Moreno, B. H., Hu-Lieskovan, S., Berent-Maoz, B., Pang, J., Chmielowski, B., Cherry, G., Seja, E., Lomeli, S., Kong, X., Kelley, M. C., Sosman, J. A., Johnson, D. B., Ribas, A., & Lo, R. S. (2016). Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell, 165(6), 35–44. doi: 10.1016/j.cell.2016.02.065.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    McGranahan, N., Furness, A. J. S., Rosenthal, R., Ramskov, S., Lyngaa, R., Saini, S. K., Jamal-Hanjani, M., Wilson, G. A., Birkbak, N. J., Hiley, C. T., Watkins, T. B. K., Shafi, S., Murugaesu, N., Mitter, R., Akarca, A. U., Linares, J., Marafioti, T., Henry, J. Y., van Allen, E. M., Miao, D., Schilling, B., Schadendorf, D., Garraway, L. A., Makarov, V., Rizvi, N. A., Snyder, A., Hellmann, M. D., Merghoub, T., Wolchok, J. D., Shukla, S. A., Wu, C. J., Peggs, K. S., Chan, T. A., Hadrup, S. R., Quezada, S. A., & Swanton, C. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 351(6280), 1463–1469. doi: 10.1126/science.aaf1490.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Callahan, M. K., Flaherty, C. R., & Postow, M. A. (2016). Checkpoint blockade for the treatment of advanced melanoma. Cancer Treatment and Research, 167, 231–250. doi: 10.1007/978-3-319-22539-5_9.PubMedCrossRefGoogle Scholar
  24. 24.
    Grob, J. J., Long, G. V., Schadendorf, D., & Flaherty, K. (2015). Disease kinetics for decision-making in advanced melanoma: a call for scenario-driven strategy trials. The Lancet Oncology, 16(13), e522–e526. doi: 10.1016/S1470-2045(15)00003-0.PubMedCrossRefGoogle Scholar
  25. 25.
    Ascierto, P. A., Marincola, F. M., & Atkins, M. B. (2015). What’s new in melanoma? Combination! Journal of Translational Medicine, 13, 213. doi: 10.1186/s12967-015-0582-1.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino-Michaels, K., Earley, Z. M., Benyamin, F. W., Lei, Y. M., Jabri, B., Alegre, M.-L., Chang, E. B., & Gajewski, T. F. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 350(6264), 1084–1089. doi: 10.1126/science.aac4255.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Vetizou, M., Pitt, J. M., Daillere, R., Lepage, P., Waldschmitt, N., Flament, C., Rusakiewicz, S., Routy, B., Roberti, M. P., Duong, C. P. M., Poirier-Colame, V., Roux, A., Becharef, S., Formenti, S., Golden, E., Cording, S., Eberl, G., Schlitzer, A., Ginhoux, F., Mani, S., Yamazaki, T., Jacquelot, N., Enot, D. P., Berard, M., Nigou, J., Opolon, P., Eggermont, A., Woerther, P.-L., Chachaty, E., Chaput, N., Robert, C., Mateus, C., Kroemer, G., Raoult, D., Boneca, I. G., Carbonnel, F., Chamaillard, M., & Zitvogel, L. (2015). Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 350(6264), 1079–1084. doi: 10.1126/science.aad1329.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Krauthammer, M., Kong, Y., Ha, B. H., Evans, P., Bacchiocchi, A., McCusker, J. P., Cheng, E., Davis, M. J., Goh, G., Choi, M., Ariyan, S., Narayan, D., Dutton-Regester, K., Capatana, A., Holman, E. C., Bosenberg, M., Sznol, M., Kluger, H. M., Brash, D. E., Stern, D. F., Materin, M. A., Lo, R. S., Mane, S., Ma, S., Kidd, K. K., Hayward, N. K., Lifton, R. P., Schlessinger, J., Boggon, T. J., & Halaban, R. (2012). Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genetics, 44(9), 1006–1014. doi: 10.1038/ng.2359.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hodis, E., Watson, I. R., Kryukov, G. V., Arold, S. T., Imielinski, M., Theurillat, J.-P., Nickerson, E., Auclair, D., Li, L., Place, C., Dicara, D., Ramos, A. H., Lawrence, M. S., Cibulskis, K., Sivachenko, A., Voet, D., Saksena, G., Stransky, N., Onofrio, R. C., Winckler, W., Ardlie, K., Wagle, N., Wargo, J., Chong, K., Morton, D. L., Stemke-Hale, K., Chen, G., Noble, M., Meyerson, M., Ladbury, J. E., Davies, M. A., Gershenwald, J. E., Wagner, S. N., Hoon, D. S. B., Schadendorf, D., Lander, E. S., Gabriel, S. B., Getz, G., Garraway, L. A., & Chin, L. (2012). A landscape of driver mutations in melanoma. Cell, 150(2), 251–263. doi: 10.1016/j.cell.2012.06.024.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cancer Genome Atlas Network. (2015). Genomic classification of cutaneous melanoma. Cell, 161(7), 1681–1696. doi: 10.1016/j.cell.2015.05.044.CrossRefGoogle Scholar
  31. 31.
    Zhang, T., Dutton-Regester, K., Brown, K. M., & Hayward, N. K. (2016). The genomic landscape of cutaneous melanoma. Pigment Cell & Melanoma Research, 29(3), 266–283. doi: 10.1111/pcmr.12459.CrossRefGoogle Scholar
  32. 32.
    Griewank, K. G., & Schadendorf, D. (2015). Panel sequencing melanomas. The Journal of Investigative Dermatology, 135(2), 335–336. doi: 10.1038/jid.2014.420.PubMedCrossRefGoogle Scholar
  33. 33.
    Siroy, A. E., Boland, G. M., Milton, D. R., Roszik, J., Frankian, S., Malke, J., Haydu, L., Prieto, V. G., Tetzlaff, M., Ivan, D., Wang, W.-L., Torres-Cabala, C., Curry, J., Roy-Chowdhuri, S., Broaddus, R., Rashid, A., Stewart, J., Gershenwald, J. E., Amaria, R. N., Patel, S. P., Papadopoulos, N. E., Bedikian, A., Hwu, W.-J., Hwu, P., Diab, A., Woodman, S. E., Aldape, K. D., Luthra, R., Patel, K. P., Shaw, K. R., Mills, G. B., Mendelsohn, J., Meric-Bernstam, F., Kim, K. B., Routbort, M. J., Lazar, A. J., & Davies, M. A. (2015). Beyond BRAF(V600): clinical mutation panel testing by next-generation sequencing in advanced melanoma. The Journal of Investigative Dermatology, 135(2), 508–515. doi: 10.1038/jid.2014.366.PubMedCrossRefGoogle Scholar
  34. 34.
    Metzker, M. L. (2010). Sequencing technologies—the next generation. Nature Reviews Genetics, 11(1), 31–46. doi: 10.1038/nrg2626.PubMedCrossRefGoogle Scholar
  35. 35.
    Rizzo, J. M., & Buck, M. J. (2012). Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prevention Research (Philadelphia, Pa.), 5(7), 887–900. doi: 10.1158/1940-6207.CAPR-11-0432.CrossRefGoogle Scholar
  36. 36.
    Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A. J. R., Behjati, S., Biankin, A. V., Bignell, G. R., Bolli, N., Borg, A., Borresen-Dale, A.-L., Boyault, S., Burkhardt, B., Butler, A. P., Caldas, C., Davies, H. R., Desmedt, C., Eils, R., Eyfjord, J. E., Foekens, J. A., Greaves, M., Hosoda, F., Hutter, B., Ilicic, T., Imbeaud, S., Imielinski, M., Jager, N., Jones, D. T. W., Jones, D., Knappskog, S., Kool, M., Lakhani, S. R., Lopez-Otin, C., Martin, S., Munshi, N. C., Nakamura, H., Northcott, P. A., Pajic, M., Papaemmanuil, E., Paradiso, A., Pearson, J. V., Puente, X. S., Raine, K., Ramakrishna, M., Richardson, A. L., Richter, J., Rosenstiel, P., Schlesner, M., Schumacher, T. N., Span, P. N., Teague, J. W., Totoki, Y., Tutt, A. N. J., Valdes-Mas, R., van Buuren, M. M., van't Veer, L., Vincent-Salomon, A., Waddell, N., Yates, L. R., Zucman-Rossi, J., Futreal, P. A., McDermott, U., Lichter, P., Meyerson, M., Grimmond, S. M., Siebert, R., Campo, E., Shibata, T., Pfister, S. M., Campbell, P. J., & Stratton, M. R. (2013). Signatures of mutational processes in human cancer. Nature, 500(7463), 415–421. doi: 10.1038/nature12477.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., Golub, T. R., Meyerson, M., Gabriel, S. B., Lander, E. S., & Getz, G. (2014). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505(7484), 495–501. doi: 10.1038/nature12912.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., Varela, I., Lin, M.-L., Ordonez, G. R., Bignell, G. R., Ye, K., Alipaz, J., Bauer, M. J., Beare, D., Butler, A., Carter, R. J., Chen, L., Cox, A. J., Edkins, S., Kokko-Gonzales, P. I., Gormley, N. A., Grocock, R. J., Haudenschild, C. D., Hims, M. M., James, T., Jia, M., Kingsbury, Z., Leroy, C., Marshall, J., Menzies, A., Mudie, L. J., Ning, Z., Royce, T., Schulz-Trieglaff, O. B., Spiridou, A., Stebbings, L. A., Szajkowski, L., Teague, J., Williamson, D., Chin, L., Ross, M. T., Campbell, P. J., Bentley, D. R., Futreal, P. A., & Stratton, M. R. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196. doi: 10.1038/nature08658.PubMedCrossRefGoogle Scholar
  39. 39.
    Prickett, T. D., Agrawal, N. S., Wei, X., Yates, K. E., Lin, J. C., Wunderlich, J. R., Cronin, J. C., Cruz, P., Rosenberg, S. A., & Samuels, Y. (2009). Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nature Genetics, 41(10), 1127–1132. doi: 10.1038/ng.438.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Prickett, T. D., Wei, X., Cardenas-Navia, I., Teer, J. K., Lin, J. C., Walia, V., Gartner, J., Jiang, J., Cherukuri, P. F., Molinolo, A., Davies, M. A., Gershenwald, J. E., Stemke-Hale, K., Rosenberg, S. A., Margulies, E. H., & Samuels, Y. (2011). Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nature Genetics, 43(11), 1119–1126. doi: 10.1038/ng.950.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wei, X., Walia, V., Lin, J. C., Teer, J. K., Prickett, T. D., Gartner, J., Davis, S., Stemke-Hale, K., Davies, M. A., Gershenwald, J. E., Robinson, W., Robinson, S., Rosenberg, S. A., & Samuels, Y. (2011). Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nature Genetics, 43(5), 442–446. doi: 10.1038/ng.810.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rosero, R. A., Villares, G. J., & Bar-Eli, M. (2016). Protease-activated receptors and other G-protein-coupled receptors: the melanoma connection. Frontiers in Genetics, 7, 112. doi: 10.3389/fgene.2016.00112.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Johannessen, C. M., Johnson, L. A., Piccioni, F., Townes, A., Frederick, D. T., Donahue, M. K., Narayan, R., Flaherty, K. T., Wargo, J. A., Root, D. E., & Garraway, L. A. (2013). A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature, 504(7478), 138–142. doi: 10.1038/nature12688.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Manca, A., Lissia, A., Cossu, A., Rubino, C., Ascierto, P. A., Stanganelli, I., & Palmieri, G. (2013). Mutations in ERBB4 may have a minor role in melanoma pathogenesis. The Journal of Investigative Dermatology, 133(6), 1685–1687. doi: 10.1038/jid.2013.27.PubMedCrossRefGoogle Scholar
  45. 45.
    Berger, M. F., Hodis, E., Heffernan, T. P., Deribe, Y. L., Lawrence, M. S., Protopopov, A., Ivanova, E., Watson, I. R., Nickerson, E., Ghosh, P., Zhang, H., Zeid, R., Ren, X., Cibulskis, K., Sivachenko, A. Y., Wagle, N., Sucker, A., Sougnez, C., Onofrio, R., Ambrogio, L., Auclair, D., Fennell, T., Carter, S. L., Drier, Y., Stojanov, P., Singer, M. A., Voet, D., Jing, R., Saksena, G., Barretina, J., Ramos, A. H., Pugh, T. J., Stransky, N., Parkin, M., Winckler, W., Mahan, S., Ardlie, K., Baldwin, J., Wargo, J., Schadendorf, D., Meyerson, M., Gabriel, S. B., Golub, T. R., Wagner, S. N., Lander, E. S., Getz, G., Chin, L., & Garraway, L. A. (2012). Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 485(7399), 502–506. doi: 10.1038/nature11071.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A., & Shokat, K. M. (2013). K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 503(7477), 548–551. doi: 10.1038/nature12796.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Horn, S., Figl, A., Rachakonda, P. S., Fischer, C., Sucker, A., Gast, A., Kadel, S., Moll, I., Nagore, E., Hemminki, K., Schadendorf, D., & Kumar, R. (2013). TERT promoter mutations in familial and sporadic melanoma. Science, 339(6122), 959–961. doi: 10.1126/science.1230062.PubMedCrossRefGoogle Scholar
  48. 48.
    Shain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., Dummer, R., North, J., Pincus, L., Ruben, B., Rickaby, W., D'Arrigo, C., Robson, A., & Bastian, B. C. (2015). The genetic evolution of melanoma from precursor lesions. The New England Journal of Medicine, 373(20), 1926–1936. doi: 10.1056/NEJMoa1502583.PubMedCrossRefGoogle Scholar
  49. 49.
    Harries, M., Malvehy, J., Lebbe, C., Heron, L., Amelio, J., Szabo, Z., & Schadendorf, D. (2016). Treatment patterns of advanced malignant melanoma (stage III-IV) - a review of current standards in Europe. European Journal of Cancer, 60, 179–189. doi: 10.1016/j.ejca.2016.01.011.PubMedCrossRefGoogle Scholar
  50. 50.
    Houben, R., Vetter-Kauczok, C. S., Ortmann, S., Rapp, U. R., Broecker, E. B., & Becker, J. C. (2008). Phospho-ERK staining is a poor indicator of the mutational status of BRAF and NRAS in human melanoma. The Journal of Investigative Dermatology, 128(8), 2003–2012. doi: 10.1038/jid.2008.30.PubMedCrossRefGoogle Scholar
  51. 51.
    Wellbrock, C., & Arozarena, I. (2016). The complexity of the ERK/MAP-kinase pathway and the treatment of melanoma skin cancer. Frontiers in Cell and Developmental Biology, 27(4), 33. doi: 10.3389/fcell.2016.00033.Google Scholar
  52. 52.
    Hersey, P., Bastholt, L., Chiarion-Sileni, V., Cinat, G., Dummer, R., Eggermont, A. M. M., Espinosa, E., Hauschild, A., Quirt, I., Robert, C., & Schadendorf, D. (2009). Small molecules and targeted therapies in distant metastatic disease. Annals of Oncology, 20(Suppl 6), vi35–vi40. doi: 10.1093/annonc/mdp254.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Long, G. V., Weber, J. S., Infante, J. R., Kim, K. B., Daud, A., Gonzalez, R., Sosman, J. A., Hamid, O., Schuchter, L., Cebon, J., Kefford, R. F., Lawrence, D., Kudchadkar, R., Burris, H. A., Falchook, G. S., Algazi, A., Lewis, K., Puzanov, I., Ibrahim, N., Sun, P., Cunningham, E., Kline, A. S., Del Buono, H., McDowell, D. O., Patel, K., & Flaherty, K. T. (2016). Overall survival and durable responses in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib combined with trametinib. Journal of Clinical Oncology, 34(8), 871–878. doi: 10.1200/JCO.2015.62.9345.PubMedCrossRefGoogle Scholar
  54. 54.
    Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroiakovski, D., Lichinitser, M., Dummer, R., Grange, F., Mortier, L., Chiarion-Sileni, V., Drucis, K., Krajsova, I., Hauschild, A., Lorigan, P., Wolter, P., Long, G. V., Flaherty, K., Nathan, P., Ribas, A., Martin, A.-M., Sun, P., Crist, W., Legos, J., Rubin, S. D., Little, S. M., & Schadendorf, D. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 372(1), 30–39. doi: 10.1056/NEJMoa1412690.PubMedCrossRefGoogle Scholar
  55. 55.
    McArthur, G. A., Chapman, P. B., Robert, C., Larkin, J., Haanen, J. B., Dummer, R., Ribas, A., Hogg, D., Hamid, O., Ascierto, P. A., Garbe, C., Testori, A., Maio, M., Lorigan, P., Lebbe, C., Jouary, T., Schadendorf, D., O'Day, S. J., Kirkwood, J. M., Eggermont, A. M., Dreno, B., Sosman, J. A., Flaherty, K. T., Yin, M., Caro, I., Cheng, S., Trunzer, K., & Hauschild, A. (2014). Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600 K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. The Lancet Oncology, 15(3), 323–332. doi: 10.1016/S1470-2045(14)70012-9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Klein, O., Clements, A., Menzies, A. M., O'Toole, S., Kefford, R. F., & Long, G. V. (2013). BRAF inhibitor activity in V600R metastatic melanoma. European Journal of Cancer (Oxford, England : 1990), 49, 1073–1079. doi: 10.1016/j.ejca.2012.11.004.CrossRefGoogle Scholar
  57. 57.
    Gentilcore, G., Madonna, G., Mozzillo, N., Ribas, A., Cossu, A., Palmieri, G., & Ascierto, P. A. (2013). Effect of dabrafenib on melanoma cell lines harbouring the BRAF(V600D/R) mutations. BMC Cancer, 13, 17. doi: 10.1186/1471-2407-13-17.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hauschild, A., Grob, J.-J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., Rutkowski, P., Blank, C. U., Miller Jr., W. H., Kaempgen, E., Martin-Algarra, S., Karaszewska, B., Mauch, C., Chiarion-Sileni, V., Martin, A.-M., Swann, S., Haney, P., Mirakhur, B., Guckert, M. E., Goodman, V., & Chapman, P. B. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet, 380(9839), 358–365. doi: 10.1016/S0140-6736(12)60868-X.PubMedCrossRefGoogle Scholar
  59. 59.
    Larkin, J., Ascierto, P. A., Dreno, B., Atkinson, V., Liszkay, G., Maio, M., Mandala, M., Demidov, L., Stroyakovskiy, D., Thomas, L., de La Cruz-Merino, L., Dutriaux, C., Garbe, C., Sovak, M. A., Chang, I., Choong, N., Hack, S. P., McArthur, G. A., & Ribas, A. (2014). Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England Journal of Medicine, 371(20), 1867–1876. doi: 10.1056/NEJMoa1408868.PubMedCrossRefGoogle Scholar
  60. 60.
    Grob, J. J., Amonkar, M. M., Karaszewska, B., Schachter, J., Dummer, R., Mackiewicz, A., Stroyakovskiy, D., Drucis, K., Grange, F., Chiarion-Sileni, V., Rutkowski, P., Lichinitser, M., Levchenko, E., Wolter, P., Hauschild, A., Long, G. V., Nathan, P., Ribas, A., Flaherty, K., Sun, P., Legos, J. J., McDowell, D. O., Mookerjee, B., Schadendorf, D., & Robert, C. (2015). Comparison of dabrafenib and trametinib combination therapy with vemurafenib monotherapy on health-related quality of life in patients with unresectable or metastatic cutaneous BRAF Val600-mutation-positive melanoma (COMBI-v): results of a phase 3, open-label, randomised trial. The Lancet Oncology, 16(13), 1389–1398. doi: 10.1016/S1470-2045(15)00087-X.PubMedCrossRefGoogle Scholar
  61. 61.
    Heidorn, S. J., Milagre, C., Whittaker, S., Nourry, A., Niculescu-Duvas, I., Dhomen, N., Hussain, J., Reis-Filho, J. S., Springer, C. J., Pritchard, C., & Marais, R. (2010). Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell, 140(2), 209–221. doi: 10.1016/j.cell.2009.12.040.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Chin, L., Tam, A., Pomerantz, J., Wong, M., Holash, J., Bardeesy, N., Shen, Q., O'Hagan, R., Pantginis, J., Zhou, H., Horner, J. W., Cordon-Cardo, C., Yancopoulos, G. D., & DePinho, R. A. (1999). Essential role for oncogenic Ras in tumour maintenance. Nature, 400(6473), 468–472. doi: 10.1038/22788.PubMedCrossRefGoogle Scholar
  63. 63.
    Dankort, D., Curley, D. P., Cartlidge, R. A., Nelson, B., Karnezis, A. N., Damsky Jr., W. E., You, M. J., DePinho, R. A., McMahon, M., & Bosenberg, M. (2009). Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nature Genetics, 41(5), 544–552. doi: 10.1038/ng.356.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    McNeal, A. S., Liu, K., Nakhate, V., Natale, C. A., Duperret, E. K., Capell, B. C., Dentchev, T., Berger, S. L., Herlyn, M., Seykora, J. T., & Ridky, T. W. (2015). CDKN2B loss promotes progression from benign melanocytic nevus to melanoma. Cancer Discovery, 5(10), 1072–1085. doi: 10.1158/2159-8290.CD-15-0196.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J., & Der, C. J. (2014). Drugging the undruggable RAS: mission possible? Nature Reviews Drug Discovery, 13(11), 828–851. doi: 10.1038/nrd4389.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Berndt, N., Hamilton, A. D., & Sebti, S. M. (2011). Targeting protein prenylation for cancer therapy. Nature Reviews Cancer, 11(11), 775–791. doi: 10.1038/nrc3151.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Mazur, P. K., Reynoird, N., Khatri, P., Jansen, P. W. T. C., Wilkinson, A. W., Liu, S., Barbash, O., van Aller, G. S., Huddleston, M., Dhanak, D., Tummino, P. J., Kruger, R. G., Garcia, B. A., Butte, A. J., Vermeulen, M., Sage, J., & Gozani, O. (2014). SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature, 510(7504), 283–287. doi: 10.1038/nature13320.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dietlein, F., Kalb, B., Jokic, M., Noll, E. M., Strong, A., Tharun, L., Ozretic, L., Kunstlinger, H., Kambartel, K., Randerath, W. J., Jungst, C., Schmitt, A., Torgovnick, A., Richters, A., Rauh, D., Siedek, F., Persigehl, T., Mauch, C., Bartkova, J., Bradley, A., Sprick, M. R., Trumpp, A., Rad, R., Saur, D., Bartek, J., Wolf, J., Buttner, R., Thomas, R. K., & Reinhardt, H. C. (2015). A synergistic interaction between Chk1- and MK2 inhibitors in KRAS-mutant cancer. Cell, 162(1), 146–159. doi: 10.1016/j.cell.2015.05.053.PubMedCrossRefGoogle Scholar
  69. 69.
    Kirkwood, J. M., Bastholt, L., Robert, C., Sosman, J., Larkin, J., Hersey, P., Middleton, M., Cantarini, M., Zazulina, V., Kemsley, K., & Dummer, R. (2012). Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clinical Cancer Research, 18(2), 555–567. doi: 10.1158/1078-0432.CCR-11-1491.PubMedCrossRefGoogle Scholar
  70. 70.
    Ascierto, P. A., Schadendorf, D., Berking, C., Agarwala, S. S., van Herpen, C. M., Queirolo, P., Blank, C. U., Hauschild, A., Beck, J. T., St-Pierre, A., Niazi, F., Wandel, S., Peters, M., Zubel, A., & Dummer, R. (2013). MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. The Lancet Oncology, 14(12), 249–256. doi: 10.1016/S1470-2045(13)70024-X.PubMedCrossRefGoogle Scholar
  71. 71.
    Coupe, N., Corrie, P., Hategan, M., Larkin, J., Gore, M., Gupta, A., Wise, A., Suter, S., Ciria, C., Love, S., Collins, L., & Middleton, M. R. (2015). PACMEL: a phase 1 dose escalation trial of trametinib (GSK1120212) in combination with paclitaxel. European Journal of Cancer, 51(3), 359–366. doi: 10.1016/j.ejca.2014.11.018.PubMedCrossRefGoogle Scholar
  72. 72.
    Nikolaev, S. I., Rimoldi, D., Iseli, C., Valsesia, A., Robyr, D., Gehrig, C., Harshman, K., Guipponi, M., Bukach, O., Zoete, V., Michielin, O., Muehlethaler, K., Speiser, D., Beckmann, J. S., Xenarios, I., Halazonetis, T. D., Jongeneel, C. V., Stevenson, B. J., & Antonarakis, S. E. (2012). Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nature Genetics, 44(2), 133–139.CrossRefGoogle Scholar
  73. 73.
    Postow, M. A., & Carvajal, R. D. (2012). Therapeutic implications of KIT in melanoma. Cancer Journal, 18(2), 137–141. doi: 10.1097/PPO.0b013e31824b2404.CrossRefGoogle Scholar
  74. 74.
    Bunting, S. F., & Nussenzweig, A. (2013). End-joining, translocations and cancer. Nature Reviews Cancer, 13(7), 443–454. doi: 10.1038/nrc3537.PubMedCrossRefGoogle Scholar
  75. 75.
    Mertens, F., Johansson, B., Fioretos, T., & Mitelman, F. (2015). The emerging complexity of gene fusions in cancer. Nature Reviews Cancer, 15(6), 371–381. doi: 10.1038/nrc3947.PubMedCrossRefGoogle Scholar
  76. 76.
    Berger, M. F., Levin, J. Z., Vijayendran, K., Sivachenko, A., Adiconis, X., Maguire, J., Johnson, L. A., Robinson, J., Verhaak, R. G., Sougnez, C., Onofrio, R. C., Ziaugra, L., Cibulskis, K., Laine, E., Barretina, J., Winckler, W., Fisher, D. E., Getz, G., Meyerson, M., Jaffe, D. B., Gabriel, S. B., Lander, E. S., Dummer, R., Gnirke, A., Nusbaum, C., & Garraway, L. A. (2010). Integrative analysis of the melanoma transcriptome. Genome Research, 20(4), 413–427. doi: 10.1186/gb-2009-10-10-r115.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Wiesner, T., He, J., Yelensky, R., Esteve-Puig, R., Botton, T., Yeh, I., Lipson, D., Otto, G., Brennan, K., Murali, R., Garrido, M., Miller, V. A., Ross, J. S., Berger, M. F., Sparatta, A., Palmedo, G., Cerroni, L., Busam, K. J., Kutzner, H., Cronin, M. T., Stephens, P. J., & Bastian, B. C. (2014). Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nature Communications, 5, 3116. doi: 10.1038/ncomms4116.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Hutchinson, K. E., Lipson, D., Stephens, P. J., Otto, G., Lehmann, B. D., Lyle, P. L., Vnencak-Jones, C. L., Ross, J. S., Pietenpol, J. A., Sosman, J. A., Puzanov, I., Miller, V. A., & Pao, W. (2013). BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clinical Cancer Research, 19(24), 6696–6702. doi: 10.1158/1078-0432.CCR-13-1746.PubMedCrossRefGoogle Scholar
  79. 79.
    Cheng, S., Koch, W. H., & Wu, L. (2012). Co-development of a companion diagnostic for targeted cancer therapy. New Biotechnology, 29(6), 682–688. doi: 10.1016/j.nbt.2012.02.002.PubMedCrossRefGoogle Scholar
  80. 80.
    Skorokhod, A., Capper, D., von Deimling, A., Enk, A., & Helmbold, P. (2012). Detection of BRAF V600E mutations in skin metastases of malignant melanoma by monoclonal antibody VE1. Journal of the American Academy of Dermatology, 67(3), 488–491. doi: 10.1016/j.jaad.2012.03.022.PubMedCrossRefGoogle Scholar
  81. 81.
    Chang, G. A., & Polsky, D. (2015). Mutational heterogeneity in melanoma: an inconvenient truth. The Journal of Investigative Dermatology, 135(12), 2913–2918. doi: 10.1038/jid.2015.351.PubMedCrossRefGoogle Scholar
  82. 82.
    Riveiro-Falkenbach, E., Villanueva, C. A., Garrido, M. C., Ruano, Y., Garcia-Martin, R. M., Godoy, E., Ortiz-Romero, P. L., Rios-Martin, J. J., Santos-Briz, A., & Rodriguez-Peralto, J. L. (2015). Intra- and inter-Tumoral homogeneity of BRAF(V600E) mutations in melanoma tumors. The Journal of Investigative Dermatology, 135(12), 3078–3085. doi: 10.1038/jid.2015.229.PubMedCrossRefGoogle Scholar
  83. 83.
    Ilie, M., Long-Mira, E., Funck-Brentano, E., Lassalle, S., Butori, C., Lespinet-Fabre, V., Bordone, O., Gay, A., Zahaf, K., Poissonnet, G., Lacour, J.-P., Bahadoran, P., Ballotti, R., Gros, A., Dutriaux, C., Saiag, P., Merlio, J.-P., Vergier, B., Emile, J. F., Hofman, V., & Hofman, P. (2015). Immunohistochemistry as a potential tool for routine detection of the NRAS Q61R mutation in patients with metastatic melanoma. Journal of the American Academy of Dermatology, 72(5), 786–793. doi: 10.1016/j.jaad.2015.01.012.PubMedCrossRefGoogle Scholar
  84. 84.
    Just, P.-A., Pouliquen, C., Audebourg, A., Laurent-Roussel, S., Carlotti, A., Dupin, N., Vacher-Lavenu, M.-C., Vidaud, M., Terris, B., & Pasmant, E. (2016). High specificity and sensitivity of NRAS Q61R immunohistochemistry (IHC) in melanomas. Journal of the American Academy of Dermatology, 74(3), 572–573. doi: 10.1016/j.jaad.2015.11.011.PubMedCrossRefGoogle Scholar
  85. 85.
    Arafeh, R., Qutob, N., Emmanuel, R., Keren-Paz, A., Madore, J., Elkahloun, A., Wilmott, J. S., Gartner, J. J., Di Pizio, A., Winograd-Katz, S., Sindiri, S., Rotkopf, R., Dutton-Regester, K., Johansson, P., Pritchard, A. L., Waddell, N., Hill, V. K., Lin, J. C., Hevroni, Y., Rosenberg, S. A., Khan, J., Ben-Dor, S., Niv, M. Y., Ulitsky, I., Mann, G. J., Scolyer, R. A., Hayward, N. K., & Samuels, Y. (2015). Recurrent inactivating RASA2 mutations in melanoma. Nature Genetics, 47(12), 1408–1410. doi: 10.1038/ng.3427.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Gartner, J. J., Parker, S. C. J., Prickett, T. D., Dutton-Regester, K., Stitzel, M. L., Lin, J. C., Davis, S., Simhadri, V. L., Jha, S., Katagiri, N., Gotea, V., Teer, J. K., Wei, X., Morken, M. A., Bhanot, U. K., Chen, G., Elnitski, L. L., Davies, M. A., Gershenwald, J. E., Carter, H., Karchin, R., Robinson, W., Robinson, S., Rosenberg, S. A., Collins, F. S., Parmigiani, G., Komar, A. A., Kimchi-Sarfaty, C., Hayward, N. K., Margulies, E. H., & Samuels, Y. (2013). Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13481–13486. doi: 10.1073/pnas.1304227110.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Novoa, E. M., & Ribas de Pouplana, L. (2012). Speeding with control: codon usage, tRNAs, and ribosomes. Trends in Genetics, 28(11), 574–581. doi: 10.1016/j.tig.2012.07.006.PubMedCrossRefGoogle Scholar
  88. 88.
    Timar, J., Vizkeleti, L., Doma, V., Barbai, T., & Raso, E. (2016). Genetic progression of malignant melanoma. Cancer Metastasis Reviews, 35(1), 93–107. doi: 10.1007/s10555-016-9613-5.PubMedCrossRefGoogle Scholar
  89. 89.
    van Allen, E. M., Wagle, N., Sucker, A., Treacy, D. J., Johannessen, C. M., Goetz, E. M., Place, C. S., Taylor-Weiner, A., Whittaker, S., Kryukov, G. V., Hodis, E., Rosenberg, M., McKenna, A., Cibulskis, K., Farlow, D., Zimmer, L., Hillen, U., Gutzmer, R., Goldinger, S. M., Ugurel, S., Gogas, H. J., Egberts, F., Berking, C., Trefzer, U., Loquai, C., Weide, B., Hassel, J. C., Gabriel, S. B., Carter, S. L., Getz, G., Garraway, L. A., & Schadendorf, D. (2014). The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discovery, 4(1), 94–109. doi: 10.1158/2159-8290.CD-13-0617.PubMedCrossRefGoogle Scholar
  90. 90.
    Shi, H., Hugo, W., Kong, X., Hong, A., Koya, R. C., Moriceau, G., Chodon, T., Guo, R., Johnson, D. B., Dahlman, K. B., Kelley, M. C., Kefford, R. F., Chmielowski, B., Glaspy, J. A., Sosman, J. A., van Baren, N., Long, G. V., Ribas, A., & Lo, R. S. (2014). Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discovery, 4(1), 80–93. doi: 10.1158/2159-8290.CD-13-0642.PubMedCrossRefGoogle Scholar
  91. 91.
    Moriceau, G., Hugo, W., Hong, A., Shi, H., Kong, X., Yu, C. C., Koya, R. C., Samatar, A. A., Khanlou, N., Braun, J., Ruchalski, K., Seifert, H., Larkin, J., Dahlman, K. B., Johnson, D. B., Algazi, A., Sosman, J. A., Ribas, A., & Lo, R. S. (2015). Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell, 27(2), 240–256. doi: 10.1016/j.ccell.2014.11.018.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wagle, N., van Allen, E. M., Treacy, D. J., Frederick, D. T., Cooper, Z. A., Taylor-Weiner, A., Rosenberg, M., Goetz, E. M., Sullivan, R. J., Farlow, D. N., Friedrich, D. C., Anderka, K., Perrin, D., Johannessen, C. M., McKenna, A., Cibulskis, K., Kryukov, G., Hodis, E., Lawrence, D. P., Fisher, S., Getz, G., Gabriel, S. B., Carter, S. L., Flaherty, K. T., Wargo, J. A., & Garraway, L. A. (2014). MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discovery, 4(1), 61–68. doi: 10.1158/2159-8290.CD-13-0631.PubMedCrossRefGoogle Scholar
  93. 93.
    Shi, H., Moriceau, G., Kong, X., Lee, M.-K., Lee, H., Koya, R. C., Ng, C., Chodon, T., Scolyer, R. A., Dahlman, K. B., Sosman, J. A., Kefford, R. F., Long, G. V., Nelson, S. F., Ribas, A., & Lo, R. S. (2012). Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nature Communications, 3, 724. doi: 10.1038/ncomms1727.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Konieczkowski, D. J., Johannessen, C. M., Abudayyeh, O., Kim, J. W., Cooper, Z. A., Piris, A., Frederick, D. T., Barzily-Rokni, M., Straussman, R., Haq, R., Fisher, D. E., Mesirov, J. P., Hahn, W. C., Flaherty, K. T., Wargo, J. A., Tamayo, P., & Garraway, L. A. (2014). A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discovery, 4(7), 816–827. doi: 10.1158/2159-8290.CD-13-0424.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Muller, J., Krijgsman, O., Tsoi, J., Robert, L., Hugo, W., Song, C., Kong, X., Possik, P. A., Cornelissen-Steijger, P. D. M., Geukes Foppen, M. H., Kemper, K., Goding, C. R., McDermott, U., Blank, C., Haanen, J., Graeber, T. G., Ribas, A., Lo, R. S., & Peeper, D. S. (2014). Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nature Communications, 5, 5712. doi: 10.1038/ncomms6712.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Smith, M. P., Sanchez-Laorden, B., O'Brien, K., Brunton, H., Ferguson, J., Young, H., Dhomen, N., Flaherty, K. T., Frederick, D. T., Cooper, Z. A., Wargo, J. A., Marais, R., & Wellbrock, C. (2014). The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFalpha. Cancer Discovery, 4(10), 1214–1229. doi: 10.1158/2159-8290.CD-13-1007.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Riesenberg, S., Groetchen, A., Siddaway, R., Bald, T., Reinhardt, J., Smorra, D., Kohlmeyer, J., Renn, M., Phung, B., Aymans, P., Schmidt, T., Hornung, V., Davidson, I., Goding, C. R., Jonsson, G., Landsberg, J., Tuting, T., & Holzel, M. (2015). MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nature Communications, 6, 8755. doi: 10.1038/ncomms9755.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Landsberg, J., Kohlmeyer, J., Renn, M., Bald, T., Rogava, M., Cron, M., Fatho, M., Lennerz, V., Wolfel, T., Holzel, M., & Tuting, T. (2012). Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature, 490(7420), 412–416. doi: 10.1038/nature11538.PubMedCrossRefGoogle Scholar
  99. 99.
    Soudja, S. M., Wehbe, M., Mas, A., Chasson, L., de Tenbossche, C. P., Huijbers, I., van den Eynde, B., & Schmitt-Verhulst, A.-M. (2010). Tumor-initiated inflammation overrides protective adaptive immunity in an induced melanoma model in mice. Cancer Research, 70(9), 3515–3525. doi: 10.1158/0008-5472.CAN-09-4354.PubMedCrossRefGoogle Scholar
  100. 100.
    Holzel, M., & Tuting, T. (2016). Inflammation-induced plasticity in melanoma therapy and metastasis. Trends in Immunology, 37(6), 364–374. doi: 10.1016/j.it.2016.03.009.PubMedCrossRefGoogle Scholar
  101. 101.
    Sun, C., Wang, L., Huang, S., Heynen, G. J. J. E., Prahallad, A., Robert, C., Haanen, J., Blank, C., Wesseling, J., Willems, S. M., Zecchin, D., Hobor, S., Bajpe, P. K., Lieftink, C., Mateus, C., Vagner, S., Grernrum, W., Hofland, I., Schlicker, A., Wessels, L. F. A., Beijersbergen, R. L., Bardelli, A., Di Nicolantonio, F., Eggermont, A. M. M., & Bernards, R. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature, 508(7494), 118–122. doi: 10.1038/nature13121.PubMedCrossRefGoogle Scholar
  102. 102.
    Aparicio, S., & Caldas, C. (2013). The implications of clonal genome evolution for cancer medicine. The New England Journal of Medicine, 368(9), 842–851. doi: 10.1056/NEJMra1204892.PubMedCrossRefGoogle Scholar
  103. 103.
    Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N. Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C. R., Nohadani, M., Eklund, A. C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P. A., & Swanton, C. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England Journal of Medicine, 366(10), 883–892. doi: 10.1056/NEJMoa1113205.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Diaz Jr., L. A., Williams, R. T., Wu, J., Kinde, I., Hecht, J. R., Berlin, J., Allen, B., Bozic, I., Reiter, J. G., Nowak, M. A., Kinzler, K. W., Oliner, K. S., & Vogelstein, B. (2012). The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature, 486(7404), 537–540. doi: 10.1038/nature11219.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Obenauf, A. C., Zou, Y., Ji, A. L., Vanharanta, S., Shu, W., Shi, H., Kong, X., Bosenberg, M. C., Wiesner, T., Rosen, N., Lo, R. S., & Massague, J. (2015). Therapy-induced tumour secretomes promote resistance and tumour progression. Nature, 520(7547), 368–372. doi: 10.1038/nature14336.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Waclaw, B., Bozic, I., Pittman, M. E., Hruban, R. H., Vogelstein, B., & Nowak, M. A. (2015). A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature, 525(7568), 261–264. doi: 10.1038/nature14971.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    McGranahan, N., Favero, F., de Bruin, E. C., Birkbak, N. J., Szallasi, Z., & Swanton, C. (2015). Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Science Translational Medicine, 7, 283ra54. doi: 10.1126/scitranslmed.aaa1408.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Held, M. A., Langdon, C. G., Platt, J. T., Graham-Steed, T., Liu, Z., Chakraborty, A., Bacchiocchi, A., Koo, A., Haskins, J. W., Bosenberg, M. W., & Stern, D. F. (2013). Genotype-selective combination therapies for melanoma identified by high-throughput drug screening. Cancer Discovery, 3(1), 52–67. doi: 10.1158/2159-8290.CD-12-0408.PubMedCrossRefGoogle Scholar
  109. 109.
    Holzel, M., Bovier, A., & Tuting, T. (2013). Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nature Reviews Cancer, 13(5), 365–376. doi: 10.1038/nrc3498.PubMedCrossRefGoogle Scholar
  110. 110.
    Massague, J., & Obenauf, A. C. (2016). Metastatic colonization by circulating tumour cells. Nature, 529(7586), 298–306. doi: 10.1038/nature17038.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Gawad, C., Koh, W., & Quake, S. R. (2016). Single-cell genome sequencing: current state of the science. Nature Reviews Genetics, 17(3), 175–188. doi: 10.1038/nrg.2015.16.PubMedCrossRefGoogle Scholar
  112. 112.
    Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., Cahill, D. P., Nahed, B. V., Curry, W. T., Martuza, R. L., Louis, D. N., Rozenblatt-Rosen, O., Suva, M. L., Regev, A., & Bernstein, B. E. (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 344(6190), 1396–1401. doi: 10.1126/science.1254257.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Ennen, M., Keime, C., Kobi, D., Mengus, G., Lipsker, D., Thibault-Carpentier, C., & Davidson, I. (2015). Single-cell gene expression signatures reveal melanoma cell heterogeneity. Oncogene, 34(25), 3251–3263. doi: 10.1038/onc.2014.262.PubMedCrossRefGoogle Scholar
  114. 114.
    Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H., Treacy, D., Trombetta, J. J., Rotem, A., Rodman, C., Lian, C., Murphy, G., Fallahi-Sichani, M., Dutton-Regester, K., Lin, J.-R., Cohen, O., Shah, P., Lu, D., Genshaft, A. S., Hughes, T. K., Ziegler, C. G. K., Kazer, S. W., Gaillard, A., Kolb, K. E., Villani, A.-C., Johannessen, C. M., Andreev, A. Y., van Allen, E. M., Bertagnolli, M., Sorger, P. K., Sullivan, R. J., Flaherty, K. T., Frederick, D. T., Jane-Valbuena, J., Yoon, C. H., Rozenblatt-Rosen, O., Shalek, A. K., Regev, A., & Garraway, L. A. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 352(6282), 189–196. doi: 10.1126/science.aad0501.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hou, Y., Wu, K., Shi, X., Li, F., Song, L., Wu, H., Dean, M., Li, G., Tsang, S., Jiang, R., Zhang, X., Li, B., Liu, G., Bedekar, N., Lu, N., Xie, G., Liang, H., Chang, L., Wang, T., Chen, J., Li, Y., Zhang, X., Yang, H., Xu, X., Wang, L., & Wang, J. (2015). Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing. GigaScience, 4, 37. doi: 10.1186/s13742-015-0068-3.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Naxerova, K., & Jain, R. K. (2015). Using tumour phylogenetics to identify the roots of metastasis in humans. Nature Reviews Clinical Oncology, 12(5), 258–272. doi: 10.1038/nrclinonc.2014.238.PubMedCrossRefGoogle Scholar
  117. 117.
    Ribas, A., Hamid, O., Daud, A., Hodi, F. S., Wolchok, J. D., Kefford, R., Joshua, A. M., Patnaik, A., Hwu, W.-J., Weber, J. S., Gangadhar, T. C., Hersey, P., Dronca, R., Joseph, R. W., Zarour, H., Chmielowski, B., Lawrence, D. P., Algazi, A., Rizvi, N. A., Hoffner, B., Mateus, C., Gergich, K., Lindia, J. A., Giannotti, M., Li, X. N., Ebbinghaus, S., Kang, S. P., & Robert, C. (2016). Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA, 315(15), 1600–1609. doi: 10.1001/jama.2016.4059.PubMedCrossRefGoogle Scholar
  118. 118.
    Sharma, P., & Allison, J. P. (2015). Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell, 161(2), 205–214. doi: 10.1016/j.cell.2015.03.030.PubMedCrossRefGoogle Scholar
  119. 119.
    Chen, P.-L., Roh, W., Reuben, A., Cooper, Z. A., Spencer, C. N., Prieto, P. A., Miller, J. P., Bassett, R. L., Gopalakrishnan, V., Wani, K., de Macedo, M. P., Austin-Breneman, J. L., Jiang, H., Chang, Q., Reddy, S. M., Chen, W.-S., Tetzlaff, M. T., Broaddus, R. J., Davies, M. A., Gershenwald, J. E., Haydu, L., Lazar, A. J., Patel, S. P., Hwu, P., Hwu, W.-J., Diab, A., Glitza, I. C., Woodman, S. E., Vence, L. M., Wistuba, I. I., Amaria, R. N., Kwong, L. N., Prieto, V., Davis, R. E., Ma, W., Overwijk, W. W., Sharpe, A. H., Hu, J., Futreal, P. A., Blando, J., Sharma, P., Allison, J. P., Chin, L., & Wargo, J. A. (2016). Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discovery, 6(8), 827–837. doi: 10.1158/2159-8290.CD-15-1545.PubMedCrossRefGoogle Scholar
  120. 120.
    Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D. Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., Saco, J., Homet Moreno, B., Mezzadra, R., Chmielowski, B., Ruchalski, K., Shintaku, I. P., Sanchez, P. J., Puig-Saus, C., Cherry, G., Seja, E., Kong, X., Pang, J., Berent-Maoz, B., Comin-Anduix, B., Graeber, T. G., Tumeh, P. C., Schumacher, T. N. M., Lo, R. S., & Ribas, A. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. The New England Journal of Medicine, 375(9), 819–829. doi: 10.1056/NEJMoa1604958.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Chabanon, R. M., Pedrero, M., Lefebvre, C., Marabelle, A., Soria, J.-C., & Postel-Vinay, S. (2016). Mutational landscape and sensitivity to immune checkpoint blockers. Clinical Cancer Research, 22(17), 4309–4321. doi: 10.1158/1078-0432.CCR-16-0903.PubMedCrossRefGoogle Scholar
  122. 122.
    Tumeh, P. C., Harview, C. L., Yearley, J. H., Shintaku, I. P., Taylor, E. J. M., Robert, L., Chmielowski, B., Spasic, M., Henry, G., Ciobanu, V., West, A. N., Carmona, M., Kivork, C., Seja, E., Cherry, G., Gutierrez, A. J., Grogan, T. R., Mateus, C., Tomasic, G., Glaspy, J. A., Emerson, R. O., Robins, H., Pierce, R. H., Elashoff, D. A., Robert, C., & Ribas, A. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515(7528), 568–571. doi: 10.1038/nature13954.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science, 348(6230), 69–74. doi: 10.1126/science.aaa4971.PubMedCrossRefGoogle Scholar
  124. 124.
    Bald, T., Landsberg, J., Lopez-Ramos, D., Renn, M., Glodde, N., Jansen, P., Gaffal, E., Steitz, J., Tolba, R., Kalinke, U., Limmer, A., Jonsson, G., Holzel, M., & Tuting, T. (2014). Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discovery, 4(6), 674–687. doi: 10.1158/2159-8290.CD-13-0458.PubMedCrossRefGoogle Scholar
  125. 125.
    Spranger, S., Bao, R., & Gajewski, T. F. (2015). Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature, 523(7559), 231–235. doi: 10.1038/nature14404.PubMedCrossRefGoogle Scholar
  126. 126.
    Peng, W., Chen, J. Q., Liu, C., Malu, S., Creasy, C., Tetzlaff, M. T., Xu, C., McKenzie, J. A., Zhang, C., Liang, X., Williams, L. J., Deng, W., Chen, G., Mbofung, R., Lazar, A. J., Torres-Cabala, C. A., Cooper, Z. A., Chen, P.-L., Tieu, T. N., Spranger, S., Yu, X., Bernatchez, C., Forget, M.-A., Haymaker, C., Amaria, R., McQuade, J. L., Glitza, I. C., Cascone, T., Li, H. S., Kwong, L. N., Heffernan, T. P., Hu, J., Bassett Jr., R. L., Bosenberg, M. W., Woodman, S. E., Overwijk, W. W., Lizee, G., Roszik, J., Gajewski, T. F., Wargo, J. A., Gershenwald, J. E., Radvanyi, L., Davies, M. A., & Hwu, P. (2016). Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discovery, 6(2), 202–216. doi: 10.1158/2159-8290.CD-15-0283.PubMedCrossRefGoogle Scholar
  127. 127.
    Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141. doi: 10.1016/j.cell.2014.03.011.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Jo, J.-H., Kennedy, E. A., & Kong, H. H. (2016). Research techniques made simple: bacterial 16S ribosomal RNA gene sequencing in cutaneous research. The Journal of Investigative Dermatology, 136(3), e23–e27. doi: 10.1016/j.jid.2016.01.005.PubMedCrossRefGoogle Scholar
  129. 129.
    Kong, H. H. (2016). Details matter: designing skin microbiome studies. The Journal of Investigative Dermatology, 136(3), 900–902. doi: 10.1016/j.jid.2016.03.004.PubMedCrossRefGoogle Scholar
  130. 130.
    Dhomen, N., Reis-Filho, J. S., da Rocha Dias, S., Hayward, R., Savage, K., Delmas, V., Larue, L., Pritchard, C., & Marais, R. (2009). Oncogenic BRAF induces melanocyte senescence and melanoma in mice. Cancer Cell, 15(4), 294–303. doi: 10.1016/j.ccr.2009.02.022.PubMedCrossRefGoogle Scholar
  131. 131.
    Maertens, O., Johnson, B., Hollstein, P., Frederick, D. T., Cooper, Z. A., Messiaen, L., Bronson, R. T., McMahon, M., Granter, S., Flaherty, K., Wargo, J. A., Marais, R., & Cichowski, K. (2013). Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discovery, 3(3), 338–349. doi: 10.1158/2159-8290.CD-12-0313.PubMedCrossRefGoogle Scholar
  132. 132.
    Holzel, M., Landsberg, J., Glodde, N., Bald, T., Rogava, M., Riesenberg, S., Becker, A., Jonsson, G., & Tuting, T. (2016). A preclinical model of malignant peripheral nerve sheath tumor-like melanoma is characterized by infiltrating mast cells. Cancer Research, 76(2), 251–263. doi: 10.1158/0008-5472.CAN-15-1090.PubMedCrossRefGoogle Scholar
  133. 133.
    Hooijkaas, A. I., Gadiot, J., van der Valk, M., Mooi, W. J., & Blank, C. U. (2012). Targeting BRAFV600E in an inducible murine model of melanoma. The American Journal of Pathology, 181(3), 785–794. doi: 10.1016/j.ajpath.2012.06.002.PubMedCrossRefGoogle Scholar
  134. 134.
    Damsky, W. E., Curley, D. P., Santhanakrishnan, M., Rosenbaum, L. E., Platt, J. T., Gould Rothberg, B. E., Taketo, M. M., Dankort, D., Rimm, D. L., McMahon, M., & Bosenberg, M. (2011). Beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell, 20(6), 741–754. doi: 10.1016/j.ccr.2011.10.030.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Wehbe, M., Soudja, S. M., Mas, A., Chasson, L., Guinamard, R., Tenbossche, C. P. de, Verdeil, G., van den Eynde, B., Schmitt-Verhulst, A.-M. (2012) Epithelial-mesenchymal-transition-like and TGFbeta pathways associated with autochthonous inflammatory melanoma development in mice. PloS One, 7(11), e49419. doi:  10.1371/journal.pone.0049419
  136. 136.
    Ramsdale, R., Jorissen, R. N., Li, F. Z., Al-Obaidi, S., Ward, T., Sheppard, K. E., Bukczynska, P. E., Young, R. J., Boyle, S. E., Shackleton, M., Bollag, G., Long, G. V., Tulchinsky, E., Rizos, H., Pearson, R. B., McArthur, G. A., Dhillon, A. S., & Ferrao, P. T. (2015). The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Science Signaling, 8(390), ra82. doi: 10.1126/scisignal.aab1111.PubMedCrossRefGoogle Scholar
  137. 137.
    Zhao, F., Sucker, A., Horn, S., Heeke, C., Bielefeld, N., Schrors, B., Bicker, A., Lindemann, M., Roesch, A., Gaudernack, G., Stiller, M., Becker, J. C., Lennerz, V., Wolfel, T., Schadendorf, D., Griewank, K., & Paschen, A. (2016). Melanoma lesions independently acquire T-cell resistance during metastatic latency. Cancer Research, 76(15), 4347–4358. doi: 10.1158/0008-5472.CAN-16-0008.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Dermatology, Venereology and AllergologyUniversity of LeipzigLeipzigGermany
  2. 2.Unit for RNA Biology, Department of Clinical Chemistry and Clinical PharmacologyUniversity of BonnBonnGermany

Personalised recommendations