Advertisement

Cancer and Metastasis Reviews

, Volume 35, Issue 4, pp 575–588 | Cite as

The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer

  • Jennifer L. Hsu
  • Mien-Chie Hung
Article

Abstract

Breast cancer affects approximately 1 in 8 women, and it is estimated that over 246,660 women in the USA will be diagnosed with breast cancer in 2016. Breast cancer mortality has decline over the last two decades due to early detection and improved treatment. Over the last few years, there is mounting evidence to demonstrate the prominent role of receptor tyrosine kinases (RTKs) in tumor initiation and progression, and targeted therapies against the RTKs have been developed, evaluated in clinical trials, and approved for many cancer types, including breast cancer. However, not all breast cancers are the same as evidenced by the multiple subtypes of the disease, with some more aggressive than others, showing differential treatment response to different types of drugs. Moreover, in addition to canonical signaling from the cell surface, many RTKs can be trafficked to various subcellular compartments, e.g., the multivesicular body and nucleus, where they carry out critical cellular functions, such as cell proliferation, DNA replication and repair, and therapeutic resistance. In this review, we provide a brief summary on the role of a selected number of RTKs in breast cancer and describe some mechanisms of resistance to targeted therapies.

Keywords

Breast cancer Receptor tyrosine kinases Targeted therapies Drug resistance 

Notes

Acknowledgements

The work was supported by the following grants: National Institutes of Health (CA109311, CA099031, and CCSG CA016672); Cancer Prevention Research Institute of Texas (RP160710); National Breast Cancer Foundation Inc.; Breast Cancer Research Foundation; Patel Memorial Breast Cancer Endowment Fund; The University of Texas MD Anderson–China Medical University and Hospital Sister Institution Fund; Ministry of Science and Technology, International Research-intensive Centers of Excellence in Taiwan (I-RiCE; MOST 105-2911-I-002-302); Ministry of Health and Welfare, China Medical University Hospital Cancer Research Center of Excellence (MOHW105-TDU-B-212-134003); and Center for Biological Pathways.

References

  1. 1.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: a Cancer Journal for Clinicians, 66(1), 7–30.Google Scholar
  2. 2.
    Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752.PubMedCrossRefGoogle Scholar
  3. 3.
    Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10869–10874.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8418–8423.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Voduc, K. D., Cheang, M. C., Tyldesley, S., Gelmon, K., Nielsen, T. O., & Kennecke, H. (2010). Breast cancer subtypes and the risk of local and regional relapse. Journal of Clinical Oncology, 28(10), 1684–1691.PubMedCrossRefGoogle Scholar
  6. 6.
    Cancer Genome Atlas N (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70.CrossRefGoogle Scholar
  7. 7.
    American Cancer Society (2016). Cancer facts & figures. Atlanta: American Cancer Society., 2016.Google Scholar
  8. 8.
    Rivera, E., & Gomez, H. (2010). Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone. Breast Cancer Research, 12(Suppl 2), S2.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Yarden, Y., & Shilo, B. Z. (2007). SnapShot: EGFR signaling pathway. Cell, 131(5), 1018.PubMedCrossRefGoogle Scholar
  10. 10.
    Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117–1134.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Chen, M. K., & Hung, M. C. (2015). Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. The FEBS Journal, 282(19), 3693–3721.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Schlessinger, J. (1988). Signal transduction by allosteric receptor oligomerization. Trends in Biochemical Sciences, 13(11), 443–447.PubMedCrossRefGoogle Scholar
  13. 13.
    Gordus, A., Krall, J. A., Beyer, E. M., Kaushansky, A., Wolf-Yadlin, A., Sevecka, M., et al. (2009). Linear combinations of docking affinities explain quantitative differences in RTK signaling. Molecular Systems Biology, 5, 235.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Casaletto, J. B., & McClatchey, A. I. (2012). Spatial regulation of receptor tyrosine kinases in development and cancer. Nature Reviews. Cancer, 12(6), 387–400.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Schlessinger, J. 2014. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harbor perspectives in biology, 6(3).Google Scholar
  16. 16.
    Waterman, H., & Yarden, Y. (2001). Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Letters, 490(3), 142–152.PubMedCrossRefGoogle Scholar
  17. 17.
    von Zastrow, M., & Sorkin, A. (2007). Signaling on the endocytic pathway. Current Opinion in Cell Biology, 19(4), 436–445.CrossRefGoogle Scholar
  18. 18.
    Wang, S. C., & Hung, M. C. (2009). Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clinical Cancer Research, 15(21), 6484–6489.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee, H. H., Wang, Y. N., & Hung, M. C. (2015). Non-canonical signaling mode of the epidermal growth factor receptor family. American Journal of Cancer Research, 5(10), 2944–2958.PubMedPubMedCentralGoogle Scholar
  20. 20.
    The, Y. Y. (2001). EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. European Journal of Cancer, 37(Suppl 4), S3–S8.Google Scholar
  21. 21.
    Hynes, N. E., & MacDonald, G. (2009). ErbB receptors and signaling pathways in cancer. Current Opinion in Cell Biology, 21(2), 177–184.PubMedCrossRefGoogle Scholar
  22. 22.
    Neal, J. W., & Sledge, G. W. (2014). Decade in review-targeted therapy: successes, toxicities and challenges in solid tumours. Nature reviews Clinical oncology., 11(11), 627–628.PubMedCrossRefGoogle Scholar
  23. 23.
    Remon, J., Moran, T., Majem, M., Reguart, N., Dalmau, E., Marquez-Medina, D., et al. (2014). Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: a new era begins. Cancer treatment reviews., 40(1), 93–101.PubMedCrossRefGoogle Scholar
  24. 24.
    Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews. Molecular Cell Biology, 2(2), 127–137.PubMedCrossRefGoogle Scholar
  25. 25.
    Prenzel, N., Fischer, O. M., Streit, S., Hart, S., & Ullrich, A. (2001). The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocrine-Related Cancer, 8(1), 11–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Citri, A., & Yarden, Y. (2006). EGF-ERBB signalling: towards the systems level. Nature Reviews. Molecular Cell Biology, 7(7), 505–516.PubMedCrossRefGoogle Scholar
  27. 27.
    Schneider, M. R., & Wolf, E. (2009). The epidermal growth factor receptor ligands at a glance. Journal of Cellular Physiology, 218(3), 460–466.PubMedCrossRefGoogle Scholar
  28. 28.
    Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 331(6024), 1559–1564.PubMedCrossRefGoogle Scholar
  29. 29.
    Avraham, R., & Yarden, Y. (2011). Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nature Reviews. Molecular Cell Biology, 12(2), 104–117.PubMedCrossRefGoogle Scholar
  30. 30.
    Baselga, J., & Swain, S. M. (2009). Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nature Reviews. Cancer, 9(7), 463–475.PubMedCrossRefGoogle Scholar
  31. 31.
    Tebbutt, N., Pedersen, M. W., & Johns, T. G. (2013). Targeting the ERBB family in cancer: couples therapy. Nature Reviews. Cancer, 13(9), 663–673.PubMedCrossRefGoogle Scholar
  32. 32.
    Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science, 296(5573), 1655–1657.PubMedCrossRefGoogle Scholar
  33. 33.
    Scaltriti, M., & Baselga, J. (2006). The epidermal growth factor receptor pathway: a model for targeted therapy. Clinical Cancer Research, 12(18), 5268–5272.PubMedCrossRefGoogle Scholar
  34. 34.
    Quesnelle, K. M., Boehm, A. L., & Grandis, J. R. (2007). STAT-mediated EGFR signaling in cancer. Journal of Cellular Biochemistry, 102(2), 311–319.PubMedCrossRefGoogle Scholar
  35. 35.
    Lurje, G., & Lenz, H. J. (2009). EGFR signaling and drug discovery. Oncology, 77(6), 400–410.PubMedCrossRefGoogle Scholar
  36. 36.
    Fischer, O. M., Hart, S., Gschwind, A., & Ullrich, A. (2003). EGFR signal transactivation in cancer cells. Biochemical Society Transactions, 31(Pt 6), 1203–1208.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu, D., Aguirre Ghiso, J., Estrada, Y., & Ossowski, L. (2002). EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell, 1(5), 445–457.PubMedCrossRefGoogle Scholar
  38. 38.
    Sainsbury, J. R., Farndon, J. R., Needham, G. K., Malcolm, A. J., & Harris, A. L. (1987). Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet, 1(8547), 1398–1402.PubMedGoogle Scholar
  39. 39.
    Tsutsui, S., Ohno, S., Murakami, S., Hachitanda, Y., & Oda, S. (2002). Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Research and Treatment, 71(1), 67–75.PubMedCrossRefGoogle Scholar
  40. 40.
    Witton, C. J., Reeves, J. R., Going, J. J., Cooke, T. G., & Bartlett, J. M. (2003). Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. The Journal of Pathology, 200(3), 290–297.PubMedCrossRefGoogle Scholar
  41. 41.
    Rakha, E. A., El-Sayed, M. E., Green, A. R., Lee, A. H., Robertson, J. F., & Ellis, I. O. (2007). Prognostic markers in triple-negative breast cancer. Cancer, 109(1), 25–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., et al. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation, 121(7), 2750–2767.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Masuda, H., Zhang, D., Bartholomeusz, C., Doihara, H., Hortobagyi, G. N., & Ueno, N. T. (2012). Role of epidermal growth factor receptor in breast cancer. Breast Cancer Research and Treatment, 136(2), 331–345.PubMedCrossRefGoogle Scholar
  44. 44.
    Frederick, L., Wang, X. Y., Eley, G., & James, C. D. (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Research, 60(5), 1383–1387.PubMedGoogle Scholar
  45. 45.
    Ooi, A., Takehana, T., Li, X., Suzuki, S., Kunitomo, K., Iino, H., et al. (2004). Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: an immunohistochemical and fluorescent in situ hybridization study. Modern Pathology, 17(8), 895–904.PubMedCrossRefGoogle Scholar
  46. 46.
    Bhargava, R., Gerald, W. L., Li, A. R., Pan, Q., Lal, P., Ladanyi, M., et al. (2005). EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Modern Pathology, 18(8), 1027–1033.PubMedCrossRefGoogle Scholar
  47. 47.
    Hanawa, M., Suzuki, S., Dobashi, Y., Yamane, T., Kono, K., Enomoto, N., et al. (2006). EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. International Journal of Cancer, 118(5), 1173–1180.PubMedCrossRefGoogle Scholar
  48. 48.
    Hirsch, F. R., Varella-Garcia, M., & Cappuzzo, F. (2009). Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene, 28(Suppl 1), S32–S37.PubMedCrossRefGoogle Scholar
  49. 49.
    Reis-Filho, J. S., Pinheiro, C., Lambros, M. B., Milanezi, F., Carvalho, S., Savage, K., et al. (2006). EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. The Journal of Pathology, 209(4), 445–453.PubMedCrossRefGoogle Scholar
  50. 50.
    Burga, L. N., Hu, H., Juvekar, A., Tung, N. M., Troyan, S. L., Hofstatter, E. W., et al. (2011). Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice. Breast cancer research : BCR., 13(2), R30.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhang, J., Antonyak, M. A., Singh, G., & Cerione, R. A. (2013). A mechanism for the upregulation of EGF receptor levels in glioblastomas. Cell Reports, 3(6), 2008–2020.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Verma, A., & Mehta, K. (2007). Tissue transglutaminase-mediated chemoresistance in cancer cells. Drug Resistance Updates, 10(4–5), 144–151.PubMedCrossRefGoogle Scholar
  53. 53.
    Huang, L., Xu, A. M., & Liu, W. (2015). Transglutaminase 2 in cancer. American Journal of Cancer Research, 5(9), 2756–2776.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England Journal of Medicine, 350(21), 2129–2139.PubMedCrossRefGoogle Scholar
  55. 55.
    Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304(5676), 1497–1500.PubMedCrossRefGoogle Scholar
  56. 56.
    Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., et al. (2004). EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13306–13311.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lovly, C., Horn, L., Pao, W. 2015. My Cancer Genome. [Available from: https://www.mycancergenome.org/content/disease/lung-cancer/egfr/5/.
  58. 58.
    Teng, Y. H., Tan, W. J., Thike, A. A., Cheok, P. Y., Tse, G. M., Wong, N. S., et al. (2011). Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Research, 13(2), R35.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Nakai, K., Hung, M.C., Yamaguchi, H. 2016. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. American Journal of Cancer Research, in press.Google Scholar
  60. 60.
    Pedersen, M. W., Meltorn, M., Damstrup, L., & Poulsen, H. S. (2001). The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Annals of Oncology, 12(6), 745–760.PubMedCrossRefGoogle Scholar
  61. 61.
    Gan, H. K., Cvrljevic, A. N., & Johns, T. G. (2013). The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. The FEBS Journal, 280(21), 5350–5370.PubMedCrossRefGoogle Scholar
  62. 62.
    Del Vecchio, C. A., Jensen, K. C., Nitta, R. T., Shain, A. H., Giacomini, C. P., & Wong, A. J. (2012). Epidermal growth factor receptor variant III contributes to cancer stem cell phenotypes in invasive breast carcinoma. Cancer Research, 72(10), 2657–2671.PubMedCrossRefGoogle Scholar
  63. 63.
    Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.PubMedCrossRefGoogle Scholar
  64. 64.
    Burgess, A. W. (2008). EGFR family: structure physiology signalling and therapeutic targets. Growth Factors, 26(5), 263–274.PubMedCrossRefGoogle Scholar
  65. 65.
    Marti, U., Burwen, S. J., Wells, A., Barker, M. E., Huling, S., Feren, A. M., et al. (1991). Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology, 13(1), 15–20.PubMedCrossRefGoogle Scholar
  66. 66.
    Han, W., & Lo, H. W. (2012). Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Letters, 318(2), 124–134.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lo, H. W., Xia, W., Wei, Y., Ali-Seyed, M., Huang, S. F., & Hung, M. C. (2005). Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Research, 65(1), 338–348.PubMedGoogle Scholar
  68. 68.
    Psyrri, A., Yu, Z., Weinberger, P. M., Sasaki, C., Haffty, B., Camp, R., et al. (2005). Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clinical Cancer Research, 11(16), 5856–5862.PubMedCrossRefGoogle Scholar
  69. 69.
    Hoshino, M., Fukui, H., Ono, Y., Sekikawa, A., Ichikawa, K., Tomita, S., et al. (2007). Nuclear expression of phosphorylated EGFR is associated with poor prognosis of patients with esophageal squamous cell carcinoma. Pathobiology, 74(1), 15–21.PubMedCrossRefGoogle Scholar
  70. 70.
    Psyrri, A., Egleston, B., Weinberger, P., Yu, Z., Kowalski, D., Sasaki, C., et al. (2008). Correlates and determinants of nuclear epidermal growth factor receptor content in an oropharyngeal cancer tissue microarray. Cancer Epidemiology, Biomarkers & Prevention, 17(6), 1486–1492.CrossRefGoogle Scholar
  71. 71.
    Xia, W., Wei, Y., Du, Y., Liu, J., Chang, B., Yu, Y. L., et al. (2009). Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Molecular Carcinogenesis, 48(7), 610–617.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hadzisejdic, I., Mustac, E., Jonjic, N., Petkovic, M., & Grahovac, B. (2010). Nuclear EGFR in ductal invasive breast cancer: correlation with cyclin-D1 and prognosis. Modern Pathology, 23(3), 392–403.PubMedCrossRefGoogle Scholar
  73. 73.
    Dittmann, K., Mayer, C., Fehrenbacher, B., Schaller, M., Kehlbach, R., & Rodemann, H. P. (2010). Nuclear EGFR shuttling induced by ionizing radiation is regulated by phosphorylation at residue Thr654. FEBS Letters, 584(18), 3878–3884.PubMedCrossRefGoogle Scholar
  74. 74.
    Huo, L., Wang, Y. N., Xia, W., Hsu, S. C., Lai, C. C., Li, L. Y., et al. (2010). RNA helicase a is a DNA-binding partner for EGFR-mediated transcriptional activation in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 107(37), 16125–16130.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wheeler, D. L., Dunn, E. F., & Harari, P. M. (2010). Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nature Reviews. Clinical Oncology, 7(9), 493–507.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Chen, Y. J., Huang, W. C., Wei, Y. L., Hsu, S. C., Yuan, P., Lin, H. Y., et al. (2011). Elevated BCRP/ABCG2 expression confers acquired resistance to gefitinib in wild-type EGFR-expressing cells. PloS One, 6(6), e21428.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Huang, W. C., Chen, Y. J., Li, L. Y., Wei, Y. L., Hsu, S. C., Tsai, S. L., et al. (2011). Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. The Journal of Biological Chemistry, 286(23), 20558–20568.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wang, Y. N., & Hung, M. C. (2012). Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell & Bioscience, 2(1), 13.CrossRefGoogle Scholar
  79. 79.
    Carpenter, G., & Liao, H. J. (2013). Receptor tyrosine kinases in the nucleus. Cold Spring Harbor Perspectives in Biology, 5(10), a008979.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Wang, Y., Hsu, J. L., & Hung, M. C. (2013). Nuclear functions and trafficking of receptor tyrosine kinases. In G. Yarden YaT (Ed.), Vesicle trafficking in cancer (pp. 159–176). New York: Springer.CrossRefGoogle Scholar
  81. 81.
    Lin, S. Y., Makino, K., Xia, W., Matin, A., Wen, Y., Kwong, K. Y., et al. (2001). Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nature Cell Biology, 3(9), 802–808.PubMedCrossRefGoogle Scholar
  82. 82.
    Lo, H. W., Hsu, S. C., Ali-Seyed, M., Gunduz, M., Xia, W., Wei, Y., et al. (2005). Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell, 7(6), 575–589.PubMedCrossRefGoogle Scholar
  83. 83.
    Hung, L. Y., Tseng, J. T., Lee, Y. C., Xia, W., Wang, Y. N., Wu, M. L., et al. (2008). Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating aurora-a gene expression. Nucleic Acids Research, 36(13), 4337–4351.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Dittmann, K., Mayer, C., Fehrenbacher, B., Schaller, M., Raju, U., Milas, L., et al. (2005). Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. The Journal of Biological Chemistry, 280(35), 31182–31189.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang, S. C., Nakajima, Y., Yu, Y. L., Xia, W., Chen, C. T., Yang, C. C., et al. (2006). Tyrosine phosphorylation controls PCNA function through protein stability. Nature Cell Biology, 8(12), 1359–1368.PubMedCrossRefGoogle Scholar
  86. 86.
    Harari, D., & Yarden, Y. (2000). Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene, 19(53), 6102–6114.PubMedCrossRefGoogle Scholar
  87. 87.
    Lee-Hoeflich, S. T., Crocker, L., Yao, E., Pham, T., Munroe, X., Hoeflich, K. P., et al. (2008). A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Research, 68(14), 5878–5887.PubMedCrossRefGoogle Scholar
  88. 88.
    Garrett, J. T., Sutton, C. R., Kurupi, R., Bialucha, C. U., Ettenberg, S. A., Collins, S. D., et al. (2013). Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110alpha inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers. Cancer Research, 73(19), 6013–6023.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., & McGuire, W. L. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235(4785), 177–182.PubMedCrossRefGoogle Scholar
  90. 90.
    Pegram, M., & Slamon, D. (2000). Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Seminars in Oncology, 27(5 Suppl 9), 13–19.PubMedGoogle Scholar
  91. 91.
    Balko, J. M., Mayer, A. I., Levy, M., Arteaga, C. L. 2013. HER2 (ERBB2) in breast cancer, My Cancer Genome. https://www.mycancergenome.org/content/disease/breast-cancer/erbb2/ (Updated 10 Apr).
  92. 92.
    Bose, R., Kavuri, S. M., Searleman, A. C., Shen, W., Shen, D., Koboldt, D. C., et al. (2013). Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discovery, 3(2), 224–237.PubMedCrossRefGoogle Scholar
  93. 93.
    Arteaga, C. L., & Engelman, J. A. (2014). ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell, 25(3), 282–303.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Carter, P., Presta, L., Gorman, C. M., Ridgway, J. B., Henner, D., Wong, W. L., et al. (1992). Humanization of an anti-p185HER2 antibody for human cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 89(10), 4285–4289.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Agus, D. B., Akita, R. W., Fox, W. D., Lewis, G. D., Higgins, B., Pisacane, P. I., et al. (2002). Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell, 2(2), 127–137.PubMedCrossRefGoogle Scholar
  96. 96.
    Lewis Phillips, G. D., Li, G., Dugger, D. L., Crocker, L. M., Parsons, K. L., Mai, E., et al. (2008). Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Research, 68(22), 9280–9290.PubMedCrossRefGoogle Scholar
  97. 97.
    Rabindran, S. K., Discafani, C. M., Rosfjord, E. C., Baxter, M., Floyd, M. B., Golas, J., et al. (2004). Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Research, 64(11), 3958–3965.PubMedCrossRefGoogle Scholar
  98. 98.
    Konecny, G. E., Pegram, M. D., Venkatesan, N., Finn, R., Yang, G., Rahmeh, M., et al. (2006). Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Research, 66(3), 1630–1639.PubMedCrossRefGoogle Scholar
  99. 99.
    Hudis, C. A. (2007). Trastuzumab—mechanism of action and use in clinical practice. The New England Journal of Medicine, 357(1), 39–51.PubMedCrossRefGoogle Scholar
  100. 100.
    Vu, T., & Claret, F. X. (2012). Trastuzumab: updated mechanisms of action and resistance in breast cancer. Frontiers in Oncology, 2, 62.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Nagata, Y., Lan, K. H., Zhou, X., Tan, M., Esteva, F. J., Sahin, A. A., et al. (2004). PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 6(2), 117–127.PubMedCrossRefGoogle Scholar
  102. 102.
    Berns, K., Horlings, H. M., Hennessy, B. T., Madiredjo, M., Hijmans, E. M., Beelen, K., et al. (2007). A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell, 12(4), 395–402.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang, S., Huang, W. C., Li, P., Guo, H., Poh, S. B., Brady, S. W., et al. (2011). Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nature Medicine, 17(4), 461–469.PubMedCrossRefGoogle Scholar
  104. 104.
    Nahta, R., Yuan, L. X., Zhang, B., Kobayashi, R., & Esteva, F. J. (2005). Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Research, 65(23), 11118–11128.PubMedCrossRefGoogle Scholar
  105. 105.
    Ritter, C. A., Perez-Torres, M., Rinehart, C., Guix, M., Dugger, T., Engelman, J. A., et al. (2007). Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clinical Cancer Research, 13(16), 4909–4919.PubMedCrossRefGoogle Scholar
  106. 106.
    Shattuck, D. L., Miller, J. K., Carraway 3rd, K. L., & Sweeney, C. (2008). Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Research, 68(5), 1471–1477.PubMedCrossRefGoogle Scholar
  107. 107.
    Zhuang, G., Brantley-Sieders, D. M., Vaught, D., Yu, J., Xie, L., Wells, S., et al. (2010). Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Research, 70(1), 299–308.PubMedCrossRefGoogle Scholar
  108. 108.
    Scaltriti, M., Rojo, F., Ocana, A., Anido, J., Guzman, M., Cortes, J., et al. (2007). Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. Journal of the National Cancer Institute, 99(8), 628–638.PubMedCrossRefGoogle Scholar
  109. 109.
    Price-Schiavi, S. A., Jepson, S., Li, P., Arango, M., Rudland, P. S., Yee, L., et al. (2002). Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. International Journal of Cancer, 99(6), 783–791.PubMedCrossRefGoogle Scholar
  110. 110.
    Thirumurthi, U., Shen, J., Xia, W., LaBaff, A. M., Wei, Y., Li, C. W., et al. (2014). MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Science Signaling, 7(336), ra71.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wang, S. C., Lien, H. C., Xia, W., Chen, I. F., Lo, H. W., Wang, Z., et al. (2004). Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell, 6(3), 251–261.PubMedCrossRefGoogle Scholar
  112. 112.
    Xie, Y., & Hung, M. C. (1994). Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochemical and Biophysical Research Communications, 203(3), 1589–1598.PubMedCrossRefGoogle Scholar
  113. 113.
    Beguelin, W., Diaz Flaque, M. C., Proietti, C. J., Cayrol, F., Rivas, M. A., Tkach, M., et al. (2010). Progesterone receptor induces ErbB-2 nuclear translocation to promote breast cancer growth via a novel transcriptional effect: ErbB-2 function as a coactivator of Stat3. Molecular and Cellular Biology, 30(23), 5456–5472.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Tan, M., Jing, T., Lan, K. H., Neal, C. L., Li, P., Lee, S., et al. (2002). Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis. Molecular Cell, 9(5), 993–1004.PubMedCrossRefGoogle Scholar
  115. 115.
    Schillaci, R., Guzman, P., Cayrol, F., Beguelin, W., Diaz Flaque, M. C., Proietti, C. J., et al. (2012). Clinical relevance of ErbB-2/HER2 nuclear expression in breast cancer. BMC Cancer, 12, 74.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Citri, A., Skaria, K. B., & Yarden, Y. (2003). The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Experimental Cell Research, 284(1), 54–65.PubMedCrossRefGoogle Scholar
  117. 117.
    Carraway 3rd, K. L., Weber, J. L., Unger, M. J., Ledesma, J., Yu, N., Gassmann, M., et al. (1997). Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature, 387(6632), 512–516.PubMedCrossRefGoogle Scholar
  118. 118.
    Shi, F., Telesco, S. E., Liu, Y., Radhakrishnan, R., & Lemmon, M. A. (2010). ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7692–7697.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Bieche, I., Onody, P., Tozlu, S., Driouch, K., Vidaud, M., & Lidereau, R. (2003). Prognostic value of ERBB family mRNA expression in breast carcinomas. International Journal of Cancer, 106(5), 758–765.PubMedCrossRefGoogle Scholar
  120. 120.
    deFazio, A., Chiew, Y. E., Sini, R. L., Janes, P. W., & Sutherland, R. L. (2000). Expression of c-erbB receptors, heregulin and oestrogen receptor in human breast cell lines. International Journal of Cancer, 87(4), 487–498.PubMedCrossRefGoogle Scholar
  121. 121.
    Sassen, A., Rochon, J., Wild, P., Hartmann, A., Hofstaedter, F., Schwarz, S., et al. (2008). Cytogenetic analysis of HER1/EGFR, HER2, HER3 and HER4 in 278 breast cancer patients. Breast Cancer Research, 10(1), R2.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Ocana, A., Vera-Badillo, F., Seruga, B., Templeton, A., Pandiella, A., & Amir, E. (2013). HER3 overexpression and survival in solid tumors: a meta-analysis. Journal of the National Cancer Institute, 105(4), 266–273.PubMedCrossRefGoogle Scholar
  123. 123.
    Chiu, C. G., Masoudi, H., Leung, S., Voduc, D. K., Gilks, B., Huntsman, D. G., et al. (2010). HER-3 overexpression is prognostic of reduced breast cancer survival: a study of 4046 patients. Annals of Surgery, 251(6), 1107–1116.PubMedCrossRefGoogle Scholar
  124. 124.
    Morrison, M. M., Hutchinson, K., Williams, M. M., Stanford, J. C., Balko, J. M., Young, C., et al. (2013). ErbB3 downregulation enhances luminal breast tumor response to antiestrogens. The Journal of Clinical Investigation, 123(10), 4329–4343.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Jeong, E. G., Soung, Y. H., Lee, J. W., Lee, S. H., Nam, S. W., Lee, J. Y., et al. (2006). ERBB3 kinase domain mutations are rare in lung, breast and colon carcinomas. International Journal of Cancer, 119(12), 2986–2987.PubMedCrossRefGoogle Scholar
  126. 126.
    Kan, Z., Jaiswal, B. S., Stinson, J., Janakiraman, V., Bhatt, D., Stern, H. M., et al. (2010). Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 466(7308), 869–873.PubMedCrossRefGoogle Scholar
  127. 127.
    Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature, 486(7403), 400–404.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Jaiswal, B. S., Kljavin, N. M., Stawiski, E. W., Chan, E., Parikh, C., Durinck, S., et al. (2013). Oncogenic ERBB3 mutations in human cancers. Cancer Cell, 23(5), 603–617.PubMedCrossRefGoogle Scholar
  129. 129.
    Zhang, N., Chang, Y., Rios, A., & An, Z. (2016). HER3/ErbB3, an emerging cancer therapeutic target. Acta Biochim Biophys Sin (Shanghai)., 48(1), 39–48.PubMedGoogle Scholar
  130. 130.
    Offterdinger, M., Schofer, C., Weipoltshammer, K., & Grunt, T. W. (2002). C-erbB-3: a nuclear protein in mammary epithelial cells. The Journal of Cell Biology, 157(6), 929–939.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Andrique, L., Fauvin, D., El Maassarani, M., Colasson, H., Vannier, B., & Seite, P. (2012). ErbB3(80 kDa), a nuclear variant of the ErbB3 receptor, binds to the cyclin D1 promoter to activate cell proliferation but is negatively controlled by p14ARF. Cellular Signalling, 24(5), 1074–1085.PubMedCrossRefGoogle Scholar
  132. 132.
    Brand, T. M., Iida, M., Luthar, N., Wleklinski, M. J., Starr, M. M., & Wheeler, D. L. (2013). Mapping C-terminal transactivation domains of the nuclear HER family receptor tyrosine kinase HER3. PloS One, 8(8), e71518.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Koumakpayi, I. H., Diallo, J. S., Le Page, C., Lessard, L., Gleave, M., Begin, L. R., et al. (2006). Expression and nuclear localization of ErbB3 in prostate cancer. Clinical Cancer Research, 12(9), 2730–2737.PubMedCrossRefGoogle Scholar
  134. 134.
    Cheng, C. J., Ye, X. C., Vakar-Lopez, F., Kim, J., Tu, S. M., Chen, D. T., et al. (2007). Bone microenvironment and androgen status modulate subcellular localization of ErbB3 in prostate cancer cells. Molecular Cancer Research, 5(7), 675–684.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Harris, R. C., Chung, E., & Coffey, R. J. (2003). EGF receptor ligands. Experimental Cell Research, 284(1), 2–13.PubMedCrossRefGoogle Scholar
  136. 136.
    Mill, C. P., Zordan, M. D., Rothenberg, S. M., Settleman, J., Leary, J. F., & Riese 2nd, D. J. (2011). ErbB2 is necessary for ErbB4 ligands to stimulate oncogenic activities in models of human breast cancer. Genes & Cancer, 2(8), 792–804.CrossRefGoogle Scholar
  137. 137.
    Naresh, A., Long, W., Vidal, G. A., Wimley, W. C., Marrero, L., Sartor, C. I., et al. (2006). The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Cancer Research, 66(12), 6412–6420.PubMedCrossRefGoogle Scholar
  138. 138.
    Uberall, I., Kolar, Z., Trojanec, R., Berkovcova, J., & Hajduch, M. (2008). The status and role of ErbB receptors in human cancer. Experimental and Molecular Pathology, 84(2), 79–89.PubMedCrossRefGoogle Scholar
  139. 139.
    Tang, C. K., Concepcion, X. Z., Milan, M., Gong, X., Montgomery, E., & Lippman, M. E. (1999). Ribozyme-mediated down-regulation of ErbB-4 in estrogen receptor-positive breast cancer cells inhibits proliferation both in vitro and in vivo. Cancer Research, 59(20), 5315–5322.PubMedGoogle Scholar
  140. 140.
    Canfield, K., Li, J., Wilkins, O. M., Morrison, M. M., Ung, M., Wells, W., et al. (2015). Receptor tyrosine kinase ERBB4 mediates acquired resistance to ERBB2 inhibitors in breast cancer cells. Cell Cycle, 14(4), 648–655.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kim, J. Y., Jung, H. H., Do, I. G., Bae, S., Lee, S. K., Kim, S. W., et al. (2016). Prognostic value of ERBB4 expression in patients with triple negative breast cancer. BMC Cancer, 16, 138.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Gilbertson, R., Hernan, R., Pietsch, T., Pinto, L., Scotting, P., Allibone, R., et al. (2001). Novel ERBB4 juxtamembrane splice variants are frequently expressed in childhood medulloblastoma. Genes, Chromosomes & Cancer, 31(3), 288–294.CrossRefGoogle Scholar
  143. 143.
    Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455(7216), 1069–1075.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Prickett, T. D., Agrawal, N. S., Wei, X., Yates, K. E., Lin, J. C., Wunderlich, J. R., et al. (2009). Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nature Genetics, 41(10), 1127–1132.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Kurppa, K. J., Denessiouk, K., Johnson, M. S., & Elenius, K. (2016). Activating ERBB4 mutations in non-small cell lung cancer. Oncogene, 35(10), 1283–1291.PubMedCrossRefGoogle Scholar
  146. 146.
    Srinivasan, R., Gillett, C. E., Barnes, D. M., & Gullick, W. J. (2000). Nuclear expression of the c-erbB-4/HER-4 growth factor receptor in invasive breast cancers. Cancer Research, 60(6), 1483–1487.PubMedGoogle Scholar
  147. 147.
    Thompson, M., Lauderdale, S., Webster, M. J., Chong, V. Z., McClintock, B., Saunders, R., et al. (2007). Widespread expression of ErbB2, ErbB3 and ErbB4 in non-human primate brain. Brain Research, 1139, 95–109.PubMedCrossRefGoogle Scholar
  148. 148.
    Icli, B., Bharti, A., Pentassuglia, L., Peng, X., & Sawyer, D. B. (2012). ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response. Biochemical and Biophysical Research Communications, 418(1), 116–121.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Ni, C. Y., Murphy, M. P., Golde, T. E., & Carpenter, G. (2001). Gamma-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science, 294(5549), 2179–2181.PubMedCrossRefGoogle Scholar
  150. 150.
    Williams, C. C., Allison, J. G., Vidal, G. A., Burow, M. E., Beckman, B. S., Marrero, L., et al. (2004). The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. The Journal of Cell Biology, 167(3), 469–478.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Linggi, B., & Carpenter, G. (2006). ErbB-4 s80 intracellular domain abrogates ETO2-dependent transcriptional repression. The Journal of Biological Chemistry, 281(35), 25373–25380.PubMedCrossRefGoogle Scholar
  152. 152.
    Arasada, R. R., & Carpenter, G. (2005). Secretase-dependent tyrosine phosphorylation of Mdm2 by the ErbB-4 intracellular domain fragment. The Journal of Biological Chemistry, 280(35), 30783–30787.PubMedCrossRefGoogle Scholar
  153. 153.
    Junttila, T. T., Sundvall, M., Lundin, M., Lundin, J., Tanner, M., Harkonen, P., et al. (2005). Cleavable ErbB4 isoform in estrogen receptor-regulated growth of breast cancer cells. Cancer Research, 65(4), 1384–1393.PubMedCrossRefGoogle Scholar
  154. 154.
    Naresh, A., Thor, A. D., Edgerton, S. M., Torkko, K. C., Kumar, R., & Jones, F. E. (2008). The HER4/4ICD estrogen receptor coactivator and BH3-only protein is an effector of tamoxifen-induced apoptosis. Cancer Research, 68(15), 6387–6395.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Trusolino, L., Bertotti, A., & Comoglio, P. M. (2010). MET signalling: principles and functions in development, organ regeneration and cancer. Nature Reviews. Molecular Cell Biology, 11(12), 834–848.PubMedCrossRefGoogle Scholar
  156. 156.
    Lai, A. Z., Abella, J. V., & Park, M. (2009). Crosstalk in met receptor oncogenesis. Trends in Cell Biology, 19(10), 542–551.PubMedCrossRefGoogle Scholar
  157. 157.
    Ho-Yen, C. M., Jones, J. L., & Kermorgant, S. (2015). The clinical and functional significance of c-met in breast cancer: a review. Breast Cancer Research, 17, 52.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316(5827), 1039–1043.PubMedCrossRefGoogle Scholar
  159. 159.
    Ghoussoub, R. A., Dillon, D. A., D’Aquila, T., Rimm, E. B., Fearon, E. R., & Rimm, D. L. (1998). Expression of c-met is a strong independent prognostic factor in breast carcinoma. Cancer, 82(8), 1513–1520.PubMedCrossRefGoogle Scholar
  160. 160.
    Lengyel, E., Prechtel, D., Resau, J. H., Gauger, K., Welk, A., Lindemann, K., et al. (2005). C-met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. International Journal of Cancer, 113(4), 678–682.PubMedCrossRefGoogle Scholar
  161. 161.
    Lee, W. Y., Chen, H. H., Chow, N. H., Su, W. C., Lin, P. W., & Guo, H. R. (2005). Prognostic significance of co-expression of RON and MET receptors in node-negative breast cancer patients. Clinical Cancer Research, 11(6), 2222–2228.PubMedCrossRefGoogle Scholar
  162. 162.
    Minuti, G., Cappuzzo, F., Duchnowska, R., Jassem, J., Fabi, A., O’Brien, T., et al. (2012). Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. British Journal of Cancer, 107(5), 793–799.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Kim, Y. J., Choi, J. S., Seo, J., Song, J. Y., Lee, S. E., Kwon, M. J., et al. (2014). MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer. International Journal of Cancer, 134(10), 2424–2436.PubMedCrossRefGoogle Scholar
  164. 164.
    Hsu, Y. H., Yao, J., Chan, L. C., Wu, T. J., Hsu, J. L., Fang, Y. F., et al. (2014). Definition of PKC-alpha, CDK6, and MET as therapeutic targets in triple-negative breast cancer. Cancer Research, 74(17), 4822–4835.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Du, Y., Yamaguchi, H., Wei, Y., Hsu, J. L., Wang, H. L., Hsu, Y. H., et al. (2016). Blocking c-met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nature Medicine, 22(2), 194–201.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Orton, T. C., Doughty, S. E., Kalinowski, A. E., Lord, P. G., & Wadsworth, P. F. (1996). Expression of growth factors and growth factor receptors in the liver of C57BL/10J mice following administration of phenobarbitone. Carcinogenesis, 17(5), 973–981.PubMedCrossRefGoogle Scholar
  167. 167.
    Pozner-Moulis, S., Pappas, D. J., & Rimm, D. L. (2006). Met, the hepatocyte growth factor receptor, localizes to the nucleus in cells at low density. Cancer Research, 66(16), 7976–7982.PubMedCrossRefGoogle Scholar
  168. 168.
    Matteucci, E., Bendinelli, P., & Desiderio, M. A. (2009). Nuclear localization of active HGF receptor met in aggressive MDA-MB231 breast carcinoma cells. Carcinogenesis, 30(6), 937–945.PubMedCrossRefGoogle Scholar
  169. 169.
    Gomes, D. A., Rodrigues, M. A., Leite, M. F., Gomez, M. V., Varnai, P., Balla, T., et al. (2008). C-met must translocate to the nucleus to initiate calcium signals. The Journal of Biological Chemistry, 283(7), 4344–4351.PubMedCrossRefGoogle Scholar
  170. 170.
    Pollak, M. (2008). Insulin and insulin-like growth factor signalling in neoplasia. Nature Reviews. Cancer, 8(12), 915–928.PubMedCrossRefGoogle Scholar
  171. 171.
    Saldana, S. M., Lee, H. H., Lowery, F. J., Khotskaya, Y. B., Xia, W., Zhang, C., et al. (2013). Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis. PloS One, 8(9), e73406.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Farabaugh, S. M., Boone, D. N., & Lee, A. V. (2015). Role of IGF1R in breast cancer subtypes, Stemness, and lineage differentiation. Front Endocrinol (Lausanne), 6, 59.Google Scholar
  173. 173.
    Beckwith, H., & Yee, D. (2015). Minireview: were the IGF signaling inhibitors all bad? Molecular Endocrinology, 29(11), 1549–1557.PubMedCrossRefGoogle Scholar
  174. 174.
    Aleksic, T., Chitnis, M. M., Perestenko, O. V., Gao, S., Thomas, P. H., Turner, G. D., et al. (2010). Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Research, 70(16), 6412–6419.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Warsito, D., Sjostrom, S., Andersson, S., Larsson, O., & Sehat, B. (2012). Nuclear IGF1R is a transcriptional co-activator of LEF1/TCF. EMBO Reports, 13(3), 244–250.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Warsito, D., Lin, Y., Gnirck, A. C., Sehat, B., Larsson, O. 2016. Nuclearly translocated insulin-like growth factor 1 receptor phosphorylates histone H3 at tyrosine 41 and induces SNAI2 expression via Brg1 chromatin remodeling protein. Oncotarget.Google Scholar
  177. 177.
    Bodzin, A. S., Wei, Z., Hurtt, R., Gu, T., & Doria, C. (2012). Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation. Journal of Cellular Physiology, 227(7), 2947–2952.PubMedCrossRefGoogle Scholar
  178. 178.
    Murray, P. B., Lax, I., Reshetnyak, A., Ligon, G. F., Lillquist, J. S., Natoli Jr., E. J., et al. (2015). Heparin is an activating ligand of the orphan receptor tyrosine kinase ALK. Science Signaling, 8(360), ra6.PubMedCrossRefGoogle Scholar
  179. 179.
    Hallberg, B., & Palmer, R. H. (2013). Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nature Reviews. Cancer, 13(10), 685–700.PubMedCrossRefGoogle Scholar
  180. 180.
    Lin, E., Li, L., Guan, Y., Soriano, R., Rivers, C. S., Mohan, S., et al. (2009). Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Molecular Cancer Research, 7(9), 1466–1476.PubMedCrossRefGoogle Scholar
  181. 181.
    Barreca, A., Lasorsa, E., Riera, L., Machiorlatti, R., Piva, R., Ponzoni, M., et al. (2011). Anaplastic lymphoma kinase in human cancer. Journal of Molecular Endocrinology, 47(1), R11–R23.PubMedCrossRefGoogle Scholar
  182. 182.
    Robertson, F. M., Petricoin Iii, E. F., Van Laere, S. J., Bertucci, F., Chu, K., Fernandez, S. V., et al. (2013). Presence of anaplastic lymphoma kinase in inflammatory breast cancer. Springerplus., 2, 497.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Siraj, A. K., Beg, S., Jehan, Z., Prabhakaran, S., Ahmed, M., RH, A., et al. (2015). ALK alteration is a frequent event in aggressive breast cancers. Breast Cancer Research, 17, 127.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Choi, Y. L., Soda, M., Yamashita, Y., Ueno, T., Takashima, J., Nakajima, T., et al. (2010). EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. The New England Journal of Medicine, 363(18), 1734–1739.PubMedCrossRefGoogle Scholar
  185. 185.
    Shaw, A. T., Friboulet, L., Leshchiner, I., Gainor, J. F., Bergqvist, S., Brooun, A., et al. (2016). Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. The New England Journal of Medicine, 374(1), 54–61.PubMedCrossRefGoogle Scholar
  186. 186.
    Xiong, Q., Chan, J. L., Zong, C. S., & Wang, L. H. (1996). Two chimeric receptors of epidermal growth factor receptor and c-Ros that differ in their transmembrane domains have opposite effects on cell growth. Molecular and Cellular Biology, 16(4), 1509–1518.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Davies, K. D., & Doebele, R. C. (2013). Molecular pathways: ROS1 fusion proteins in cancer. Clinical Cancer Research, 19(15), 4040–4045.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Solomon, B. (2015). Validating ROS1 rearrangements as a therapeutic target in non-small-cell lung cancer. Journal of Clinical Oncology, 33(9), 972–974.PubMedCrossRefGoogle Scholar
  189. 189.
    Shaw, A. T., Ou, S. H., Bang, Y. J., Camidge, D. R., Solomon, B. J., Salgia, R., et al. (2014). Crizotinib in ROS1-rearranged non-small-cell lung cancer. The New England Journal of Medicine, 371(21), 1963–1971.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Mazieres, J., Zalcman, G., Crino, L., Biondani, P., Barlesi, F., Filleron, T., et al. (2015). Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. Journal of Clinical Oncology, 33(9), 992–999.PubMedCrossRefGoogle Scholar
  191. 191.
    Eom, M., Lkhagvadorj, S., Oh, S. S., Han, A., & Park, K. H. (2013). ROS1 expression in invasive ductal carcinoma of the breast related to proliferation activity. Yonsei Medical Journal, 54(3), 650–657.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Stransky, N., Cerami, E., Schalm, S., Kim, J. L., & Lengauer, C. (2014). The landscape of kinase fusions in cancer. Nature Communications, 5, 4846.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Halford, M. M., & Stacker, S. A. (2001). Revelations of the RYK receptor. BioEssays, 23(1), 34–45.PubMedCrossRefGoogle Scholar
  194. 194.
    Cadigan, K. M., & Liu, Y. I. (2006). Wnt signaling: complexity at the surface. Journal of Cell Science, 119(Pt 3), 395–402.PubMedCrossRefGoogle Scholar
  195. 195.
    Lyu, J., Yamamoto, V., & Lu, W. (2008). Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Developmental Cell, 15(5), 773–780.PubMedCrossRefGoogle Scholar
  196. 196.
    Lyu, J., Wesselschmidt, R. L., & Lu, W. (2009). Cdc37 regulates Ryk signaling by stabilizing the cleaved Ryk intracellular domain. The Journal of Biological Chemistry, 284(19), 12940–12948.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Zhong, J., Kim, H. T., Lyu, J., Yoshikawa, K., Nakafuku, M., & Lu, W. (2011). The Wnt receptor Ryk controls specification of GABAergic neurons versus oligodendrocytes during telencephalon development. Development, 138(3), 409–419.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Katso, R. M., Manek, S., Ganjavi, H., Biddolph, S., Charnock, M. F., Bradburn, M., et al. (2000). Overexpression of H-Ryk in epithelial ovarian cancer: prognostic significance of receptor expression. Clinical Cancer Research, 6(8), 3271–3281.PubMedGoogle Scholar
  199. 199.
    Alvarez-Zavala, M., Riveros-Magana, A. R., Garcia-Castro, B., Barrera-Chairez, E., Rubio-Jurado, B., Garces-Ruiz, O. M., et al. (2016). WNT receptors profile expression in mature blood cells and immature leukemic cells: RYK emerges as a hallmark receptor of acute leukemia. European Journal of Haematology, 97(2), 155–165.PubMedCrossRefGoogle Scholar
  200. 200.
    Carpenter, G., Lembach, K. J., Morrison, M. M., & Cohen, S. (1975). Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. The Journal of Biological Chemistry, 250(11), 4297–4304.PubMedGoogle Scholar
  201. 201.
    Carpenter, G., King Jr., L., & Cohen, S. (1978). Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature, 276(5686), 409–410.PubMedCrossRefGoogle Scholar
  202. 202.
    Ullrich, A., Coussens, L., Hayflick, J. S., Dull, T. J., Gray, A., Tam, A. W., et al. (1984). Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature, 309(5967), 418–425.PubMedCrossRefGoogle Scholar
  203. 203.
    Liao, H. W., Hsu, J. M., Xia, W., Wang, H. L., Wang, Y. N., Chang, W. C., et al. (2015). PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. The Journal of clinical investigation., 125(12), 4529–4543.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Mai, A., Cheng, D., Bedford, M. T., Valente, S., Nebbioso, A., Perrone, A., et al. (2008). Epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (sirtuin) inhibitors. Journal of medicinal chemistry., 51(7), 2279–2290.PubMedCrossRefGoogle Scholar
  205. 205.
    Sharma, P., & Allison, J. P. (2015). The future of immune checkpoint therapy. Science, 348(6230), 56–61.PubMedCrossRefGoogle Scholar
  206. 206.
    Sharma, P., & Allison, J. P. (2015). Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell, 161(2), 205–214.PubMedCrossRefGoogle Scholar
  207. 207.
    Li, C. W., Lim, S. O., Xia, W., Lee, H. H., Chan, L. C., Kuo, C. W., et al. (2016). Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 7, 12632.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Yang, X., Zhang, X., Mortenson, E. D., Radkevich-Brown, O., Wang, Y., & Fu, Y. X. (2013). Cetuximab-mediated tumor regression depends on innate and adaptive immune responses. Molecular therapy : the journal of the American Society of Gene Therapy., 21(1), 91–100.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Center for Molecular Medicine and Graduate Institute of Cancer BiologyChina Medical UniversityTaichungTaiwan
  3. 3.Department of BiotechnologyAsia UniversityTaichungTaiwan

Personalised recommendations