Advertisement

Cancer and Metastasis Reviews

, Volume 35, Issue 3, pp 391–411 | Cite as

Calcium role in human carcinogenesis: a comprehensive analysis and critical review of literature

  • Bernard Kadio
  • Sanni Yaya
  • Ajoy Basak
  • Koffi Djè
  • James Gomes
  • Christian Mesenge
NON-THEMATIC REVIEW

Abstract

The central role played by calcium ion in biological systems has generated an interest for its potential implication in human malignancies. Thus, lines of research, on possible association of calcium metabolism regulation with tumorigenesis, implying disruptions and/or alterations of known molecular pathways, have been extensively researched in the recent decades. This paper is a critical synthesis of these findings, based on a functional approach of the calcium signaling toolkit. It provides strong support that this ubiquitous divalent cation is involved in cancer initiation, promotion, and progression. Different pathways have been outlined, involving equally different molecular and cellular structures. However, if the association between calcium and cancer can be described as constant, it is not always linear. We have identified several influencing factors among which the most relevant are (i) the changes in local or tissular concentrations of free calcium and (ii) the histological and physiological types of tissue involved. Such versatility at the molecular level may probably account for the conflicting findings reported by the epidemiological literature on calcium dietary intake and the risk to develop certain cancers such as the prostatic or mammary neoplasms. However, it also fuels the hypothesis that behind each cancer, a specific calcium pathway can be evidenced. Identifying such molecular interactions is probably a promising approach for further understanding and treatment options for the disease.

Keywords

Calcium signaling Cancer pathways Calcium homeostasis Cellular calcium concentration Tumorigenesis Cancer metastasis Apoptosis 

Notes

Acknowledgments

This research received no funding.

We would like to thank the long lignage of researchers involved in calcium research and its molecular intercations with cancer. In particular, our special thoughts go toward Prs Majid Khatib, Michael Berridge, and the late Lionel Jaffe for their pionneering work in the field.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Haynes, W.M. (2014). CRC handbook of chemistry and physics. CRC press.Google Scholar
  2. 2.
    Beebe, S. (1904). The chemistry of malignant growths. Ii.—The inorganic constituents of tumors. American Journal of Physiology--Legacy Content, 12(2), 167–172.Google Scholar
  3. 3.
    Bassingthwaighte, J.B., et al. (2012). Compartmental modeling in the analysis of biological systems. Computational Toxicology: Volume I:391–438.Google Scholar
  4. 4.
    Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology, 1(1), 11–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews. Molecular Cell Biology, 4(7), 517–529.PubMedCrossRefGoogle Scholar
  6. 6.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Shrestha, R. P., et al. (2010). A mathematical model of parathyroid hormone response to acute changes in plasma ionized calcium concentration in humans. Mathematical Biosciences, 226(1), 46–57.PubMedCrossRefGoogle Scholar
  8. 8.
    Forsen, S. and J. Kordel (1994). Calcium in biological systems., University Science Books: Mill Valley, CA. p. 107.Google Scholar
  9. 9.
    Williams, R. J. (2006). The evolution of calcium biochemistry. Biochimica et Biophysica Acta, 1763(11), 1139–1146.PubMedCrossRefGoogle Scholar
  10. 10.
    Clapham, D. E. (2007). Calcium signaling. Cell, 131(6), 1047–1058.PubMedCrossRefGoogle Scholar
  11. 11.
    Endo, M. (2009). Calcium-induced calcium release in skeletal muscle. Physiological Reviews, 89(4), 1153–1176.PubMedCrossRefGoogle Scholar
  12. 12.
    Peacock, M. (2010). Calcium metabolism in health and disease. Clinical Journal of the American Society of Nephrology, 5(Suppl 1), S23–S30.PubMedCrossRefGoogle Scholar
  13. 13.
    Clark, V. L., & Kruse, J. A. (1990). Clinical methods: the history, physical, and laboratory examinations. JAMA, 264(21), 2808–2809.CrossRefGoogle Scholar
  14. 14.
    Tsien, R.Y. (1981). A non-disruptive technique for loading calcium buffers and indicators into cells.Google Scholar
  15. 15.
    Rizzuto, R., & Pozzan, T. (2006). Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiological Reviews, 86(1), 369–408.PubMedCrossRefGoogle Scholar
  16. 16.
    Carafoli, E. (2002). Calcium signaling: a tale for all seasons. Proceedings of the National Academy of Sciences, 99(3), 1115–1122.CrossRefGoogle Scholar
  17. 17.
    Berridge, M. J. (2005). Unlocking the secrets of cell signaling. Annual Review of Physiology, 67, 1–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Tsien, R. W., & Tsien, R. Y. (1990). Calcium channels, stores, and oscillations. Annual Review of Cell Biology, 6(1), 715–760.PubMedCrossRefGoogle Scholar
  19. 19.
    Clowes, G., & Frisbie, W. (1905). No. 32. On the relationship between the rate of growth, age, and potassium and calcium content of mouse tumors (adeno-carcinoma, jensen). American Journal of Physiology--Legacy Content, 14(3), 173–192.Google Scholar
  20. 20.
    Carruthers, C., & Suntzeff, V. (1944). The role of calcium in carcinogenesis summary. Science, 99(2569), 245–247.PubMedCrossRefGoogle Scholar
  21. 21.
    Lansing, A., Rosenthal, T., & Kamen, M. (1948). Calcium ion exchanges in some normal tissues and in epidermal carcinogenesis. Archives of Biochemistry, 19, 177–183.PubMedGoogle Scholar
  22. 22.
    Monteith, G. R., et al. (2007). Calcium and cancer: targeting Ca2+ transport. Nature Reviews. Cancer, 7(7), 519–530.PubMedCrossRefGoogle Scholar
  23. 23.
    Rodland, K. D. (2004). The role of the calcium-sensing receptor in cancer. Cell Calcium, 35(3), 291–295.PubMedCrossRefGoogle Scholar
  24. 24.
    Chakrabarty, S., et al. (2003). Extracellular calcium and calcium sensing receptor function in human colon carcinomas promotion of E-cadherin expression and suppression of β-catenin/TCF activation. Cancer Research, 63(1), 67–71.PubMedGoogle Scholar
  25. 25.
    Lipkin, M. (1999). Preclinical and early human studies of calcium and colon cancer prevention. Annals of the New York Academy of Sciences, 889(1), 120–127.PubMedCrossRefGoogle Scholar
  26. 26.
    Wargovich, M. J., et al. (2000). Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis, 21(6), 1149–1155.PubMedCrossRefGoogle Scholar
  27. 27.
    Manning, A. T., O’Brien, N., & Kerin, M. J. (2006). Roles for the calcium sensing receptor in primary and metastatic cancer. Eur J Surg Oncol, 32(7), 693–697.PubMedCrossRefGoogle Scholar
  28. 28.
    Hobson, S. A., et al. (2003). Activation of the MAP kinase cascade by exogenous calcium-sensing receptor. Molecular and Cellular Endocrinology, 200(1), 189–198.PubMedCrossRefGoogle Scholar
  29. 29.
    Jin, T., George Fantus, I., & Sun, J. (2008). Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cellular Signalling, 20(10), 1697–1704.PubMedCrossRefGoogle Scholar
  30. 30.
    Whitfield, J. F. (2009). Calcium, calcium-sensing receptor and colon cancer. Cancer Letters, 275(1), 9–16.PubMedCrossRefGoogle Scholar
  31. 31.
    Brenner, B., et al. (1998). The effect of dietary vitamin D 3 on the intracellular calcium gradient in mammalian colonic crypts. Cancer Letters, 127(1), 43–53.PubMedCrossRefGoogle Scholar
  32. 32.
    Brennan, S. C., et al. (2013). Calcium sensing receptor signalling in physiology and cancer. Biochimica et Biophysica Acta, 1833(7), 1732–1744.PubMedCrossRefGoogle Scholar
  33. 33.
    Fetahu, I. S., et al. (2014). Regulation of the calcium-sensing receptor expression by 1,25-dihydroxyvitamin D3, interleukin-6, and tumor necrosis factor alpha in colon cancer cells. The Journal of Steroid Biochemistry and Molecular Biology, 144 Pt A, 228–231.PubMedCrossRefGoogle Scholar
  34. 34.
    Cho, E., et al. (2004). Dairy foods, calcium, and colorectal cancer: a pooled analysis of 10 cohort studies. Journal of the National Cancer Institute, 96(13), 1015–1022.PubMedCrossRefGoogle Scholar
  35. 35.
    Dai, Q., et al. (2007). The relation of magnesium and calcium intakes and a genetic polymorphism in the magnesium transporter to colorectal neoplasia risk. The American Journal of Clinical Nutrition, 86(3), 743–751.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Dai, Q., et al. (2012). Calcium, magnesium, and colorectal cancer. Epidemiology, 23(3), 504–505.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    McGrath, C. M., & Soule, H. D. (1984). Calcium regulation of normal human mammary epithelial cell growth in culture. In Vitro, 20(8), 652–662.PubMedCrossRefGoogle Scholar
  38. 38.
    Russo, J., et al. (1989). Influence of human breast development on the growth properties of primary cultures. In Vitro Cellular & Developmental Biology, 25(7), 643–649.CrossRefGoogle Scholar
  39. 39.
    Liu, G., Hu, X., & Chakrabarty, S. (2009). Calcium sensing receptor down-regulates malignant cell behavior and promotes chemosensitivity in human breast cancer cells. Cell Calcium, 45(3), 216–225.PubMedCrossRefGoogle Scholar
  40. 40.
    Harris, D. M., & Go, V. L. W. (2004). Vitamin D and colon carcinogenesis. The Journal of Nutrition, 134(12), 3463S–3471S.PubMedGoogle Scholar
  41. 41.
    Negri, E., et al. (1996). Intake of selected micronutrients and the risk of breast cancer. International Journal of Cancer, 65(2), 140–144.PubMedCrossRefGoogle Scholar
  42. 42.
    McCullough, M. L., et al. (2005). Dairy, calcium, and vitamin D intake and postmenopausal breast cancer risk in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiology Biomarkers & Prevention, 14(12), 2898–2904.CrossRefGoogle Scholar
  43. 43.
    Journé, F., et al. (2004). Extracellular calcium downregulates estrogen receptor alpha and increases its transcriptional activity through calcium-sensing receptor in breast cancer cells. Bone, 35(2), 479–488.PubMedCrossRefGoogle Scholar
  44. 44.
    Guise, T., et al. (2002). Parathyroid hormone-related protein (PTHrP)-(1-139) isoform is efficiently secreted in vitro and enhances breast cancer metastasis to bone in vivo. Bone, 30(5), 670–676.PubMedCrossRefGoogle Scholar
  45. 45.
    Guise, T. A. (2000). Molecular mechanisms of osteolytic bone metastases. Cancer, 88(S12), 2892–2898.PubMedCrossRefGoogle Scholar
  46. 46.
    Liao, J., et al. (2006). Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Research, 66(18), 9065–9073.PubMedCrossRefGoogle Scholar
  47. 47.
    Prasad, V., et al. (2005). Haploinsufficiency of Atp2a2, encoding the sarco (endo) plasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, predisposes mice to squamous cell tumors via a novel mode of cancer susceptibility. Cancer Research, 65(19), 8655–8661.PubMedCrossRefGoogle Scholar
  48. 48.
    Prevarskaya, N., Zhang, L., & Barritt, G. (2007). TRP channels in cancer. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1772(8), 937–946.CrossRefGoogle Scholar
  49. 49.
    Tsavaler, L., et al. (2001). Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Research, 61(9), 3760–3769.PubMedGoogle Scholar
  50. 50.
    Chen, J., et al. (2014). Transient receptor potential (TRP) channels, promising potential diagnostic and therapeutic tools for cancer. Bioscience Trends, 8(1), 1–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Gkika, D., & Prevarskaya, N. (2009). Molecular mechanisms of TRP regulation in tumor growth and metastasis. Biochimica et Biophysica Acta (BBA)-molecular. Cell Research, 1793(6), 953–958.Google Scholar
  52. 52.
    Fuessel, S., et al. (2003). Multiple tumor marker analyses (PSA, hK2, PSCA, trp-p8) in primary prostate cancers using quantitative RT-PCR. International Journal of Oncology, 23(1), 221–228.PubMedGoogle Scholar
  53. 53.
    Feske, S., et al. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature, 441(7090), 179–185.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen, Y.-T., et al. (2013). The ER Ca2+ sensor STIM1 regulates actomyosin contractility of migratory cells. Journal of Cell Science, 126(5), 1260–1267.PubMedCrossRefGoogle Scholar
  55. 55.
    Avraamides, C. J., Garmy-Susini, B., & Varner, J. A. (2008). Integrins in angiogenesis and lymphangiogenesis. Nature Reviews. Cancer, 8(8), 604–617.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chen, Y.-F., et al. (2013). Remodeling of calcium signaling in tumor progression. Journal of Biomedical Science, 20, 23.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Yang, S., Zhang, J. J., & Huang, X.-Y. (2009). Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell, 15(2), 124–134.PubMedCrossRefGoogle Scholar
  58. 58.
    Yang, N., et al. (2013). Blockade of store-operated Ca 2+ entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Letters, 330(2), 163–169.PubMedCrossRefGoogle Scholar
  59. 59.
    Roti, G., et al. (2013). Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell, 23(3), 390–405.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Yanez, M., Gil-Longo, J., & Campos-Toimil, M. (2012). Calcium binding proteins. Advances in Experimental Medicine and Biology, 740, 461–482.PubMedCrossRefGoogle Scholar
  61. 61.
    Lunde, M. L. S., et al. (2014). Profiling of chromosomal changes in potentially malignant and malignant oral mucosal lesions from South and South-East Asia using array-comparative genomic hybridization. Cancer Genomics-Proteomics, 11(3), 127–140.PubMedGoogle Scholar
  62. 62.
    Bresnick, A. R., Weber, D. J., & Zimmer, D. B. (2015). S100 proteins in cancer. Nature Reviews. Cancer, 15(2), 96–109.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mishra, S. K., Siddique, H. R., & Saleem, M. (2012). S100A4 calcium-binding protein is key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer and Metastasis Reviews, 31(1–2), 163–172.PubMedCrossRefGoogle Scholar
  64. 64.
    Network, C. G. A. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70.CrossRefGoogle Scholar
  65. 65.
    Rosenberger, S., et al. (2007). A novel regulator of telomerase S100A8 mediates differentiation-dependent and calcium-induced inhibition of telomerase activity in the human epidermal keratinocyte line HaCaT. Journal of Biological Chemistry, 282(9), 6126–6135.PubMedCrossRefGoogle Scholar
  66. 66.
    Hunter, K. D., Parkinson, E. K., & Harrison, P. R. (2005). Profiling early head and neck cancer. Nature Reviews Cancer, 5(2), 127–135.PubMedCrossRefGoogle Scholar
  67. 67.
    Barbieri, C. E., Demichelis, F., & Rubin, M. A. (2012). Molecular genetics of prostate cancer: emerging appreciation of genetic complexity. Histopathology, 60(1), 187–198.PubMedCrossRefGoogle Scholar
  68. 68.
    LeGolvan, M. P., Taliano, R. J., & Resnick, M. B. (2012). Application of molecular techniques in the diagnosis, prognosis and management of patients with colorectal cancer: a practical approach. Human Pathology, 43(8), 1157–1168.PubMedCrossRefGoogle Scholar
  69. 69.
    Sadanandam, A., et al. (2013). A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nature Medicine, 19(5), 619–625.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Salama, I., et al. (2008). A review of the S100 proteins in cancer. European Journal of Surgical Oncology (EJSO), 34(4), 357–364.CrossRefGoogle Scholar
  71. 71.
    Day, T. K., & Bianco-Miotto, T. (2013). Common gene pathways and families altered by DNA methylation in breast and prostate cancers. Endocrine-Related Cancer, 20(5), R215–R232.PubMedCrossRefGoogle Scholar
  72. 72.
    Leśniak, W. (2011). Epigenetic regulation of S100 protein expression. Clinical epigenetics, 2(2), 77.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sack, U., & Stein, U. (2009). Wnt up your mind-intervention strategies for S100A4-induced metastasis in colon cancer. General Physiology and Biophysics, 28, F55–F64.PubMedGoogle Scholar
  74. 74.
    Ozawa, H., & Takata, K. (1995). The granin family. Its role in sorting and secretory granule formation. Cell Structure and Function, 20(6), 415–420.PubMedCrossRefGoogle Scholar
  75. 75.
    Abrahamsson, P. A. (1999). Neuroendocrine differentiation in prostatic carcinoma. Prostate, 39(2), 135–148.PubMedCrossRefGoogle Scholar
  76. 76.
    Ranno, S., et al. (2006). The chromogranin-a (CgA) in prostate cancer. Archives of Gerontology and Geriatrics, 43(1), 117–126.PubMedCrossRefGoogle Scholar
  77. 77.
    Conteduca, V., et al. (2014). Chromogranin A is a potential prognostic marker in prostate cancer patients treated with enzalutamide. The Prostate, 74(16), 1691–1696.PubMedCrossRefGoogle Scholar
  78. 78.
    Basak, A. (2005). Inhibitors of proprotein convertases. Journal of Molecular Medicine, 83(11), 844–855.PubMedCrossRefGoogle Scholar
  79. 79.
    Khatib, A.-M. (2006). Regulation of carcinogenesis, angiogenesis and metastasis by the proprotein convertases (pc’s). Springer.Google Scholar
  80. 80.
    Khatib, A.-M., et al. (2002). Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. The American Journal of Pathology, 160(6), 1921–1935.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mercapide, J., et al. (2002). Inhibition of furin-mediated processing results in suppression of astrocytoma cell growth and invasiveness. Clinical Cancer Research, 8(6), 1740–1746.PubMedGoogle Scholar
  82. 82.
    Nakajima, T., et al. (2002). Prohormone convertase furin has a role in gastric cancer cell proliferation with parathyroid hormone-related peptide in a reciprocal manner. Digestive Diseases and Sciences, 47(12), 2729–2737.PubMedCrossRefGoogle Scholar
  83. 83.
    Dubois, C. M., et al. (2001). Evidence that furin is an authentic transforming growth factor-β1-converting enzyme. The American Journal of Pathology, 158(1), 305–316.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Rizzuto, R., et al. (2003). Calcium and apoptosis: facts and hypotheses. Oncogene, 22(53), 8619–8627.PubMedCrossRefGoogle Scholar
  85. 85.
    Pinton, P., et al. (2008). Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene, 27(50), 6407–6418.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mattson, M. P., & Chan, S. L. (2003). Calcium orchestrates apoptosis. Nature Cell Biology, 5(12), 1041–1043.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhivotovsky, B., & Orrenius, S. (2011). Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium, 50(3), 211–221.PubMedCrossRefGoogle Scholar
  88. 88.
    Giorgi, C., et al. (2015). p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 112(6), 1779–1784.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Giorgi, C., et al. (2015). Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling.Google Scholar
  90. 90.
    Haupt, S., Raghu, D., & Haupt, Y. (2015). p53 calls upon CIA (calcium induced apoptosis) to counter stress. Front Oncol, 5, 57.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Shachaf, C. M., et al. (2004). MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature, 431(7012), 1112–1117.PubMedCrossRefGoogle Scholar
  92. 92.
    Soto, A. M., & Sonnenschein, C. (2004). The somatic mutation theory of cancer: growing problems with the paradigm? BioEssays, 26(10), 1097–1107.PubMedCrossRefGoogle Scholar
  93. 93.
    Jaffe, L. F. (2005). A calcium-based theory of carcinogenesis., 94, 231–263.Google Scholar
  94. 94.
    Sonnenschein, C. and A.M. Soto. Theories of carcinogenesis: an emerging perspective. in Seminars in cancer biology. 2008. Elsevier.Google Scholar
  95. 95.
    Smith, B. M., Gindhart, T. D., & Colbum, N. H. (1986). Extracellular calcium requirement for promotion of transformation in JB6 cells. Cancer Research, 46(2), 701–706.PubMedGoogle Scholar
  96. 96.
    Taylor, J. M., & Simpson, R. (1992). Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse. Cancer Research, 52(9), 2413–2418.PubMedGoogle Scholar
  97. 97.
    D’Agostino, D., et al. (2005). The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth. Cell Death & Differentiation, 12, 905–915.CrossRefGoogle Scholar
  98. 98.
    Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35(4), 495–516.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Peracchia, C., Wang, X. G., & Peracchia, L. L. (1999). Behavior of chemical and slow voltage-sensitive gates of connexin channels: the"cork" gating hypothesis. Gap Junctions: Molecular Basis of Cell Communication in Health and Disease: Molecular Basis of Cell Communication in Health and Disease, 49, 271.CrossRefGoogle Scholar
  100. 100.
    Chipman, J. K., Mally, A., & Edwards, G. O. (2003). Disruption of gap junctions in toxicity and carcinogenicity. Toxicological Sciences, 71(2), 146–153.PubMedCrossRefGoogle Scholar
  101. 101.
    McKinsey, T. A., Zhang, C. L., & Olson, E. N. (2000). Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proceedings of the National Academy of Sciences, 97(26), 14400–14405.CrossRefGoogle Scholar
  102. 102.
    Hogan, P. G., et al. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & Development, 17(18), 2205–2232.CrossRefGoogle Scholar
  103. 103.
    Carrion, A. M., et al. (1999). DREAM is a Ca2+-regulated transcriptional repressor. Nature, 398(6722), 80–84.PubMedCrossRefGoogle Scholar
  104. 104.
    Olave, I. A., Reck-Peterson, S. L., & Crabtree, G. R. (2002). Nuclear actin and actin-related proteins in chromatin remodeling. Annual Review of Biochemistry, 71(1), 755–781.PubMedCrossRefGoogle Scholar
  105. 105.
    Rando, O. J., Chi, T. H., & Crabtree, G. R. (2003). Second messenger control of chromatin remodeling. Nature Structural & Molecular Biology, 10(2), 81–83.CrossRefGoogle Scholar
  106. 106.
    Wang, Z., Wilson, G. F., & Griffith, L. C. (2002). Calcium/calmodulin-dependent protein kinase II phosphorylates and regulates the Drosophila eag potassium channel. Journal of Biological Chemistry, 277(27), 24022–24029.PubMedCrossRefGoogle Scholar
  107. 107.
    Christensen, B., Kieler, J., & Bem, W. (1986). Growth requirements and growth pattern of human urothelial cell lines of different grades of transformation. Anticancer Research, 7(3 Pt B), 481–490.Google Scholar
  108. 108.
    Boynton, A.L., et al., Extracellular Ca2+ and cell cycle transitions, in Cell calcium metabolism. 1989, Springer. p. 273–282.Google Scholar
  109. 109.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRefGoogle Scholar
  110. 110.
    Kessler, T., Hache, H., & Wierling, C. (2013). Integrative analysis of cancer-related signaling pathways. Frontiers in Physiology, 4, 124.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.PubMedCrossRefGoogle Scholar
  112. 112.
    Thrasivoulou, C., Millar, M., & Ahmed, A. (2013). Activation of intracellular calcium by multiple Wnt ligands and translocation of beta-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/beta-catenin pathways. The Journal of Biological Chemistry, 288(50), 35651–35659.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Dikic, I., et al., A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. 1996.Google Scholar
  114. 114.
    Farnsworth, C.L., et al., Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. 1995.Google Scholar
  115. 115.
    Chen, H.-J., et al. (1998). A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron, 20(5), 895–904.PubMedCrossRefGoogle Scholar
  116. 116.
    Tebar, F., et al. (2002). Calmodulin regulates intracellular trafficking of epidermal growth factor receptor and the MAPK signaling pathway. Molecular Biology of the Cell, 13(6), 2057–2068.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Chuderland, D., & Seger, R. (2014). Calcium regulates ERK signaling by modulating its protein-protein interactions. Communicative & Integrative Biology, 1(1), 4–5.CrossRefGoogle Scholar
  118. 118.
    Hogan, P.G. ( 2012) The STIM-Orai pathway, in Store-operated Ca2+ entry (SOCE) pathways. Springer. p. 33–44.Google Scholar
  119. 119.
    Stathopulos, P.B. and M. Ikura, The STIM-Orai pathway, in Store-operated Ca2+ entry (SOCE) pathways. 2012, Springer. p. 15–31.Google Scholar
  120. 120.
    Schindl, R., et al. (2012). The STIM-Orai pathway, in Store-operated Ca2+ entry (SOCE) pathways. Springer. p. 45–56.Google Scholar
  121. 121.
    Rand, M. D., et al. (2000). Calcium depletion dissociates and activates heterodimeric notch receptors. Molecular and Cellular Biology, 20(5), 1825–1835.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kadesch, T. (2004). Notch signaling: the demise of elegant simplicity. Current Opinion in Genetics & Development, 14(5), 506–512.CrossRefGoogle Scholar
  123. 123.
    Raya, Á., et al. (2004). Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination. Nature, 427(6970), 121–128.PubMedCrossRefGoogle Scholar
  124. 124.
    Belgacem, Y. H., & Borodinsky, L. N. (2011). Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord. Proceedings of the National Academy of Sciences, 108(11), 4482–4487.CrossRefGoogle Scholar
  125. 125.
    Feng, M., et al. (2010). Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell, 143(1), 84–98.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Zhao, R., et al. (2016). A drug-free tumor therapy strategy: cancer-cell-targeting calcification. Angewandte Chemie International Edition, 55(17), 5225–5229.CrossRefGoogle Scholar
  127. 127.
    Raynal, N. J., et al. (2016). Targeting calcium signaling induces epigenetic reactivation of tumor suppressor genes in cancer. Cancer Research, 76(6), 1494–1505.PubMedCrossRefGoogle Scholar
  128. 128.
    Si, J., et al. (2010). Chromatin remodeling is required for gene reactivation after decitabine-mediated DNA hypomethylation. Cancer Research, 70(17), 6968–6977.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Kim, S.-Y., et al. (2013). Regulation of calcium influx and signaling pathway in cancer cells via TRPV6–Numb1 interaction. Cell Calcium, 53(2), 102–111.PubMedCrossRefGoogle Scholar
  130. 130.
    Prevarskaya, N., Skryma, R., & Shuba, Y. (2011). Calcium in tumour metastasis: new roles for known actors. Nature Reviews Cancer, 11(8), 609–618.PubMedCrossRefGoogle Scholar
  131. 131.
    Berridge, M. J., Bootman, M. D., & Lipp, P. (1998). Calcium-a life and death signal. Nature, 395(6703), 645–648.PubMedCrossRefGoogle Scholar
  132. 132.
    Cook, S. J., & Lockyer, P. J. (2006). Recent advances in Ca 2+-dependent Ras regulation and cell proliferation. Cell Calcium, 39(2), 101–112.PubMedCrossRefGoogle Scholar
  133. 133.
    Alam, M. J., et al. (2013). Switching p 53 states by calcium: dynamics and interaction of stress systems. Molecular BioSystems, 9(3), 508–521.PubMedCrossRefGoogle Scholar
  134. 134.
    Sorrentino, G., Comel, A., & Del Sal, G. (2015). p53 orchestrates calcium signaling in vivo. Cell Cycle, 14(9), 1343–1344.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Madan, E., et al. (2013). p53 increases intra-cellular calcium release by transcriptional regulation of calcium channel TRPC6 in GaQ 3-treated cancer cells. PloS One, 8(8), e71016.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Hoth, M. (2016). CRAC channels, calcium, and cancer in light of the driver and passenger concept. Biochimica et Biophysica Acta (BBA)-molecular. Cell Research, 1863(6), 1408–1417.Google Scholar
  137. 137.
    Zhong, Z., et al. (2010). Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells. Cancer Research, 70(5), 2105–2114.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Bikle, D., Oda, Y., & Xie, Z. (2004). Calcium and 1, 25 (OH) 2 D: interacting drivers of epidermal differentiation. The Journal of Steroid Biochemistry and Molecular Biology, 89, 355–360.PubMedCrossRefGoogle Scholar
  139. 139.
    Parkash, J., & Asotra, K. (2010). Calcium wave signaling in cancer cells. Life Sciences, 87(19–22), 587–595.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Baker, R., et al. (2010). New relationships between breast microcalcifications and cancer. British Journal of Cancer, 103(7), 1034–1039.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Morgan, M. P., Cooke, M. M., & McCarthy, G. M. (2005). Microcalcifications associated with breast cancer: an epiphenomenon or biologically significant feature of selected tumors? Journal of Mammary Gland Biology and Neoplasia, 10(2), 181–187.PubMedCrossRefGoogle Scholar
  142. 142.
    Franceschi, D., et al. (1990). Biopsy of the breast for mammographically detected lesions. Surgery, Gynecology & Obstetrics, 171(6), 449–455.Google Scholar
  143. 143.
    Park, J., et al. (2000). Clustering of breast microcalcifications: revisited. Clinical Radiology, 55(2), 114–118.PubMedCrossRefGoogle Scholar
  144. 144.
    Kakkos, S. K., et al. (2000). Relative risk of cancer in sonographically detected thyroid nodules with calcifications. Journal of Clinical Ultrasound, 28(7), 347–352.PubMedCrossRefGoogle Scholar
  145. 145.
    Woods, J. E., Soh, S., & Wheeler, T. M. (1998). Distribution and significance of microcalcifications in the neoplastic and nonneoplastic prostate. Archives of Pathology & Laboratory Medicine, 122(2), 152.Google Scholar
  146. 146.
    Rashid, H.H., et al. Testicular microlithiasis: a review and its association with testicular cancer. in Urologic oncology: seminars and original investigations. 2004. Elsevier.Google Scholar
  147. 147.
    Conteduca, V., et al. (2014). Chromogranin A is a potential prognostic marker in prostate cancer patients treated with enzalutamide. Prostate, 74(16), 1691–1696.PubMedCrossRefGoogle Scholar
  148. 148.
    Wang, Q., et al. (2012). S100P, a potential novel prognostic marker in colorectal cancer. Oncology Reports, 28(1), 303.PubMedGoogle Scholar
  149. 149.
    Tennakoon, S., Aggarwal, A., & Kállay, E. (2016). The calcium-sensing receptor and the hallmarks of cancer. Biochimica et Biophysica Acta (BBA)-molecular. Cell Research, 1863(6), 1398–1407.Google Scholar
  150. 150.
    Monteith, G. R., Davis, F. M., & Roberts-Thomson, S. J. (2012). Calcium channels and pumps in cancer: changes and consequences. Journal of Biological Chemistry, 287(38), 31666–31673.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Casemore, D. and C. Xing, SERCA as a target for cancer therapies. Google Scholar
  152. 152.
    Wong, V. K., et al. (2013). Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death & Disease, 4, e720.CrossRefGoogle Scholar
  153. 153.
    Seo, J.a et al., Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca 2+ ATPase activity in ovarian cancer cells. Cancer letters, 2016. 371(1): p. 30–37.Google Scholar
  154. 154.
    Florea, A.-M., & Büsselberg, D. (2009). Anti-cancer drugs interfere with intracellular calcium signaling. Neurotoxicology, 30(5), 803–810.PubMedCrossRefGoogle Scholar
  155. 155.
    Laneuville, O., et al. (1993). Hepoxilin A3 inhibits the rise in free intracellular calcium evoked by formyl-methionyl-leucyl-phenylalanine, platelet-activating factor and leukotriene B4. Biochemical Journal, 295(2), 393–397.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Mills, L., Reynaud, D., & Pace-Asciak, C. R. (1997). Hepoxilin-evoked intracellular reorganization of calcium in human neutrophils: a confocal microscopy study. Experimental Cell Research, 230(2), 337–341.PubMedCrossRefGoogle Scholar
  157. 157.
    Pace-Asciak, C. R. (2011). Hepoxilins in cancer and inflammation—use of hepoxilin antagonists. Cancer Metastasis Reviews, 30(3–4), 493–506.PubMedCrossRefGoogle Scholar
  158. 158.
    Yang, B., et al. (2016). Calcium intake and mortality from all causes, cancer, and cardiovascular disease: the Cancer Prevention Study II Nutrition Cohort. The American Journal of Clinical Nutrition, 103(3), 886–894.PubMedCrossRefGoogle Scholar
  159. 159.
    Chan, J. M., & Giovannucci, E. L. (2001). Dairy products, calcium, and vitamin D and risk of prostate cancer. Epidemiologic Reviews, 23(1), 87–92.PubMedCrossRefGoogle Scholar
  160. 160.
    Brändstedt, J., et al. (2016). Vitamin D, PTH, and calcium and tumor aggressiveness in prostate cancer: a prospective nested case–control study. Cancer Causes & Control, 27(1), 69–80.CrossRefGoogle Scholar
  161. 161.
    Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information and Libraries Journal, 26(2), 91–108.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bernard Kadio
    • 1
  • Sanni Yaya
    • 2
  • Ajoy Basak
    • 3
    • 4
  • Koffi Djè
    • 5
  • James Gomes
    • 6
  • Christian Mesenge
    • 7
  1. 1.Interdisciplinary School of Health Sciences, Faculty of Health ScienceUniversity of OttawaOttawaCanada
  2. 2.School of International Development and Global Studies, Faculty of Social SciencesUniversity of OttawaOttawaCanada
  3. 3.Chronic Disease Ottawa Hospital Research InstituteUniversity of OttawaOttawaCanada
  4. 4.Interdisciplinary School of Health SciencesUniversity of OttawaOttawaCanada
  5. 5.Faculty of Médecine, Department of UrologyAllasane Ouattara UniversityBouakéIvory Coast
  6. 6.Interdisciplinary School of Health SciencesUniversity of OttawaOttawaCanada
  7. 7.Université du Quebec en AbitibiQCCanada

Personalised recommendations