Cancer and Metastasis Reviews

, Volume 35, Issue 2, pp 179–199 | Cite as

Understanding the cellular roles of Fyn-related kinase (FRK): implications in cancer biology

  • Raghuveera Kumar Goel
  • Kiven Erique LukongEmail author


The non-receptor tyrosine kinase Fyn-related kinase (FRK) is a member of the BRK family kinases (BFKs) and is distantly related to the Src family kinases (SFKs). FRK was first discovered in 1993, and studies pursued thereafter attributed a potential tumour-suppressive function to the enzyme. In recent years, however, further functional characterization of the tyrosine kinase in diverse cancer types suggests that FRK may potentially play an oncogenic role as well. Specifically, while ectopic expression of FRK suppresses cell proliferation and migration in breast and brain cancers, knockdown or catalytic inhibition of FRK suppresses these cellular processes in pancreatic and liver cancer. Such functional paradox is therefore evidently exhibited in a tissue-specific context. This review sheds light on the recent developments emerged from investigations on FRK which include: (a) a review of the expression pattern of the protein in mammalian cells/tissues, (b) underlying genomic perturbations and (c) a mechanistic function of the enzyme across different cellular environments. Given its functional heterogeneity observed across different cancers, we also discuss the therapeutic significance of FRK.


FRK Rak PTK5 SRMS BRK Src Breast cancer Tyrosine kinase Tumour suppressor Oncogene BFKs Fyn PTEN 



The authors apologize to those whose work was not included owing to space limitations. Breast cancer research in the Lukong lab is supported over the years by funds from various organizations including the Canadian Breast Cancer Foundation (CBCF) and Canadian Institutes of Health Research (CIHR).

Compliance with ethical standards

Conflict of interest

The authors are unaware of any affiliations, memberships, or financial holdings that might be perceived as affecting the objectivity of this review.


  1. 1.
    Goel, R. K., & Lukong, K. E. (2015). Tracing the footprints of the breast cancer oncogene BRK—past till present. Biochimica et biophysica acta, 1856, 39–54.PubMedGoogle Scholar
  2. 2.
    Cance, W. G., Craven, R. J., Weiner, T. M., & Liu, E. T. (1993). Novel protein kinases expressed in human breast cancer, International journal of cancer. Journal international du cancer, 54, 571–577.CrossRefPubMedGoogle Scholar
  3. 3.
    Cance, W. G., Craven, R. J., Bergman, M., Xu, L., Alitalo, K., & Liu, E. T. (1994). Rak, a novel nuclear tyrosine kinase expressed in epithelial cells. Cell growth & differentiation, 5, 1347–1355.Google Scholar
  4. 4.
    Lee, J., Wang, Z., Luoh, S. M., Wood, W. I., & Scadden, D. T. (1994). Cloning of FRK, a novel human intracellular SRC-like tyrosine kinase-encoding gene. Gene, 138, 247–251.CrossRefPubMedGoogle Scholar
  5. 5.
    Brauer, P. M., & Tyner, A. L. (2009). RAKing in AKT: a tumor suppressor function for the intracellular tyrosine kinase FRK. Cell Cycle, 8, 2728–2732.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sheng, Z. M., Marchetti, A., Buttitta, F., Champeme, M. H., Campani, D., Bistocchi, M., Lidereau, R., & Callahan, R. (1996). Multiple regions of chromosome 6q affected by loss of heterozygosity in primary human breast carcinomas. British journal of cancer, 73, 144–147.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Becher, R., Gibas, Z., Karakousis, C., & Sandberg, A. A. (1983). Nonrandom chromosome changes in malignant melanoma. Cancer research, 43, 5010–5016.PubMedGoogle Scholar
  8. 8.
    Becher, R., Gibas, Z., & Sandberg, A. A. (1983). Chromosome 6 in malignant melanoma. Cancer genetics and cytogenetics, 9, 173–175.CrossRefPubMedGoogle Scholar
  9. 9.
    Girard, L., Zochbauer-Muller, S., Virmani, A. K., Gazdar, A. F., & Minna, J. D. (2000). Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer research, 60, 4894–4906.PubMedGoogle Scholar
  10. 10.
    Oberg-Welsh, C., & Welsh, M. (1995). Cloning of BSK, a murine FRK homologue with a specific pattern of tissue distribution. Gene, 152, 239–242.CrossRefPubMedGoogle Scholar
  11. 11.
    Thuveson, M., Albrecht, D., Zurcher, G., Andres, A. C., & Ziemiecki, A. (1995). iyk, a novel intracellular protein tyrosine kinase differentially expressed in the mouse mammary gland and intestine. Biochemical and biophysical research communications, 209, 582–589.CrossRefPubMedGoogle Scholar
  12. 12.
    Sunitha, I., & Avigan, M. I. (1994). A newly identified tyrosine kinase is preferentially expressed in the gastrointestinal tract. Biochimica et biophysica acta, 1221, 348–352.CrossRefPubMedGoogle Scholar
  13. 13.
    Sunitha, I., & Avigan, M. I. (1996). The apical membranes of maturing gut columnar epithelial cells contain the enzymatically active form of a newly identified fyn-related tyrosine kinase. Oncogene, 13, 547–559.PubMedGoogle Scholar
  14. 14.
    Oberg-Welsh, C., Anneren, C., & Welsh, M. (1998). Mutation of C-terminal tyrosine residues Y497/Y504 of the Src-family member Bsk/Iyk decreases NIH3T3 cell proliferation. Growth Factors, 16, 111–124.CrossRefPubMedGoogle Scholar
  15. 15.
    Anneren, C., & Welsh, M. (2000). Role of the Bsk/Iyk non-receptor tyrosine kinase for the control of growth and hormone production in RINm5F cells. Growth Factors, 17, 233–247.CrossRefPubMedGoogle Scholar
  16. 16.
    Okada, M., & Nakagawa, H. (1989). A protein tyrosine kinase involved in regulation of pp60c-src function. The Journal of Biological Chemistry, 264, 20886–20893.PubMedGoogle Scholar
  17. 17.
    Nada, S., Okada, M., MacAuley, A., Cooper, J. A., & Nakagawa, H. (1991). Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature, 351, 69–72.CrossRefPubMedGoogle Scholar
  18. 18.
    Partanen, J., Armstrong, E., Bergman, M., Makela, T. P., Hirvonen, H., Huebner, K., & Alitalo, K. (1991). cyl encodes a putative cytoplasmic tyrosine kinase lacking the conserved tyrosine autophosphorylation site (Y416src). Oncogene, 6, 2013–2018.PubMedGoogle Scholar
  19. 19.
    Sabe, H., Knudsen, B., Okada, M., Nada, S., Nakagawa, H., & Hanafusa, H. (1992). Molecular cloning and expression of chicken C-terminal Src kinase: lack of stable association with c-Src protein. Proceedings of the National Academy of Sciences of the United States of America, 89, 2190–2194.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., & Nakagawa, H. (1991). CSK: a protein-tyrosine kinase involved in regulation of src family kinases. The Journal of Biological Chemistry, 266, 24249–24252.PubMedGoogle Scholar
  21. 21.
    Meyer, T., Xu, L., Chang, J., Liu, E. T., Craven, R. J., & Cance, W. G. (2003). Breast cancer cell line proliferation blocked by the Src-related Rak tyrosine kinase, International journal of cancer. Journal international du cancer, 104, 139–146.CrossRefPubMedGoogle Scholar
  22. 22.
    Qiu, H., & Miller, W. T. (2004). Role of the Brk SH3 domain in substrate recognition. Oncogene, 23, 2216–2223.CrossRefPubMedGoogle Scholar
  23. 23.
    Snyder, M. A., Bishop, J. M., McGrath, J. P., & Levinson, A. D. (1985). A mutation at the ATP-binding site of pp60v-src abolishes kinase activity, transformation, and tumorigenicity. Molecular and cellular biology, 5, 1772–1779.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Goel, R. K., Miah, S., Black, K., Kalra, N., Dai, C., & Lukong, K. E. (2013). The unique N-terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1. The FEBS journal, 280, 4539–4559.CrossRefPubMedGoogle Scholar
  25. 25.
    McPherson, R. A., Taylor, M. M., Hershey, E. D., & Sturgill, T. W. (2000). A different function for a critical tryptophan in c-Raf and Hck. Oncogene, 19, 3616–3622.CrossRefPubMedGoogle Scholar
  26. 26.
    Berclaz, G., Altermatt, H. J., Rohrbach, V., Dreher, E., Ziemiecki, A., & Andres, A. C. (2000). Hormone-dependent nuclear localization of the tyrosine kinase iyk in the normal human breast epithelium and loss of expression during carcinogenesis, International journal of cancer. Journal international du cancer, 85, 889–894.CrossRefPubMedGoogle Scholar
  27. 27.
    Serfas, M. S., & Tyner, A. L. (2003). Brk, Srm, Frk, and Src42A form a distinct family of intracellular Src-like tyrosine kinases. Oncology research, 13, 409–419.CrossRefPubMedGoogle Scholar
  28. 28.
    L. Jin, R.J. Craven. (2013). The Rak/Frk tyrosine kinase associates with and internalizes the epidermal growth factor receptor. Oncogene.Google Scholar
  29. 29.
    Ie Kim, H., & Lee, S. T. (2009). Oncogenic functions of PTK6 are enhanced by its targeting to plasma membrane but abolished by its targeting to nucleus. Journal of biochemistry, 146, 133–139.CrossRefPubMedGoogle Scholar
  30. 30.
    Brauer, P. M., Zheng, Y., Wang, L., & Tyner, A. L. (2010). Cytoplasmic retention of protein tyrosine kinase 6 promotes growth of prostate tumor cells. Cell Cycle, 9, 4190–4199.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Peng, M., Emmadi, R., Wang, Z., Wiley, E. L., Gann, P. H., Khan, S. A., Banerji, N., McDonald, W., Asztalos, S., Pham, T. N., Tonetti, D. A., & Tyner, A. L. (2014). PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors. Oncotarget, 5, 6038–6048.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhou, X., Hua, L., Zhang, W., Zhu, M., Shi, Q., Li, F., Zhang, L., Song, C., & Yu, R. (2012). FRK controls migration and invasion of human glioma cells by regulating JNK/c-Jun signaling. Journal of neuro-oncology, 110, 9–19.CrossRefPubMedGoogle Scholar
  33. 33.
    Hua, L., Zhu, M., Song, X., Wang, J., Fang, Z., Zhang, C., Shi, Q., Zhan, W., Wang, L., Meng, Q., Zhou, X., & Yu, R. (2014). FRK suppresses the proliferation of human glioma cells by inhibiting cyclin D1 nuclear accumulation. Journal of neuro-oncology, 119, 49–58.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhao, B., Tan, P. H., Li, S. S., & Pei, D. (2013). Systematic characterization of the specificity of the SH2 domains of cytoplasmic tyrosine kinases. Journal of proteomics, 81, 56–69.CrossRefPubMedGoogle Scholar
  35. 35.
    Yim, E. K., Peng, G., Dai, H., Hu, R., Li, K., Lu, Y., Mills, G. B., Meric-Bernstam, F., Hennessy, B. T., Craven, R. J., & Lin, S. Y. (2009). Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell, 15, 304–314.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Craven, R. J., Cance, W. G., & Liu, E. T. (1995). The nuclear tyrosine kinase Rak associates with the retinoblastoma protein pRb. Cancer research, 55, 3969–3972.PubMedGoogle Scholar
  37. 37.
    Benedict, W. F., Murphree, A. L., Banerjee, A., Spina, C. A., Sparkes, M. C., & Sparkes, R. S. (1983). Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science, 219, 973–975.CrossRefPubMedGoogle Scholar
  38. 38.
    Weinberg, R. A. (1995). The retinoblastoma protein and cell cycle control. Cell, 81, 323–330.CrossRefPubMedGoogle Scholar
  39. 39.
    Welch, P. J., & Wang, J. Y. (1993). A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell, 75, 779–790.CrossRefPubMedGoogle Scholar
  40. 40.
    Yim, E. K., Siwko, S., & Lin, S. Y. (2009). Exploring Rak tyrosine kinase function in breast cancer. Cell Cycle, 8, 2360–2364.CrossRefPubMedGoogle Scholar
  41. 41.
    J.L. Kim, G.H. Ha, L. Campo, M.F. Denning, T.B. Patel, C. Osipo, S.Y. Lin, E.K. Breuer. (2015). The role of Rak in the regulation of stability and function of BRCA1. Oncotarget.Google Scholar
  42. 42.
    Yoshida, K., & Miki, Y. (2004). Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer science, 95, 866–871.CrossRefPubMedGoogle Scholar
  43. 43.
    Bougie, O., & Weberpals, J. I. (2011). Clinical considerations of BRCA1- and BRCA2-mutation carriers: a review. International journal of surgical oncology, 2011, 374012.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pendergast, A. M. (1996). Nuclear tyrosine kinases: from Abl to WEE1. Current opinion in cell biology, 8, 174–181.CrossRefPubMedGoogle Scholar
  45. 45.
    Berthet, C., & Kaldis, P. (2006). Cdk2 and Cdk4 cooperatively control the expression of Cdc2. Cell division, 1, 10.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Anneren, C., Reedquist, K. A., Bos, J. L., & Welsh, M. (2000). GTK, a Src-related tyrosine kinase, induces nerve growth factor-independent neurite outgrowth in PC12 cells through activation of the Rap1 pathway. Relationship to Shb tyrosine phosphorylation and elevated levels of focal adhesion kinase. The Journal of Biological Chemistry, 275, 29153–29161.CrossRefPubMedGoogle Scholar
  47. 47.
    Anneren, C., & Welsh, M. (2002). GTK tyrosine kinase-induced alteration of IRS-protein signalling in insulin producing cells. Molecular Medicine, 8, 705–713.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Anneren, C., Lindholm, C. K., Kriz, V., & Welsh, M. (2003). The FRK/RAK-SHB signaling cascade: a versatile signal-transduction pathway that regulates cell survival, differentiation and proliferation. Current molecular medicine, 3, 313–324.CrossRefPubMedGoogle Scholar
  49. 49.
    Chen, J. S., Hung, W. S., Chan, H. H., Tsai, S. J., & Sun, H. S. (2013). In silico identification of oncogenic potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics, 29, 420–427.CrossRefPubMedGoogle Scholar
  50. 50.
    Je, D. W., YM, O., Ji, Y. G., Cho, Y., & Lee, D. H. (2014). The inhibition of SRC family kinase suppresses pancreatic cancer cell proliferation, migration, and invasion. Pancreas, 43, 768–776.CrossRefPubMedGoogle Scholar
  51. 51.
    Tan, A. C., Jimeno, A., Lin, S. H., Wheelhouse, J., Chan, F., Solomon, A., Rajeshkumar, N. V., Rubio-Viqueira, B., & Hidalgo, M. (2009). Characterizing DNA methylation patterns in pancreatic cancer genome. Molecular oncology, 3, 425–438.CrossRefPubMedGoogle Scholar
  52. 52.
    Klijn, C., Durinck, S., Stawiski, E. W., Haverty, P. M., Jiang, Z., Liu, H., Degenhardt, J., Mayba, O., Gnad, F., Liu, J., Pau, G., Reeder, J., Cao, Y., Mukhyala, K., Selvaraj, S. K., Yu, M., Zynda, G. J., Brauer, M. J., Wu, T. D., Gentleman, R. C., Manning, G., Yauch, R. L., Bourgon, R., Stokoe, D., Modrusan, Z., Neve, R. M., de Sauvage, F. J., Settleman, J., Seshagiri, S., & Zhang, Z. (2015). A comprehensive transcriptional portrait of human cancer cell lines. Nature biotechnology, 33, 306–312.CrossRefPubMedGoogle Scholar
  53. 53.
    Hosoya, N., Qiao, Y., Hangaishi, A., Wang, L., Nannya, Y., Sanada, M., Kurokawa, M., Chiba, S., Hirai, H., & Ogawa, S. (2005). Identification of a SRC-like tyrosine kinase gene, FRK, fused with ETV6 in a patient with acute myelogenous leukemia carrying a t(6;12)(q21;p13) translocation. Genes, chromosomes & cancer, 42, 269–279.CrossRefGoogle Scholar
  54. 54.
    Pilati, C., Letouze, E., Nault, J. C., Imbeaud, S., Boulai, A., Calderaro, J., Poussin, K., Franconi, A., Couchy, G., Morcrette, G., Mallet, M., Taouji, S., Balabaud, C., Terris, B., Canal, F., Paradis, V., Scoazec, J. Y., de Muret, A., Guettier, C., Bioulac-Sage, P., Chevet, E., Calvo, F., & Zucman-Rossi, J. (2014). Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. Cancer Cell, 25, 428–441.CrossRefPubMedGoogle Scholar
  55. 55.
    Knowlton, M. L., Selfors, L. M., Wrobel, C. N., Gu, T. L., Ballif, B. A., Gygi, S. P., Polakiewicz, R., & Brugge, J. S. (2010). Profiling Y561-dependent and -independent substrates of CSF-1R in epithelial cells. PloS one, 5, e13587.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sunitha, I., Shen, R., McKillop, I. H., Lee, J. H., Resau, J., & Avigan, M. (1999). A src-related kinase in the brush border membranes of gastrointestinal cells is regulated by c-met. Experimental cell research, 250, 86–98.CrossRefPubMedGoogle Scholar
  57. 57.
    Palka-Hamblin, H. L., Gierut, J. J., Bie, W., Brauer, P. M., Zheng, Y., Asara, J. M., & Tyner, A. L. (2010). Identification of beta-catenin as a target of the intracellular tyrosine kinase PTK6. Journal of Cell Science, 123, 236–245.CrossRefPubMedGoogle Scholar
  58. 58.
    Shi, Q., Song, X., Wang, J., Gu, J., Zhang, W., Hu, J., Zhou, X., & Yu, R. (2015). FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/beta-catenin complex formation. Journal of molecular neuroscience, 55, 32–41.CrossRefPubMedGoogle Scholar
  59. 59.
    Camand, E., Peglion, F., Osmani, N., Sanson, M., & Etienne-Manneville, S. (2012). N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. Journal of Cell Science, 125, 844–857.CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang, X., Liu, G., Kang, Y., Dong, Z., Qian, Q., & Ma, X. (2013). N-cadherin expression is associated with acquisition of EMT phenotype and with enhanced invasion in erlotinib-resistant lung cancer cell lines. PloS one, 8, e57692.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang, J. L., Chen, Z. F., Chen, H. M., Wang, M. Y., Kong, X., Wang, Y. C., Sun, T. T., Hong, J., Zou, W., Xu, J., & Fang, J. Y. (2014). Elf3 drives beta-catenin transactivation and associates with poor prognosis in colorectal cancer. Cell death & disease, 5, e1263.CrossRefGoogle Scholar
  62. 62.
    Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M., & Tsai, L. H. (2000). Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase. Current biology, 10, 363–372.CrossRefPubMedGoogle Scholar
  63. 63.
    Bhargava, R., Gerald, W. L., Li, A. R., Pan, Q., Lal, P., Ladanyi, M., & Chen, B. (2005). EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Modern pathology, 18, 1027–1033.CrossRefPubMedGoogle Scholar
  64. 64.
    Rimawi, M. F., Shetty, P. B., Weiss, H. L., Schiff, R., Osborne, C. K., Chamness, G. C., & Elledge, R. M. (2010). Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer, 116, 1234–1242.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sun, B., Yang, N., Jiang, Y., Zhang, H., Hou, C., Ji, C., Liu, Y., & Zuo, P. (2015). Antagomir-1290 suppresses CD133(+) cells in non-small cell lung cancer by targeting fyn-related Src family tyrosine kinase. Tumour biology, 36, 6223–6230.CrossRefPubMedGoogle Scholar
  66. 66.
    Varnholt, H., Drebber, U., Schulze, F., Wedemeyer, I., Schirmacher, P., Dienes, H. P., & Odenthal, M. (2008). MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology, 47, 1223–1232.CrossRefPubMedGoogle Scholar
  67. 67.
    Shukla, S., Shishodia, G., Mahata, S., Hedau, S., Pandey, A., Bhambhani, S., Batra, S., Basir, S. F., Das, B. C., & Bharti, A. C. (2010). Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: implications in high-risk human papillomavirus infection. Molecular cancer, 9, 282.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Garcia, R., Bowman, T. L., Niu, G., Yu, H., Minton, S., Muro-Cacho, C. A., Cox, C. E., Falcone, R., Fairclough, R., Parsons, S., Laudano, A., Gazit, A., Levitzki, A., Kraker, A., & Jove, R. (2001). Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene, 20, 2499–2513.CrossRefPubMedGoogle Scholar
  69. 69.
    Azare, J., Leslie, K., Al-Ahmadie, H., Gerald, W., Weinreb, P. H., Violette, S. M., & Bromberg, J. (2007). Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. Molecular and cellular biology, 27, 4444–4453.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Welsh, M., Welsh, C., Ekman, M., Dixelius, J., Hagerkvist, R., Anneren, C., Akerblom, B., Mahboobi, S., Chandrasekharan, S., & Liu, E. T. (2004). The tyrosine kinase FRK/RAK participates in cytokine-induced islet cell cytotoxicity. The Biochemical journal, 382, 261–268.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chandrasekharan, S., Qiu, T. H., Alkharouf, N., Brantley, K., Mitchell, J. B., & Liu, E. T. (2002). Characterization of mice deficient in the Src family nonreceptor tyrosine kinase Frk/rak. Molecular and cellular biology, 22, 5235–5247.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Akerblom, B., Anneren, C., & Welsh, M. (2007). A role of FRK in regulation of embryonal pancreatic beta cell formation. Molecular and cellular endocrinology, 270, 73–78.CrossRefPubMedGoogle Scholar
  73. 73.
    Anneren, C., & Welsh, M. (2001). Increased cytokine-induced cytotoxicity of pancreatic islet cells from transgenic mice expressing the Src-like tyrosine kinase GTK. Molecular Medicine, 7, 301–310.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Anneren, C. (2002). Dual role of the tyrosine kinase GTK and the adaptor protein SHB in beta-cell growth: enhanced beta-cell replication after 60% pancreatectomy and increased sensitivity to streptozotocin. The Journal of endocrinology, 172, 145–153.CrossRefPubMedGoogle Scholar
  75. 75.
    Anneren, C., Welsh, M., & Jansson, L. (2007). Glucose intolerance and reduced islet blood flow in transgenic mice expressing the FRK tyrosine kinase under the control of the rat insulin promoter, American journal of physiology. Endocrinology and metabolism, 292, E1183–1190.PubMedGoogle Scholar
  76. 76.
    Roe, K., Bratland, A., Vlatkovic, L., Ragnum, H. B., Saelen, M. G., Olsen, D. R., Marignol, L., & Ree, A. H. (2013). Hypoxic tumor kinase signaling mediated by STAT5A in development of castration-resistant prostate cancer. PloS one, 8, e63723.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Cowin, P. A., Anglesio, M., Etemadmoghadam, D., & Bowtell, D. D. (2010). Profiling the cancer genome. Annual review of genomics and human genetics, 11, 133–159.CrossRefPubMedGoogle Scholar
  78. 78.
    Son, J. W., Jeong, K. J., Jean, W. S., Park, S. Y., Jheon, S., Cho, H. M., Park, C. G., Lee, H. Y., & Kang, J. (2011). Genome-wide combination profiling of DNA copy number and methylation for deciphering biomarkers in non-small cell lung cancer patients. Cancer letters, 311, 29–37.CrossRefPubMedGoogle Scholar
  79. 79.
    Park, J. J., Kang, J. K., Hong, S., Ryu, E. S., Kim, J. I., Lee, J. H., & Seo, J. S. (2008). Genome-wide combination profiling of copy number and methylation offers an approach for deciphering misregulation and development in cancer cells. Gene, 407, 139–147.CrossRefPubMedGoogle Scholar
  80. 80.
    Kleivi, K., Lothe, R. A., Heim, S., Tsarouha, H., Kraggerud, S. M., Pandis, N., Papadopoulou, A., Andersen, J., Jakobsen, K. S., & Teixeira, M. R. (2002). Genome profiling of breast cancer cells selected against in vitro shows copy number changes. Genes, chromosomes & cancer, 33, 304–309.CrossRefGoogle Scholar
  81. 81.
    Kashiwagi, H., & Uchida, K. (2000). Genome-wide profiling of gene amplification and deletion in cancer. Human cell, 13, 135–141.PubMedGoogle Scholar
  82. 82.
    Chen, Y., Hao, J., Jiang, W., He, T., Zhang, X., Jiang, T., & Jiang, R. (2013). Identifying potential cancer driver genes by genomic data integration. Scientific reports, 3, 3538.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 458, 719–724.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Jin, G., Jeon, H. S., Yang, E., & Park, J. Y. (2011). Mutation analysis of the FRK gene in non-small cell lung cancers. Lung Cancer, 71, 115–117.CrossRefPubMedGoogle Scholar
  85. 85.
    Grebien, F., Hantschel, O., Wojcik, J., Kaupe, I., Kovacic, B., Wyrzucki, A. M., Gish, G. D., Cerny-Reiterer, S., Koide, A., Beug, H., Pawson, T., Valent, P., Koide, S., & Superti-Furga, G. (2011). Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. Cell, 147, 306–319.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Brauer, P. M., & Tyner, A. L. (2010). Building a better understanding of the intracellular tyrosine kinase PTK6 - BRK by BRK. Biochimica et Biophysica Acta, 1806, 66–73.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Y. Zheng, J. Gierut, Z. Wang, J. Miao, J.M. Asara, A.L. Tyner. (2012). Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene.Google Scholar
  88. 88.
    Zheng, Y., & Tyner, A. L. (2013). Context-specific protein tyrosine kinase 6 (PTK6) signalling in prostate cancer. European journal of clinical investigation, 43, 397–404.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Haegebarth, A., Bie, W., Yang, R., Crawford, S. E., Vasioukhin, V., Fuchs, E., & Tyner, A. L. (2006). Protein tyrosine kinase 6 negatively regulates growth and promotes enterocyte differentiation in the small intestine. Molecular and cellular biology, 26, 4949–4957.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Ma, S., Bao, J. Y., Kwan, P. S., Chan, Y. P., Tong, C. M., Fu, L., Zhang, N., Tong, A. H., Qin, Y. R., Tsao, S. W., Chan, K. W., Lok, S., & Guan, X. Y. (2012). Identification of PTK6, via RNA sequencing analysis, as a suppressor of esophageal squamous cell carcinoma. Gastroenterology, 143, 675–686. e671-612.CrossRefPubMedGoogle Scholar
  91. 91.
    Liu, X. K., Zhang, X. R., Zhong, Q., Li, M. Z., Liu, Z. M., Lin, Z. R., Wu, D., & Zeng, M. S. (2013). Low expression of PTK6/Brk predicts poor prognosis in patients with laryngeal squamous cell carcinoma. Journal of translational medicine, 11, 59.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Li, X., Lu, Y., Liang, K., Hsu, J. M., Albarracin, C., Mills, G. B., Hung, M. C., & Fan, Z. (2012). Brk/PTK6 sustains activated EGFR signaling through inhibiting EGFR degradation and transactivating EGFR. Oncogene, 31, 4372–4383.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Xiang, B., Chatti, K., Qiu, H., Lakshmi, B., Krasnitz, A., Hicks, J., Yu, M., Miller, W. T., & Muthuswamy, S. K. (2008). Brk is coamplified with ErbB2 to promote proliferation in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 105, 12463–12468.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Li, J., Rix, U., Fang, B., Bai, Y., Edwards, A., Colinge, J., Bennett, K. L., Gao, J., Song, L., Eschrich, S., Superti-Furga, G., Koomen, J., & Haura, E. B. (2010). A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nature chemical biology, 6, 291–299.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Montero, J. C., Seoane, S., Ocana, A., & Pandiella, A. (2011). Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clinical cancer research, 17, 5546–5552.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations