Cancer and Metastasis Reviews

, Volume 35, Issue 1, pp 41–48 | Cite as

Genetic traits for hematogeneous tumor cell dissemination in cancer patients



Metastatic relapse in patients with solid tumors is the consequence of cancer cells that disseminated to distant sites, adapted to the new microenvironment, and escaped systemic adjuvant therapy. There is increasing evidence that hematogeneous dissemination starts at an early stage of cancer progression with single tumor cells or cell clusters leaving the primary site and entering the blood circulation. These circulating tumor cells (CTCs) can extravasate into secondary tissues where they become disseminated tumor cells (DTCs). Patients might relapse years after initial resection of the primary tumor when DTCs become overt metastases. Current diagnostic strategies for stratification of therapies against metastatic cells focus on the primary tumor tissue. This approach is based on the availability of stored primary tumors obtained at primary surgery, but it ignores that the DTCs might have evolved over years, which can affect the antimetastatic drug response. However, taking biopsies from metastatic tissues is an invasive procedure, and multiple metastases located at different sites in an individual patient show marked genomic heterogeneity. Thus, capturing CTCs from the peripheral blood as a “liquid biopsy” has obvious advantages in particular when repeated sampling is required for monitoring therapies in cancer patients. However, the biology behind tumor cell dissemination and its contribution to metastatic progression in cancer patients is still subject to controversial discussions. This manuscript reviews current theories on the genetic traits behind the spread of CTCs and progression of DTCs into overt metastases.


Cancer Circulating tumor cells Disseminated tumor cells Metastasis Genetic progression 


  1. 1.
    Muller, V., Alix-Panabieres, C., & Pantel, K. (2010). Insights into minimal residual disease in cancer patients: implications for anti-cancer therapies. European Journal of Cancer, 46(7), 1189–1197. doi:10.1016/j.ejca.2010.02.038.CrossRefPubMedGoogle Scholar
  2. 2.
    Joosse, S.A., Gorges, T.M., & Pantel, K. (2014). Biology, detection, and clinical implications of circulating tumor cells. EMBO Molecular Medicine, 7(1),1–11. doi: 10.15252/emmm.201303698.Google Scholar
  3. 3.
    Joosse, S. A., & Pantel, K. (2013). Biologic challenges in the detection of circulating tumor cells. Cancer Research, 73(1), 8–11. doi:10.1158/0008-5472.CAN-12-3422.CrossRefPubMedGoogle Scholar
  4. 4.
    Joosse, S. A., Hannemann, J., Spotter, J., Bauche, A., Andreas, A., Muller, V., et al. (2012). Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 18(4), 993–1003. doi:10.1158/1078-0432.CCR-11-2100.CrossRefPubMedGoogle Scholar
  5. 5.
    Riethdorf, S., Fritsche, H., Muller, V., Rau, T., Schindlbeck, C., Rack, B., et al. (2007). Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 13(3), 920–928. doi:10.1158/1078-0432.CCR-06-1695.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang, L., Riethdorf, S., Wu, G., Wang, T., Yang, K., Peng, G., et al. (2012). Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clinical Cancer Research An Official Journal Of the American Association for Cancer Research, 18(20), 5701–5710. doi:10.1158/1078-0432.CCR-12-1587.CrossRefPubMedGoogle Scholar
  7. 7.
    Babayan, A., Hannemann, J., Spotter, J., Muller, V., Pantel, K., & Joosse, S. A. (2013). Heterogeneity of estrogen receptor expression in circulating tumor cells from metastatic breast cancer patients. PLoS ONE, 8(9), e75038. doi:10.1371/journal.pone.0075038.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schramm, A., Friedl, T. W., Schochter, F., Scholz, C., de Gregorio, N., Huober, J., et al. (2015). Therapeutic intervention based on circulating tumor cell phenotype in metastatic breast cancer: concept of the DETECT study program. Archives of Gynecology and Obstetrics. doi:10.1007/s00404-015-3879-7.Google Scholar
  9. 9.
    Antonarakis, E. S., Lu, C., Wang, H., Luber, B., Nakazawa, M., Roeser, J. C., et al. (2014). AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. The New England Journal of Medicine, 371(11), 1028–1038. doi:10.1056/NEJMoa1315815.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890. doi:10.1016/j.cell.2009.11.007.CrossRefPubMedGoogle Scholar
  11. 11.
    Lange, T., Samatov, T. R., Tonevitsky, A. G., & Schumacher, U. (2014). Importance of altered glycoprotein-bound N- and O-glycans for epithelial-to-mesenchymal transition and adhesion of cancer cells. Carbohydrate Research, 389, 39–45. doi:10.1016/j.carres.2014.01.010.CrossRefPubMedGoogle Scholar
  12. 12.
    Dancey, J. E., Bedard, P. L., Onetto, N., & Hudson, T. J. (2012). The genetic basis for cancer treatment decisions. Cell, 148(3), 409–420. doi:10.1016/j.cell.2012.01.014.CrossRefPubMedGoogle Scholar
  13. 13.
    Dienstmann, R., Rodon, J., & Tabernero, J. (2013). Biomarker-driven patient selection for early clinical trials. Current Opinion in Oncology, 25(3), 305–312. doi:10.1097/CCO.0b013e32835ff3cb.PubMedGoogle Scholar
  14. 14.
    Alix-Panabieres, C., & Pantel, K. (2014). Challenges in circulating tumour cell research. Nature Reviews Cancer, 14(9), 623–631. doi:10.1038/nrc3820.CrossRefPubMedGoogle Scholar
  15. 15.
    Haber, D. A., & Velculescu, V. E. (2014). Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discovery, 4(6), 650–661. doi:10.1158/2159-8290.CD-13-1014.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Krebs, M. G., Metcalf, R. L., Carter, L., Brady, G., Blackhall, F. H., & Dive, C. (2014). Molecular analysis of circulating tumour cells-biology and biomarkers. Nature Reviews. Clinical Oncology, 11(3), 129–144. doi:10.1038/nrclinonc.2013.253.CrossRefPubMedGoogle Scholar
  17. 17.
    Lianidou, E. S., Mavroudis, D., & Georgoulias, V. (2013). Clinical challenges in the molecular characterization of circulating tumour cells in breast cancer. British Journal of Cancer, 108(12), 2426–2432. doi:10.1038/bjc.2013.265.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Klein, C. A. (2009). Parallel progression of primary tumours and metastases. Nature Reviews Cancer, 9(4), 302–312. doi:10.1038/nrc2627.CrossRefPubMedGoogle Scholar
  19. 19.
    Grade, M., Becker, H., Liersch, T., Ried, T., & Ghadimi, B. M. (2006). Molecular cytogenetics: genomic imbalances in colorectal cancer and their clinical impact. Cellular Oncology The Official Journal of the International Society for Cellular Oncology, 28(3), 71–84.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Bruin, S. C., Klijn, C., Liefers, G. J., Braaf, L. M., Joosse, S. A., van Beers, E. H., et al. (2010). Specific genomic aberrations in primary colorectal cancer are associated with liver metastases. BMC Cancer, 10, 662. doi:10.1186/1471-2407-10-662.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pantel, K., Deneve, E., Nocca, D., Coffy, A., Vendrell, J. P., Maudelonde, T., et al. (2012). Circulating epithelial cells in patients with benign colon diseases. Clinical Chemistry, 58(5), 936–940. doi:10.1373/clinchem.2011.175570.CrossRefPubMedGoogle Scholar
  22. 22.
    Pantel, K., & Brakenhoff, R. H. (2004). Dissecting the metastatic cascade. Nature Reviews Cancer, 4(6), 448–456. doi:10.1038/nrc1370.CrossRefPubMedGoogle Scholar
  23. 23.
    Weigelt, B., Glas, A. M., Wessels, L. F., Witteveen, A. T., Peterse, J. L., & Veer, L. J. (2003). Gene expression profiles of primary breast tumors maintained in distant metastases. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15901–15905. doi:10.1073/pnas.2634067100.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Weigelt, B., Hu, Z., He, X., Livasy, C., Carey, L. A., Ewend, M. G., et al. (2005). Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Research, 65(20), 9155–9158. doi:10.1158/0008-5472.CAN-05-2553.CrossRefPubMedGoogle Scholar
  25. 25.
    Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461(7265), 809–813. doi:10.1038/nature08489.CrossRefPubMedGoogle Scholar
  26. 26.
    Schmidt-Kittler, O., Ragg, T., Daskalakis, A., Granzow, M., Ahr, A., Blankenstein, T. J., et al. (2003). From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7737–7742. doi:10.1073/pnas.1331931100.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Weckermann, D., Polzer, B., Ragg, T., Blana, A., Schlimok, G., Arnholdt, H., et al. (2009). Perioperative activation of disseminated tumor cells in bone marrow of patients with prostate cancer. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology, 27(10), 1549–1556. doi:10.1200/JCO.2008.17.0563.CrossRefPubMedGoogle Scholar
  28. 28.
    Husemann, Y., Geigl, J. B., Schubert, F., Musiani, P., Meyer, M., Burghart, E., et al. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13(1), 58–68. doi:10.1016/j.ccr.2007.12.003.CrossRefPubMedGoogle Scholar
  29. 29.
    Rhim, A. D., Mirek, E. T., Aiello, N. M., Maitra, A., Bailey, J. M., McAllister, F., et al. (2012). EMT and dissemination precede pancreatic tumor formation. Cell, 148(1–2), 349–361. doi:10.1016/j.cell.2011.11.025.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kang, Y., & Pantel, K. (2013). Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell, 23(5), 573–581. doi:10.1016/j.ccr.2013.04.017.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Stoecklein, N. H., & Klein, C. A. (2010). Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. International Journal of Cancer/Journal International du cancer, 126(3), 589–598. doi:10.1002/ijc.24916.CrossRefPubMedGoogle Scholar
  32. 32.
    Horlings, H. M., Lai, C., Nuyten, D. S., Halfwerk, H., Kristel, P., van Beers, E., et al. (2010). Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 16(2), 651–663. doi:10.1158/1078-0432.CCR-09-0709.CrossRefPubMedGoogle Scholar
  33. 33.
    Joosse, S. A. (2012). BRCA1 and BRCA2: a common pathway of genome protection but different breast cancer subtypes. Nature Reviews Cancer, 12(5), 372. doi:10.1038/nrc3181-c2. author reply.CrossRefPubMedGoogle Scholar
  34. 34.
    Joosse, S. A., Brandwijk, K. I., Mulder, L., Wesseling, J., Hannemann, J., & Nederlof, P. M. (2011). Genomic signature of BRCA1 deficiency in sporadic basal-like breast tumors. Genes, Chromosomes & Cancer, 50(2), 71–81. doi:10.1002/gcc.20833.CrossRefGoogle Scholar
  35. 35.
    Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–913. doi:10.1038/nm.2000.CrossRefPubMedGoogle Scholar
  36. 36.
    Molyneux, G., Geyer, F. C., Magnay, F. A., McCarthy, A., Kendrick, H., Natrajan, R., et al. (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7(3), 403–417. doi:10.1016/j.stem.2010.07.010.CrossRefPubMedGoogle Scholar
  37. 37.
    Zahl, P. H., Maehlen, J., & Welch, H. G. (2008). The natural history of invasive breast cancers detected by screening mammography. Archives of Internal Medicine, 168(21), 2311–2316. doi:10.1001/archinte.168.21.2311.CrossRefPubMedGoogle Scholar
  38. 38.
    Stella, G. M., Senetta, R., Cassenti, A., Ronco, M., & Cassoni, P. (2012). Cancers of unknown primary origin: current perspectives and future therapeutic strategies. Journal of Translational Medicine, 10, 12. doi:10.1186/1479-5876-10-12.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Suzuki, M., Mose, E. S., Montel, V., & Tarin, D. (2006). Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. The American Journal of Pathology, 169(2), 673–681. doi:10.2353/ajpath.2006.060053.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tarin, D. (2012). Clinical and biological implications of the tumor microenvironment. Cancer Microenvironment, 5(2),95–112. doi: 10.1007/s12307-012-0099-6.
  41. 41.
    Pantel, K., Schlimok, G., Braun, S., Kutter, D., Lindemann, F., Schaller, G., et al. (1993). Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. Journal of the National Cancer Institute, 85(17), 1419–1424.CrossRefPubMedGoogle Scholar
  42. 42.
    Janni, W., Vogl, F. D., Wiedswang, G., Synnestvedt, M., Fehm, T., Juckstock, J., et al. (2011). Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—a European pooled analysis. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 17(9), 2967–2976. doi:10.1158/1078-0432.CCR-10-2515.CrossRefPubMedGoogle Scholar
  43. 43.
    Paget, S. (1989). The distribution of secondary growths in cancer of the breast, 1889. Cancer Metastasis Reviews, 8(2), 98–101.PubMedGoogle Scholar
  44. 44.
    Yumoto, K., Eber, M. R., Berry, J. E., Taichman, R. S., & Shiozawa, Y. (2014). Molecular pathways: niches in metastatic dormancy. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 20(13), 3384–3389. doi:10.1158/1078-0432.CCR-13-0897.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Braun, S., Kentenich, C., Janni, W., Hepp, F., de Waal, J., Willgeroth, F., et al. (2000). Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology, 18(1), 80–86.PubMedGoogle Scholar
  46. 46.
    Braun, S., Vogl, F. D., Naume, B., Janni, W., Osborne, M. P., Coombes, R. C., et al. (2005). A pooled analysis of bone marrow micrometastasis in breast cancer. The New England Journal of Medicine, 353(8), 793–802. doi:10.1056/NEJMoa050434.CrossRefPubMedGoogle Scholar
  47. 47.
    Sanger, N., Effenberger, K. E., Riethdorf, S., Van Haasteren, V., Gauwerky, J., Wiegratz, I., et al. (2011). Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. International Journal of Cancer/Journal International du cancer, 129(10), 2522–2526. doi:10.1002/ijc.25895.CrossRefPubMedGoogle Scholar
  48. 48.
    Solakoglu, O., Maierhofer, C., Lahr, G., Breit, E., Scheunemann, P., Heumos, I., et al. (2002). Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2246–2251. doi:10.1073/pnas.042372199.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Meng, S., Tripathy, D., Frenkel, E. P., Shete, S., Naftalis, E. Z., Huth, J. F., et al. (2004). Circulating tumor cells in patients with breast cancer dormancy. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 10(24), 8152–8162. doi:10.1158/1078-0432.CCR-04-1110.CrossRefPubMedGoogle Scholar
  50. 50.
    Tabassum, D. P., & Polyak, K. (2015). Tumorigenesis: it takes a village. Nature Reviews Cancer, 15(8), 473–483. doi:10.1038/nrc3971.CrossRefPubMedGoogle Scholar
  51. 51.
    Navin, N. E., & Hicks, J. (2010). Tracing the tumor lineage. Molecular Oncology, 4(3), 267–283. doi:10.1016/j.molonc.2010.04.010.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472(7341), 90–94. doi:10.1038/nature09807.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    De Roock, W., Claes, B., Bernasconi, D., De Schutter, J., Biesmans, B., Fountzilas, G., et al. (2010). Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. The Lancet Oncology, 11(8), 753–762. doi:10.1016/S1470-2045(10)70130-3.CrossRefPubMedGoogle Scholar
  54. 54.
    Hannemann, J., Meyer-Staeckling, S., Kemming, D., Alpers, I., Joosse, S. A., Pospisil, H., et al. (2011). Quantitative high-resolution genomic analysis of single cancer cells. PLoS ONE, 6(11), e26362. doi:10.1371/journal.pone.0026362.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gasch, C., Bauernhofer, T., Pichler, M., Langer-Freitag, S., Reeh, M., Seifert, A. M., et al. (2013). Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clinical Chemsistry, 59(1), 252–260. doi:10.1373/clinchem.2012.188557.CrossRefGoogle Scholar
  56. 56.
    Maley, C. C., Galipeau, P. C., Finley, J. C., Wongsurawat, V. J., Li, X., Sanchez, C. A., et al. (2006). Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genetics, 38(4), 468–473. doi:10.1038/ng1768.CrossRefPubMedGoogle Scholar
  57. 57.
    Notta, F., Mullighan, C. G., Wang, J. C., Poeppl, A., Doulatov, S., Phillips, L. A., et al. (2011). Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature, 469(7330), 362–367. doi:10.1038/nature09733.CrossRefPubMedGoogle Scholar
  58. 58.
    Almendro, V., Cheng, Y. K., Randles, A., Itzkovitz, S., Marusyk, A., Ametller, E., et al. (2014). Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Reports, 6(3), 514–527. doi:10.1016/j.celrep.2013.12.041.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Marusyk, A., Tabassum, D. P., Altrock, P. M., Almendro, V., Michor, F., & Polyak, K. (2014). Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature, 514(7520), 54–58. doi:10.1038/nature13556.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Calbo, J., van Montfort, E., Proost, N., van Drunen, E., Beverloo, H. B., Meuwissen, R., et al. (2011). A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell, 19(2), 244–256. doi:10.1016/j.ccr.2010.12.021.CrossRefPubMedGoogle Scholar
  61. 61.
    Cayrefourcq, L., Mazard, T., Joosse, S., Solassol, J., Ramos, J., Assenat, E., et al. (2015). Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Research, 75(5), 892–901. doi:10.1158/0008-5472.CAN-14-2613.CrossRefPubMedGoogle Scholar
  62. 62.
    Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122. doi:10.1016/j.cell.2014.07.013.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kreso, A., O’Brien, C. A., van Galen, P., Gan, O. I., Notta, F., Brown, A. M., et al. (2013). Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science, 339(6119), 543–548. doi:10.1126/science.1227670.CrossRefPubMedGoogle Scholar
  64. 64.
    Pao, W., Miller, V. A., Politi, K. A., Riely, G. J., Somwar, R., Zakowski, M. F., et al. (2005). Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Medicine, 2(3), e73. doi:10.1371/journal.pmed.0020073.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Heitzer, E., Auer, M., Gasch, C., Pichler, M., Ulz, P., Hoffmann, E. M., et al. (2013). Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Research, 73(10), 2965–2975. doi:10.1158/0008-5472.CAN-12-4140.CrossRefPubMedGoogle Scholar
  66. 66.
    Wu, C. C., Maher, M. M., & Shepard, J. A. (2011). Complications of CT-guided percutaneous needle biopsy of the chest: prevention and management. AJR. American Journal of Roentgenology, 196(6), W678–W682. doi:10.2214/AJR.10.4659.CrossRefPubMedGoogle Scholar
  67. 67.
    Bednarz-Knoll, N., Alix-Panabieres, C., & Pantel, K. (2012). Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Reviews, 31(3–4), 673–687. doi:10.1007/s10555-012-9370-z.CrossRefPubMedGoogle Scholar
  68. 68.
    Yu, M., Bardia, A., Wittner, B. S., Stott, S. L., Smas, M. E., Ting, D. T., et al. (2013). Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 339(6119), 580–584. doi:10.1126/science.1228522.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Guzvic, M., Braun, B., Ganzer, R., Burger, M., Nerlich, M., Winkler, S., et al. (2014). Combined genome and transcriptome analysis of single disseminated cancer cells from bone marrow of prostate cancer patients reveals unexpected transcriptomes. Cancer Research, 74(24), 7383–7394. doi:10.1158/0008-5472.CAN-14-0934.CrossRefPubMedGoogle Scholar
  70. 70.
    Miyamoto, D. T., Zheng, Y., Wittner, B. S., Lee, R. J., Zhu, H., Broderick, K. T., et al. (2015). RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science, 349(6254), 1351–1356. doi:10.1126/science.aab0917.CrossRefPubMedGoogle Scholar
  71. 71.
    Miyamoto, D. T., Lee, R. J., Stott, S. L., Ting, D. T., Wittner, B. S., Ulman, M., et al. (2012). Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discovery, 2(11), 995–1003. doi:10.1158/2159-8290.CD-12-0222.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Almendro, V., Kim, H. J., Cheng, Y. K., Gonen, M., Itzkovitz, S., Argani, P., et al. (2014). Genetic and phenotypic diversity in breast tumor metastases. Cancer Research, 74(5), 1338–1348. doi:10.1158/0008-5472.CAN-13-2357-T.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Tumor BiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations