Advertisement

Cancer and Metastasis Reviews

, Volume 35, Issue 1, pp 49–62 | Cite as

Catalog of genetic progression of human cancers: breast cancer

  • Christine Desmedt
  • Lucy Yates
  • Janina Kulka
Article

Abstract

With the rapid development of next-generation sequencing, deeper insights are being gained into the molecular evolution that underlies the development and clinical progression of breast cancer. It is apparent that during evolution, breast cancers acquire thousands of mutations including single base pair substitutions, insertions, deletions, copy number aberrations, and structural rearrangements. As a consequence, at the whole genome level, no two cancers are identical and few cancers even share the same complement of “driver” mutations. Indeed, two samples from the same cancer may also exhibit extensive differences due to constant remodeling of the genome over time. In this review, we summarize recent studies that extend our understanding of the genomic basis of cancer progression. Key biological insights include the following: subclonal diversification begins early in cancer evolution, being detectable even in in situ lesions; geographical stratification of subclonal structure is frequent in primary tumors and can include therapeutically targetable alterations; multiple distant metastases typically arise from a common metastatic ancestor following a “metastatic cascade” model; systemic therapy can unmask preexisting resistant subclones or influence further treatment sensitivity and disease progression. We conclude the review by describing novel approaches such as the analysis of circulating DNA and patient-derived xenografts that promise to further our understanding of the genomic changes occurring during cancer evolution and guide treatment decision making.

Keywords

Breast cancer Progression Genomics Sequencing 

References

  1. 1.
    Hudson, T. J., Anderson, W., Artez, A., Barker, A. D., Bell, C., Bernabe, R. R., et al. (2010). International network of cancer genome projects. Nature, 464(7291), 993–998.CrossRefPubMedGoogle Scholar
  2. 2.
    Tomczak, K., Czerwinska, P., & Wiznerowicz, M. (2015). The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemporary Oncology (Pozn), 19(1A), A68–A77.Google Scholar
  3. 3.
    Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 486(7403), 405–409.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ciriello, G., Gatza, M. L., Beck, A. H., Wilkerson, M. D., Rhie, S. K., Pastore, A., et al. (2015). Comprehensive molecular portraits of invasive lobular breast cancer. Cell, 163(2), 506–519.CrossRefPubMedGoogle Scholar
  5. 5.
    Cancer Genome Atlas Network. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70.CrossRefGoogle Scholar
  6. 6.
    Nik-Zainal, S., Van Loo, P., Wedge, D. C., Alexandrov, L. B., Greenman, C. D., Lau, K. W., et al. (2012). The life history of 21 breast cancers. Cell, 149(5), 994–1007.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., et al. (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 486(7403), 395–399.PubMedGoogle Scholar
  8. 8.
    Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature, 486(7403), 400–404.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403), 346–352.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Ellis, M. J., Ding, L., Shen, D., Luo, J., Suman, V. J., Wallis, J. W., et al. (2012). Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature, 486(7403), 353–360.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A. V., et al. (2013). Signatures of mutational processes in human cancer. Nature, 500(7463), 415–421.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Stephens, P. J., McBride, D. J., Lin, M. L., Varela, I., Pleasance, E. D., Simpson, J. T., et al. (2009). Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature, 462(7276), 1005–1010.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yates, L. R., Gerstung, M., Knappskog, S., Desmedt, C., Gundem, G., Van Loo, P., et al. (2015). Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nature Medicine, 21(7), 751–759.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nik-Zainal, S., Alexandrov, L. B., Wedge, D. C., Van Loo, P., Greenman, C. D., Raine, K., et al. (2012). Mutational processes molding the genomes of 21 breast cancers. Cell, 149(5), 979–993.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Roy, R., Chun, J., & Powell, S. N. (2012). BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nature Reviews Cancer, 12(1), 68–78.CrossRefGoogle Scholar
  16. 16.
    Abkevich, V., Timms, K. M., Hennessy, B. T., Potter, J., Carey, M. S., Meyer, L. A., et al. (2012). Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. British Journal of Cancer, 107(10), 1776–1782.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Birkbak, N. J., Wang, Z. C., Kim, J. Y., Eklund, A. C., Li, Q., Tian, R., et al. (2012). Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discovery, 2(4), 366–375.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Popova, T., Manie, E., Rieunier, G., Caux-Moncoutier, V., Tirapo, C., Dubois, T., et al. (2012). Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Research, 72(21), 5454–5462.CrossRefPubMedGoogle Scholar
  19. 19.
    Watkins, J. A., Irshad, S., Grigoriadis, A., & Tutt, A. N. (2014). Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Research, 16(3), 211.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Watkins, J., Weekes, D., Shah, V., Gazinska, P., Joshi, S., Sidhu, B., et al. (2015). Genomic complexity profiling reveals that HORMAD1 overexpression contributes to homologous recombination deficiency in triple-negative breast cancers. Cancer Discovery, 5(5), 488–505.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., Golub, T. R., et al. (2013). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505(7484), 495–501.CrossRefGoogle Scholar
  22. 22.
    Zack, T. I., Schumacher, S. E., Carter, S. L., Cherniack, A. D., Saksena, G., Tabak, B., et al. (2013). Pan-cancer patterns of somatic copy number alteration. Nature Genetics, 45(10), 1134–1140.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Desmedt, C., Zoppoli, G., Gundem, G., Pruneri, G., Larsimont, D., Fornili, M., et al. (2016). Genomic characterization of primary invasive lobular breast cancer.  Journal of Clinical Oncology. doi: 10.1200/JCO.2015.64.0334.
  24. 24.
    Denisov, E. V., Litviakov, N. V., Zavyalova, M. V., Perelmuter, V. M., Vtorushin, S. V., Tsyganov, M. M., et al. (2014). Intratumoral morphological heterogeneity of breast cancer: neoadjuvant chemotherapy efficiency and multidrug resistance gene expression. Science Reports, 4, 4709.Google Scholar
  25. 25.
    Lee, H. J., Kim, J. Y., Park, S. Y., Park, I. A., Song, I. H., Yu, J. H., et al. (2015). Clinicopathologic significance of the intratumoral heterogeneity of HER2 gene amplification in HER2-positive breast cancer patients treated with adjuvant trastuzumab. American Journal of Clinical Pathology, 144(4), 570–578.CrossRefPubMedGoogle Scholar
  26. 26.
    Madaras, L., Szasz, M. A., Baranyak, Z., Tokes, A. M., Szittya, L., Lotz, G., et al. (2012). Morphological and immunophenotypical heterogeneity in breast cancers of young and elderly women. Magyar Onkologia, 56(2), 75–78.PubMedGoogle Scholar
  27. 27.
    Desmedt, C., Fumagalli, D., Pietri, E., Zoppoli, G., Brown, D., & Nik-Zainal, S., et al. (2015). Uncovering the genomic heterogeneity of multifocal breast cancer. The Journal of Pathology, 236(4), 457–466.Google Scholar
  28. 28.
    Ng, C. K., Martelotto, L. G., Gauthier, A., Wen, H. C., Piscuoglio, S., Lim, R. S., et al. (2015). Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biology, 16, 107.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472(7341), 90–94.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang, Y., Waters, J., Leung, M. L., Unruh, A., Roh, W., Shi, X., et al. (2014). Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature, 512(7513), 155–160.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yates, L. R., & Campbell, P. J. (2012). Evolution of the cancer genome. Nature Reviews Genetics, 13(11), 795–806.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bea, S., Valdes-Mas, R., Navarro, A., Salaverria, I., Martin-Garcia, D., Jares, P., et al. (2013). Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18250–18255.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gerlinger, M., Horswell, S., Larkin, J., Rowan, A. J., Salm, M. P., Varela, I., et al. (2014). Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nature Genetics, 46(3), 225–233.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cooper, C. S., Eeles, R., Wedge, D. C., Van Loo, P., Gundem, G., Alexandrov, L. B., et al. (2015). Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nature Genetics, 47(4), 367–372.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., et al. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New England Journal of Medicine, 366(10), 883–892.CrossRefPubMedGoogle Scholar
  36. 36.
    Sottoriva, A., Kang, H., Ma, Z., Graham, T. A., Salomon, M. P., Zhao, J., et al. (2015). A Big Bang model of human colorectal tumor growth. Nature Genetics, 47(3), 209–216.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yachida, S., & Iacobuzio-Donahue, C. A. (2013). Evolution and dynamics of pancreatic cancer progression. Oncogene, 32(45), 5253–5260.CrossRefPubMedGoogle Scholar
  38. 38.
    Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., et al. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467(7319), 1114–1117.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cottu, P. H., Asselah, J., Lae, M., Pierga, J. Y., Dieras, V., Mignot, L., et al. (2008). Intratumoral heterogeneity of HER2/neu expression and its consequences for the management of advanced breast cancer. Annals of Oncology, 19(3), 595–597.CrossRefPubMedGoogle Scholar
  40. 40.
    Janiszewska, M., Liu, L., Almendro, V., Kuang, Y., Paweletz, C., Sakr, R. A., et al. (2015). In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nature Genetics, 47(10), 1212–1219.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Seol, H., Lee, H. J., Choi, Y., Lee, H. E., Kim, Y. J., Kim, J. H., et al. (2012). Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Modern Pathology, 25(7), 938–948.CrossRefPubMedGoogle Scholar
  42. 42.
    Cowell, C. F., Weigelt, B., Sakr, R. A., Ng, C. K., Hicks, J., King, T. A., et al. (2013). Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Molecular Oncology, 7(5), 859–869.CrossRefPubMedGoogle Scholar
  43. 43.
    Gorringe, K. L., Hunter, S. M., Pang, J. M., Opeskin, K., Hill, P., Rowley, S. M., et al. (2015). Copy number analysis of ductal carcinoma in situ with and without recurrence. Modern Pathology, 28(9), 1174–1184.CrossRefPubMedGoogle Scholar
  44. 44.
    Waldman, F. M., DeVries, S., Chew, K. L., Moore, D. H., 2nd, Kerlikowske, K., & Ljung, B. M. (2000). Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. Journal of the National Cancer Institute, 92(4), 313–320.CrossRefPubMedGoogle Scholar
  45. 45.
    Solin, L. J., Gray, R., Baehner, F. L., Butler, S. M., Hughes, L. L., Yoshizawa, C., et al. (2013). A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. Journal of the National Cancer Institute, 105(10), 701–710.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hernandez, L., Wilkerson, P. M., Lambros, M. B., Campion-Flora, A., Rodrigues, D. N., Gauthier, A., et al. (2012). Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection. Journal of Pathology, 227(1), 42–52.CrossRefPubMedGoogle Scholar
  47. 47.
    Heselmeyer-Haddad, K., Berroa Garcia, L. Y., Bradley, A., Ortiz-Melendez, C., Lee, W. J., Christensen, R., et al. (2012). Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances and gain of MYC during progression. American Journal of Pathology, 181(5), 1807–1822.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cummings, M. C., Simpson, P. T., Reid, L. E., Jayanthan, J., Skerman, J., Song, S., et al. (2014). Metastatic progression of breast cancer: insights from 50 years of autopsies. Journal of Pathology, 232(1), 23–31.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kuukasjarvi, T., Karhu, R., Tanner, M., Kahkonen, M., Schaffer, A., Nupponen, N., et al. (1997). Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Research, 57(8), 1597–1604.PubMedGoogle Scholar
  50. 50.
    Moelans, C. B., van der Groep, P., Hoefnagel, L. D., van de Vijver, M. J., Wesseling, P., Wesseling, J., et al. (2013). Genomic evolution from primary breast carcinoma to distant metastasis: few copy number changes of breast cancer related genes. Cancer Letters, 344(1), 138–146.CrossRefPubMedGoogle Scholar
  51. 51.
    Meric-Bernstam, F., Frampton, G. M., Ferrer-Lozano, J., Yelensky, R., Perez-Fidalgo, J. A., Wang, Y., et al. (2014). Concordance of genomic alterations between primary and recurrent breast cancer. Molecular Cancer Therapeutics, 13(5), 1382–1389.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Brastianos, P. K., Carter, S. L., Santagata, S., Cahill, D. P., Taylor-Weiner, A., & Jones, R. T., et al. (2015). Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discovery.Google Scholar
  53. 53.
    Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen, K., Wallis, J. W., et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 464(7291), 999–1005.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461(7265), 809–813.CrossRefPubMedGoogle Scholar
  55. 55.
    Naxerova, K., & Jain, R. K. (2015). Using tumour phylogenetics to identify the roots of metastasis in humans. Nature Reviews. Clinical Oncology, 12(5), 258–272.CrossRefPubMedGoogle Scholar
  56. 56.
    Desmedt, C., Brown, D., Szekely, B., Smeets, D., Szasz, M. A., & Adnet, P. Y., et al. (2014). Unraveling breast cancer progression through geographical and temporal sequencing [abstract]. In: Proceedings: AACR Annual Meeting 2014; April 5–9, 2014; San Diego, a986.Google Scholar
  57. 57.
    Juric, D., Castel, P., Griffith, M., Griffith, O. L., Won, H. H., Ellis, H., et al. (2014). Convergent loss of PTEN leads to clinical resistance to a PI(3)K alpha inhibitor. Nature, 518(7538), 240–244.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gundem, G., Van Loo, P., Kremeyer, B., Alexandrov, L. B., Tubio, J. M., Papaemmanuil, E., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. Nature, 520(7547), 353–357.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Alkner, S., Tang, M. H., Brueffer, C., Dahlgren, M., Chen, Y., Olsson, E., et al. (2015). Contralateral breast cancer can represent a metastatic spread of the first primary tumor: determination of clonal relationship between contralateral breast cancers using next-generation whole genome sequencing. Breast Cancer Research, 17(1), 102.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Klevebring, D., Lindberg, J., Rockberg, J., Hilliges, C., Hall, P., Sandberg, M., et al. (2015). Exome sequencing of contralateral breast cancer identifies metastatic disease. Breast Cancer Research and Treatment, 151(2), 319–324.CrossRefPubMedGoogle Scholar
  62. 62.
    Chen, Y., Thompson, W., Semenciw, R., & Mao, Y. (1999). Epidemiology of contralateral breast cancer. Cancer Epidemiology, Biomarkers & Prevention, 8(10), 855–861.Google Scholar
  63. 63.
    Malone, K. E., Begg, C. B., Haile, R. W., Borg, A., Concannon, P., Tellhed, L., et al. (2010). Population-based study of the risk of second primary contralateral breast cancer associated with carrying a mutation in BRCA1 or BRCA2. Journal of Clinical Oncology, 28(14), 2404–2410.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Almendro, V., Cheng, Y. K., Randles, A., Itzkovitz, S., Marusyk, A., Ametller, E., et al. (2014). Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Reports, 6(3), 514–527.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Balko, J. M., Giltnane, J. M., Wang, K., Schwarz, L. J., Young, C. D., Cook, R. S., et al. (2013). Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discovery, 4(2), 232–245.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Jeselsohn, R., Yelensky, R., Buchwalter, G., Frampton, G., Meric-Bernstam, F., Gonzalez-Angulo, A. M., et al. (2014). Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clinical Cancer Research, 20(7), 1757–1767.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Merenbakh-Lamin, K., Ben-Baruch, N., Yeheskel, A., Dvir, A., Soussan-Gutman, L., Jeselsohn, R., et al. (2013). D538G mutation in estrogen receptor-alpha: a novel mechanism for acquired endocrine resistance in breast cancer. Cancer Research, 73(23), 6856–6864.CrossRefPubMedGoogle Scholar
  68. 68.
    Robinson, D. R., Wu, Y. M., Vats, P., Su, F., Lonigro, R. J., Cao, X., et al. (2013). Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nature Genetics, 45(12), 1446–1451.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Toy, W., Shen, Y., Won, H., Green, B., Sakr, R. A., Will, M., et al. (2013). ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nature Genetics, 45(12), 1439–1445.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lai, A., Kahraman, M., Govek, S., Nagasawa, J., Bonnefous, C., Julien, J., et al. (2015). Identification of GDC-0810 (ARN-810), an orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. Journal of Medicinal Chemistry, 58(12), 4888–4904.CrossRefPubMedGoogle Scholar
  71. 71.
    Ignatiadis, M., & Dawson, S. J. (2014). Circulating tumor cells and circulating tumor DNA for precision medicine: dream or reality? Annals of Oncology, 25(12), 2304–2313.CrossRefPubMedGoogle Scholar
  72. 72.
    Bettegowda, C., Sausen, M., Leary, R. J., Kinde, I., Wang, Y., Agrawal, N., et al. (2014). Detection of circulating tumor DNA in early- and late-stage human malignancies. Science Translational Medicine, 6(224), 224ra224.CrossRefGoogle Scholar
  73. 73.
    Dawson, S. J., Tsui, D. W., Murtaza, M., Biggs, H., Rueda, O. M., Chin, S. F., et al. (2013). Analysis of circulating tumor DNA to monitor metastatic breast cancer. New England Journal of Medicine, 368(13), 1199–1209.CrossRefPubMedGoogle Scholar
  74. 74.
    Leary, R. J., Sausen, M., Kinde, I., Papadopoulos, N., Carpten, J. D., Craig, D., et al. (2012). Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Science Translational Medicine, 4(162), 162ra154.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    McBride, D. J., Orpana, A. K., Sotiriou, C., Joensuu, H., Stephens, P. J., Mudie, L. J., et al. (2010). Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes, Chromosomes & Cancer, 49(11), 1062–1069.CrossRefGoogle Scholar
  76. 76.
    Lebofsky, R., Decraene, C., Bernard, V., Kamal, M., Blin, A., Leroy, Q., et al. (2015). Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types. Molecular Oncology, 9(4), 783–790.CrossRefPubMedGoogle Scholar
  77. 77.
    Rothe, F., Laes, J. F., Lambrechts, D., Smeets, D., Vincent, D., Maetens, M., et al. (2014). Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Annals of Oncology, 25(10), 1959–1965.CrossRefPubMedGoogle Scholar
  78. 78.
    Murtaza, M., Dawson, S. J., Tsui, D. W., Gale, D., Forshew, T., Piskorz, A. M., et al. (2013). Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature, 497(7447), 108–112.CrossRefPubMedGoogle Scholar
  79. 79.
    Garcia-Murillas, I., Schiavon, G., Weigelt, B., Ng, C., Hrebien, S., Cutts, R. J., et al. (2015). Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Science Translational Medicine, 7(302), 302ra133.CrossRefPubMedGoogle Scholar
  80. 80.
    Chu, D., Paoletti, C., Gersch, C., VanDenBerg, D., Zabransky, D., & Cochran, R., et al. (2016). ESR1 mutations in circulating plasma tumor DNA from metastatic breast cancer patients. Clinical Cancer Research, 22(4), 993–999.Google Scholar
  81. 81.
    Whittle, J. R., Lewis, M. T., Lindeman, G. J., & Visvader, J. E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Research, 17, 17.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al. (2015). Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature, 518(7539), 422–426.CrossRefPubMedGoogle Scholar
  83. 83.
    Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., et al. (2007). A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical Cancer Research, 13(13), 3989–3998.CrossRefPubMedGoogle Scholar
  84. 84.
    Zhang, X., Claerhout, S., Prat, A., Dobrolecki, L. E., Petrovic, I., Lai, Q., et al. (2013). A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research, 73(15), 4885–4897.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Li, S., Shen, D., Shao, J., Crowder, R., Liu, W., Prat, A., et al. (2013). Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Reports, 4(6), 1116–1130.CrossRefPubMedGoogle Scholar
  86. 86.
    Bose, R., Kavuri, S. M., Searleman, A. C., Shen, W., Shen, D., Koboldt, D. C., et al. (2012). Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discovery, 3(2), 224–237.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Collier, T. S., Diraviyam, K., Monsey, J., Shen, W., Sept, D., & Bose, R. (2013). Carboxyl group footprinting mass spectrometry and molecular dynamics identify key interactions in the HER2-HER3 receptor tyrosine kinase interface. Journal of Biological Chemistry, 288(35), 25254–25264.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Jaiswal, B. S., Kljavin, N. M., Stawiski, E. W., Chan, E., Parikh, C., Durinck, S., et al. (2013). Oncogenic ERBB3 mutations in human cancers. Cancer Cell, 23(5), 603–617.CrossRefPubMedGoogle Scholar
  89. 89.
    Littlefield, P., Liu, L., Mysore, V., Shan, Y., Shaw, D. E., & Jura, N. (2014). Structural analysis of the EGFR/HER3 heterodimer reveals the molecular basis for activating HER3 mutations. Science Signaling, 7(354), ra114.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Meric-Bernstam, F., Johnson, A., Holla, V., Bailey, A. M., Brusco, L., & Chen, K., et al. (2015). A decision support framework for genomically informed investigational cancer therapy. Journal of the National Cancer Institute, 107(7).Google Scholar
  91. 91.
    Zardavas, D., Irrthum, A., Swanton, C., & Piccart, M. (2015). Clinical management of breast cancer heterogeneity. Nature Reviews. Clinical Oncology, 12(7), 381–394.CrossRefPubMedGoogle Scholar
  92. 92.
    Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404.CrossRefPubMedGoogle Scholar
  93. 93.
    Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), pl1.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Arnedos, M., Vicier, C., Loi, S., Lefebvre, C., Michiels, S., & Bonnefoi, H., et al. (2015). Precision medicine for metastatic breast cancer-limitations and solutions. Nature Review Clinical Oncology, 12(12), 693–704.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules BordetUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Cancer Genome ProjectWellcome Trust Sanger InstituteHinxtonUK
  3. 3.2nd Department of PathologySemmelweis UniversityBudapestHungary

Personalised recommendations