Cancer and Metastasis Reviews

, Volume 35, Issue 2, pp 151–163 | Cite as

The roles and therapeutic potential of cyclin-dependent kinases (CDKs) in sarcoma

  • Yunfei Liao
  • Yong Feng
  • Jacson Shen
  • Francis J. Hornicek
  • Zhenfeng Duan


Uncontrolled proliferation and cell growth is the hallmark of many different malignant diseases, including sarcomas. Cyclin-dependent kinases (CDKs) are members of the serine/threonine protein kinase family and play crucial roles in tumor cell proliferation and growth by controlling cell cycle, transcription, and RNA splicing. In addition, several CDKs influence multiple targets and phosphorylate transcription factors involved in tumorigenesis. There are many examples linking dysregulated activation and expression of CDKs to tumors, and targeting CDKs in tumor cells has become a promising therapeutic strategy. More recently, the Food and Drug Administration (FDA) has approved the CDK4/6 inhibitor palbociclib for treating metastatic breast cancer. In sarcomas, high levels of CDK mRNA and protein expression have been found in most human sarcoma cells and patient tissues. Many studies have demonstrated consistent results in which inhibition of different CDKs decrease sarcoma cell growth and induce apoptosis. Therefore, CDKs comprise an attractive set of targets for novel anti-sarcoma drug development. In this review, we discuss the roles of different members of CDKs in various sarcomas and provide a pre-clinical overview of promising therapeutic potentials of targeting CDKs with a special emphasis on sarcoma.


Cyclin-dependent kinase Sarcoma Kinase inhibitor Targeted therapy 



This work was supported, in part, by the Gattegno and Wechsler funds, and the Kenneth Stanton Fund. Dr. Duan is supported, in part, through a grant from the Sarcoma Foundation of America (SFA); a grant from the National Cancer Institute (NCI)/National Institutes of Health (NIH), UO1, CA 151452–01; a pilot grant from Sarcoma SPORE/NIH; and a grant from an Academic Enrichment Fund of MGH Orthopaedics.

Compliance with ethical standards

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.


  1. 1.
    Burningham, Z., Hashibe, M., Spector, L., et al. (2012). The epidemiology of sarcoma. Clinical sarcoma research, 2, 14.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Malumbres, M., & Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nature Reviews Cancer, 9, 153–166.PubMedCrossRefGoogle Scholar
  3. 3.
    Yamasaki, L. (2003). Role of the RB tumor suppressor in cancer. Cancer Treatment and Research, 115, 209–239.PubMedCrossRefGoogle Scholar
  4. 4.
    Larochelle, S., Amat, R., Glover-Cutter, K., et al. (2012). Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nature Structural & Molecular Biology, 19, 1108–1115.CrossRefGoogle Scholar
  5. 5.
    Hu, D., Mayeda, A., Trembley, J. H., et al. (2003). CDK11 complexes promote pre-mRNA splicing. The Journal of Biological Chemistry, 278, 8623–8629.PubMedCrossRefGoogle Scholar
  6. 6.
    Krystof, V., & Uldrijan, S. (2010). Cyclin-dependent kinase inhibitors as anticancer drugs. Current Drug Targets, 11, 291–302.PubMedCrossRefGoogle Scholar
  7. 7.
    Fisher, R. P. (2005). Secrets of a double agent: CDK7 in cell-cycle control and transcription. Journal of Cell Science, 118, 5171–5180.PubMedCrossRefGoogle Scholar
  8. 8.
    Besson, A., Dowdy, S. F., & Roberts, J. M. (2008). CDK inhibitors: cell cycle regulators and beyond. Developmental Cell, 14, 159–169.PubMedCrossRefGoogle Scholar
  9. 9.
    L’Italien, L., Tanudji, M., Russell, L., et al. (2006). Unmasking the redundancy between Cdk1 and Cdk2 at G2 phase in human cancer cell lines. Cell cycle (Georgetown, Tex), 5, 984–993.CrossRefGoogle Scholar
  10. 10.
    Olanich ME., Sun W., Hewitt SM., et al. (2015). CDK4 amplification reduces sensitivity to CDK4/6 inhibition in fusion-positive rhabdomyosarcoma. Clinical cancer research : an official journal of the American Association for Cancer Research.Google Scholar
  11. 11.
    Mao, D., & Hinds, P. W. (2010). p35 is required for CDK5 activation in cellular senescence. The Journal of Biological Chemistry, 285, 14671–14680.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zheng, S. E., Xiong, S., Lin, F., et al. (2012). Pirarubicin inhibits multidrug-resistant osteosarcoma cell proliferation through induction of G2/M phase cell cycle arrest. Acta Pharmacologica Sinica, 33, 832–838.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Mackintosh, C., Garcia-Dominguez, D. J., Ordonez, J. L., et al. (2013). WEE1 accumulation and deregulation of S-phase proteins mediate MLN4924 potent inhibitory effect on Ewing sarcoma cells. Oncogene, 32, 1441–1451.PubMedCrossRefGoogle Scholar
  14. 14.
    VanArsdale, T., Boshoff, C., Arndt, K. T., et al. (2015). Molecular pathways: targeting the cyclin D-CDK4/6 axis for cancer treatment. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 21, 2905–2910.CrossRefGoogle Scholar
  15. 15.
    Santamaria, D., Barriere, C., Cerqueira, A., et al. (2007). Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 448, 811–815.PubMedCrossRefGoogle Scholar
  16. 16.
    Yam, C. H., Fung, T. K., & Poon, R. Y. (2002). Cyclin A in cell cycle control and cancer. Cellular and Molecular Life Sciences : CMLS, 59, 1317–1326.PubMedCrossRefGoogle Scholar
  17. 17.
    Malumbres, M., & Barbacid, M. (2005). Mammalian cyclin-dependent kinases. Trends in Biochemical Sciences, 30, 630–641.PubMedCrossRefGoogle Scholar
  18. 18.
    Den Haese, G. J., Walworth, N., Carr, A. M., et al. (1995). The Wee1 protein kinase regulates T14 phosphorylation of fission yeast Cdc2. Molecular Biology of the Cell, 6, 371–385.CrossRefGoogle Scholar
  19. 19.
    Kreahling, J. M., Gemmer, J. Y., Reed, D., et al. (2012). MK1775, a selective Wee1 inhibitor, shows single-agent antitumor activity against sarcoma cells. Molecular Cancer Therapeutics, 11, 174–182.PubMedCrossRefGoogle Scholar
  20. 20.
    Lohberger, B., Kretschmer, N., Bernhart, E., et al. (2015). 25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells. Journal of Ethnopharmacology, 164, 265–272.PubMedCrossRefGoogle Scholar
  21. 21.
    Hattori, H., Kuroda, M., Ishida, T., et al. (2004). Human DNA damage checkpoints and their relevance to soft tissue sarcoma. Pathology International, 54, 26–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Yang, C., Wu, J., Zhang, R., et al. (2005). Caffeic acid phenethyl ester (CAPE) prevents transformation of human cells by arsenite (As) and suppresses growth of As-transformed cells. Toxicology, 213, 81–96.PubMedCrossRefGoogle Scholar
  23. 23.
    Xi Q., Huang M., Wang Y., et al. (2015). The expression of CDK1 is associated with proliferation and can be a prognostic factor in epithelial ovarian cancer. Tumour Biology : the Journal of the International Society for Oncodevelopmental Biology and Medicine.Google Scholar
  24. 24.
    Mitra, J., Dai, C. Y., Somasundaram, K., et al. (1999). Induction of p21(WAF1/CIP1) and inhibition of Cdk2 mediated by the tumor suppressor p16(INK4a). Molecular and Cellular Biology, 19, 3916–3928.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ye, L., Zhang, H. Y., Wang, H., et al. (2005). Effects of transforming growth factor beta 1 on the growth of rhabdomyosarcoma cell line RD. Chinese Medical Journal, 118, 678–686.PubMedGoogle Scholar
  26. 26.
    Olofsson, A., Willen, H., Goransson, M., et al. (2004). Abnormal expression of cell cycle regulators in FUS-CHOP carrying liposarcomas. International Journal of Oncology, 25, 1349–1355.PubMedGoogle Scholar
  27. 27.
    Honoki, K., Fujii, H., Tohma, Y., et al. (2012). Comparison of gene expression profiling in sarcomas and mesenchymal stem cells identifies tumorigenic pathways in chemically induced rat sarcoma model. ISRN Oncology, 2012, 909453.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Li, W. W., Cordon-Cardo, C., Chen, Q., et al. (1996). Establishment, characterization and drug sensitivity of four new human soft tissue sarcoma cell lines. International Journal of Cancer Journal International du Cancer, 68, 514–519.PubMedCrossRefGoogle Scholar
  29. 29.
    Schaefer, K. L., Wai, D. H., Poremba, C., et al. (2002). Characterization of the malignant melanoma of soft-parts cell line GG-62 by expression analysis using DNA microarrays. Virchows Archiv : an International Journal of Pathology, 440, 476–484.CrossRefGoogle Scholar
  30. 30.
    Nakagawa, Y., Numoto, K., Yoshida, A., et al. (2006). Chromosomal and genetic imbalances in synovial sarcoma detected by conventional and microarray comparative genomic hybridization. Journal of Cancer Research and Clinical Oncology, 132, 444–450.PubMedCrossRefGoogle Scholar
  31. 31.
    Nawrocki, S. T., Griffin, P., Kelly, K. R., et al. (2012). MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opinion on Investigational Drugs, 21, 1563–1573.PubMedCrossRefGoogle Scholar
  32. 32.
    Coley, H. M., Shotton, C. F., Kokkinos, M. I., et al. (2007). The effects of the CDK inhibitor seliciclib alone or in combination with cisplatin in human uterine sarcoma cell lines. Gynecologic Oncology, 105, 462–469.PubMedCrossRefGoogle Scholar
  33. 33.
    Li, X., Tanaka, K., Nakatani, F., et al. (2005). Transactivation of cyclin E gene by EWS-Fli1 and antitumor effects of cyclin dependent kinase inhibitor on Ewing’s family tumor cells. International Journal of Cancer Journal International du Cancer, 116, 385–394.PubMedCrossRefGoogle Scholar
  34. 34.
    Onishi, T., & Hruska, K. (1997). Expression of p27Kip1 in osteoblast-like cells during differentiation with parathyroid hormone. Endocrinology, 138, 1995–2004.PubMedGoogle Scholar
  35. 35.
    Chen, S., Chen, L., Le, N. T., et al. (2007). Synthesis and activity of quinolinyl-methylene-thiazolinones as potent and selective cyclin-dependent kinase 1 inhibitors. Bioorganic & Medicinal Chemistry Letters, 17, 2134–2138.CrossRefGoogle Scholar
  36. 36.
    Fu, W., Ma, L., Chu, B., et al. (2011). The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Molecular Cancer Therapeutics, 10, 1018–1027.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cai, D., Latham, V. M., Jr., Zhang, X., et al. (2006). Combined depletion of cell cycle and transcriptional cyclin-dependent kinase activities induces apoptosis in cancer cells. Cancer Research, 66, 9270–9280.PubMedCrossRefGoogle Scholar
  38. 38.
    Parry, D., Guzi, T., Shanahan, F., et al. (2010). Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Molecular Cancer Therapeutics, 9, 2344–2353.PubMedCrossRefGoogle Scholar
  39. 39.
    Cai, D., Byth, K. F., & Shapiro, G. I. (2006). AZ703, an imidazo[1,2-a]pyridine inhibitor of cyclin-dependent kinases 1 and 2, induces E2F-1-dependent apoptosis enhanced by depletion of cyclin-dependent kinase 9. Cancer Research, 66, 435–444.PubMedCrossRefGoogle Scholar
  40. 40.
    Aleem, E., Kiyokawa, H., & Kaldis, P. (2005). Cdc2-cyclin E complexes regulate the G1/S phase transition. Nature Cell Biology, 7, 831–836.PubMedCrossRefGoogle Scholar
  41. 41.
    Ortega, S., Prieto, I., Odajima, J., et al. (2003). Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genetics, 35, 25–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Serrano, M., Hannon, G. J., & Beach, D. (1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 366, 704–707.PubMedCrossRefGoogle Scholar
  43. 43.
    Harper, J. W., Adami, G. R., Wei, N., et al. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 75, 805–816.PubMedCrossRefGoogle Scholar
  44. 44.
    Malumbres, M., & Barbacid, M. (2001). To cycle or not to cycle: a critical decision in cancer. Nature Reviews Cancer, 1, 222–231.PubMedCrossRefGoogle Scholar
  45. 45.
    Malumbres, M., Sotillo, R., Santamaria, D., et al. (2004). Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell, 118, 493–504.PubMedCrossRefGoogle Scholar
  46. 46.
    Narasimha AM., Kaulich M., Shapiro GS., et al. (2014). Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife, 3.Google Scholar
  47. 47.
    Konecny, G. E., Winterhoff, B., Kolarova, T., et al. (2011). Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 17, 1591–1602.CrossRefGoogle Scholar
  48. 48.
    Wiedemeyer, W. R., Dunn, I. F., Quayle, S. N., et al. (2010). Pattern of retinoblastoma pathway inactivation dictates response to CDK4/6 inhibition in GBM. Proceedings of the National Academy of Sciences of the United States of America, 107, 11501–11506.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Dean, J. L., Thangavel, C., McClendon, A. K., et al. (2010). Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene, 29, 4018–4032.PubMedCrossRefGoogle Scholar
  50. 50.
    Witkiewicz, A. K., & Knudsen, E. S. (2014). Retinoblastoma tumor suppressor pathway in breast cancer: prognosis, precision medicine, and therapeutic interventions. Breast Cancer Research : Bcr, 16, 207.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Timmermann, S., Hinds, P. W., & Munger, K. (1997). Elevated activity of cyclin-dependent kinase 6 in human squamous cell carcinoma lines. Cell Growth & Differentiation : the Molecular Biology Journal of the American Association for Cancer Research, 8, 361–370.Google Scholar
  52. 52.
    Easton, J., Wei, T., Lahti, J. M., et al. (1998). Disruption of the cyclin D/cyclin-dependent kinase/INK4/retinoblastoma protein regulatory pathway in human neuroblastoma. Cancer Research, 58, 2624–2632.PubMedGoogle Scholar
  53. 53.
    Wolfel, T., Hauer, M., Schneider, J., et al. (1995). A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science (New York, NY), 269, 1281–1284.CrossRefGoogle Scholar
  54. 54.
    Kwiatkowski, N., Zhang, T., Rahl, P. B., et al. (2014). Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature, 511, 616–620.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Tadesse S., Yu M., Kumarasiri M., et al. (2015). Targeting CDK6 in cancer: state of the art and new insights. Cell cycle (Georgetown, Tex):0.Google Scholar
  56. 56.
    Dei Tos, A. P., Piccinin, S., Doglioni, C., et al. (1997). Molecular aberrations of the G1-S checkpoint in myxoid and round cell liposarcoma. The American Journal of Pathology, 151, 1531–1539.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Helias-Rodzewicz, Z., Pedeutour, F., Coindre, J. M., et al. (2009). Selective elimination of amplified CDK4 sequences correlates with spontaneous adipocytic differentiation in liposarcoma. Genes, Chromosomes & Cancer, 48, 943–952.CrossRefGoogle Scholar
  58. 58.
    Lee, S., Park, H., Ha, S. Y., et al. (2014). CDK4 amplification predicts recurrence of well-differentiated liposarcoma of the abdomen. PLoS One, 9, e99452.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lee, S. E., Kim, Y. J., Kwon, M. J., et al. (2014). High level of CDK4 amplification is a poor prognostic factor in well-differentiated and dedifferentiated liposarcoma. Histology and Histopathology, 29, 127–138.PubMedGoogle Scholar
  60. 60.
    Puzio-Kuter AM., Laddha SV., Castillo-Martin M., et al. (2015). Involvement of tumor suppressors PTEN and p53 in the formation of multiple subtypes of liposarcoma. Cell death and differentiation.Google Scholar
  61. 61.
    Zhang, Y. X., Sicinska, E., Czaplinski, J. T., et al. (2014). Antiproliferative effects of CDK4/6 inhibition in CDK4-amplified human liposarcoma in vitro and in vivo. Molecular Cancer Therapeutics, 13, 2184–2193.PubMedCrossRefGoogle Scholar
  62. 62.
    Sabah, M., Cummins, R., Leader, M., et al. (2006). Aberrant expression of the Rb pathway proteins in soft tissue sarcomas. Applied Immunohistochemistry & Molecular Morphology : AIMM/Official Publication of the Society for Applied Immunohistochemistry, 14, 397–403.CrossRefGoogle Scholar
  63. 63.
    Smida, J., Baumhoer, D., Rosemann, M., et al. (2010). Genomic alterations and allelic imbalances are strong prognostic predictors in osteosarcoma. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 16, 4256–4267.CrossRefGoogle Scholar
  64. 64.
    Dujardin, F., Binh, M. B., Bouvier, C., et al. (2011). MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Modern Pathology : an Official Journal of the United States and Canadian Academy of Pathology, Inc, 24, 624–637.CrossRefGoogle Scholar
  65. 65.
    Benassi, M. S., Molendini, L., Gamberi, G., et al. (1999). Alteration of pRb/p16/cdk4 regulation in human osteosarcoma. International Journal of Cancer Journal International du Cancer, 84, 489–493.PubMedCrossRefGoogle Scholar
  66. 66.
    Liu, L., Wu, J., Ong, S. S., et al. (2013). Cyclin-dependent kinase 4 phosphorylates and positively regulates PAX3-FOXO1 in human alveolar rhabdomyosarcoma cells. PLoS One, 8, e58193.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Schrage, Y. M., Lam, S., Jochemsen, A. G., et al. (2009). Central chondrosarcoma progression is associated with pRb pathway alterations: CDK4 down-regulation and p16 overexpression inhibit cell growth in vitro. Journal of Cellular and Molecular Medicine, 13, 2843–2852.PubMedCrossRefGoogle Scholar
  68. 68.
    von Witzleben A., Goerttler L.T., Marienfeld R., et al. (2015). Preclinical characterization of novel chordoma cell systems and their targeting by pharmocological inhibitors of the CDK4/6 cell cycle pathway. Cancer research.Google Scholar
  69. 69.
    Zhang, Z., Huang, L., Yu, Z., et al. (2014). Let-7a functions as a tumor suppressor in Ewing’s sarcoma cell lines partly by targeting cyclin-dependent kinase 6. DNA and Cell Biology, 33, 136–147.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Li, C., Qi, L., Bellail, A. C., et al. (2014). PD-0332991 induces G1 arrest of colorectal carcinoma cells through inhibition of the cyclin-dependent kinase-6 and retinoblastoma protein axis. Oncology Letters, 7, 1673–1678.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Pasder, O., Shpungin, S., Salem, Y., et al. (2006). Downregulation of Fer induces PP1 activation and cell-cycle arrest in malignant cells. Oncogene, 25, 4194–4206.PubMedCrossRefGoogle Scholar
  72. 72.
    Huang, X., Di Liberto, M., Jayabalan, D., et al. (2012). Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4. Blood, 120, 1095–1106.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Choi, Y. J., & Anders, L. (2014). Signaling through cyclin D-dependent kinases. Oncogene, 33, 1890–1903.PubMedCrossRefGoogle Scholar
  74. 74.
    (2015). First CDK 4/6 inhibitor heads to market. Cancer discovery, 5:339–340.Google Scholar
  75. 75.
    Cadoo, K. A., Gucalp, A., & Traina, T. A. (2014). Palbociclib: an evidence-based review of its potential in the treatment of breast cancer. Breast Cancer (Dove Medical Press), 6, 123–133.PubMedCentralGoogle Scholar
  76. 76.
    Finn, R. S., Crown, J. P., Lang, I., et al. (2015). The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. The Lancet Oncology, 16, 25–35.PubMedCrossRefGoogle Scholar
  77. 77.
    VanArsdale T., Boshoff C., Arndt K.T., et al. (2015). Molecular pathways: targeting the cyclin D-CDK4/6 axis for cancer treatment. Clinical cancer research : an official journal of the American Association for Cancer Research.Google Scholar
  78. 78.
    Patrick, G. N., Zukerberg, L., Nikolic, M., et al. (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402, 615–622.PubMedCrossRefGoogle Scholar
  79. 79.
    Contreras-Vallejos, E., Utreras, E., & Gonzalez-Billault, C. (2012). Going out of the brain: non-nervous system physiological and pathological functions of Cdk5. Cellular Signalling, 24, 44–52.PubMedCrossRefGoogle Scholar
  80. 80.
    Brinkkoetter, P. T., Pippin, J. W., & Shankland, S. J. (2010). Cyclin I-Cdk5 governs survival in post-mitotic cells. Cell Cycle (Georgetown, Tex), 9, 1729–1731.CrossRefGoogle Scholar
  81. 81.
    Zhang, J., Krishnamurthy, P. K., & Johnson, G. V. (2002). Cdk5 phosphorylates p53 and regulates its activity. Journal of Neurochemistry, 81, 307–313.PubMedCrossRefGoogle Scholar
  82. 82.
    Tang, X., Wang, X., Gong, X., et al. (2005). Cyclin-dependent kinase 5 mediates neurotoxin-induced degradation of the transcription factor myocyte enhancer factor 2. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 25, 4823–4834.CrossRefGoogle Scholar
  83. 83.
    Alexander, K., Yang, H. S., & Hinds, P. W. (2004). Cellular senescence requires CDK5 repression of Rac1 activity. Molecular and Cellular Biology, 24, 2808–2819.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Folkman, J., & Shing, Y. (1992). Angiogenesis. The Journal of Biological Chemistry, 267, 10931–10934.PubMedGoogle Scholar
  85. 85.
    Taylor, S. M., Nevis, K. R., Park, H. L., et al. (2010). Angiogenic factor signaling regulates centrosome duplication in endothelial cells of developing blood vessels. Blood, 116, 3108–3117.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    de Nigris, F., Mancini, F. P., Schiano, C., et al. (2013). Osteosarcoma cells induce endothelial cell proliferation during neo-angiogenesis. Journal of Cellular Physiology, 228, 846–852.PubMedCrossRefGoogle Scholar
  87. 87.
    Lolli, G., & Johnson, L. N. (2005). CAK-cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle (Georgetown, Tex), 4, 572–577.CrossRefGoogle Scholar
  88. 88.
    Schachter, M. M., Merrick, K. A., Larochelle, S., et al. (2013). A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. Molecular Cell, 50, 250–260.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Egloff, S., Dienstbier, M., & Murphy, S. (2012). Updating the RNA polymerase CTD code: adding gene-specific layers. Trends in Genetics : TIG, 28, 333–341.PubMedCrossRefGoogle Scholar
  90. 90.
    Christensen, C. L., Kwiatkowski, N., Abraham, B. J., et al. (2014). Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell, 26, 909–922.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Scrace, S. F., Kierstan, P., Borgognoni, J., et al. (2008). Transient treatment with CDK inhibitors eliminates proliferative potential even when their abilities to evoke apoptosis and DNA damage are blocked. Cell Cycle (Georgetown, Tex), 7, 3898–3907.CrossRefGoogle Scholar
  92. 92.
    Akoulitchev, S., Chuikov, S., & Reinberg, D. (2000). TFIIH is negatively regulated by CDK8-containing mediator complexes. Nature, 407, 102–106.PubMedCrossRefGoogle Scholar
  93. 93.
    Krempler, A., Kartarius, S., Gunther, J., et al. (2005). Cyclin H is targeted to the nucleus by C-terminal nuclear localization sequences. Cellular and Molecular Life Sciences : CMLS, 62, 1379–1387.PubMedCrossRefGoogle Scholar
  94. 94.
    Li, X. Y., Luo, Q. F., Wei, C. K., et al. (2014). siRNA-mediated silencing of CDK8 inhibits proliferation and growth in breast cancer cells. International Journal of Clinical and Experimental Pathology, 7, 92–100.PubMedGoogle Scholar
  95. 95.
    Firestein, R., Bass, A. J., Kim, S. Y., et al. (2008). CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature, 455, 547–551.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Firestein, R., Shima, K., Nosho, K., et al. (2010). CDK8 expression in 470 colorectal cancers in relation to beta-catenin activation, other molecular alterations and patient survival. International Journal of Cancer Journal International du Cancer, 126, 2863–2873.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Rzymski, T., Mikula, M., Wiklik, K., et al. (2015). CDK8 kinase—an emerging target in targeted cancer therapy. Biochimica et Biophysica Acta, 1854, 1617–1629.PubMedCrossRefGoogle Scholar
  98. 98.
    Ohata, N., Ito, S., Yoshida, A., et al. (2006). Highly frequent allelic loss of chromosome 6q16-23 in osteosarcoma: involvement of cyclin C in osteosarcoma. International Journal of Molecular Medicine, 18, 1153–1158.PubMedGoogle Scholar
  99. 99.
    Garriga, J., & Grana, X. (2004). Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene, 337, 15–23.PubMedCrossRefGoogle Scholar
  100. 100.
    Fu, T. J., Peng, J., Lee, G., et al. (1999). Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. The Journal of Biological Chemistry, 274, 34527–34530.PubMedCrossRefGoogle Scholar
  101. 101.
    Bettayeb, K., Tirado, O. M., Marionneau-Lambot, S., et al. (2007). Meriolins, a new class of cell death inducing kinase inhibitors with enhanced selectivity for cyclin-dependent kinases. Cancer Research, 67, 8325–8334.PubMedCrossRefGoogle Scholar
  102. 102.
    Shapiro, G. I. (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 24, 1770–1783.CrossRefGoogle Scholar
  103. 103.
    Sengupta, S., Biarnes, M. C., & Jordan, V. C. (2014). Cyclin dependent kinase-9 mediated transcriptional de-regulation of cMYC as a critical determinant of endocrine-therapy resistance in breast cancers. Breast Cancer Research and Treatment, 143, 113–124.PubMedCrossRefGoogle Scholar
  104. 104.
    Shan, B., Zhuo, Y., Chin, D., et al. (2005). Cyclin-dependent kinase 9 is required for tumor necrosis factor-alpha-stimulated matrix metalloproteinase-9 expression in human lung adenocarcinoma cells. The Journal of Biological Chemistry, 280, 1103–1111.PubMedCrossRefGoogle Scholar
  105. 105.
    Endicott, J. A., & Noble, M. E. (2013). Structural characterization of the cyclin-dependent protein kinase family. Biochemical Society Transactions, 41, 1008–1016.PubMedCrossRefGoogle Scholar
  106. 106.
    Drogat, J., Migeot, V., Mommaerts, E., et al. (2012). Cdk11-cyclinL controls the assembly of the RNA polymerase II mediator complex. Cell Reports, 2, 1068–1076.PubMedCrossRefGoogle Scholar
  107. 107.
    Duan, Z., Zhang, J., Choy, E., et al. (2012). Systematic kinome shRNA screening identifies CDK11 (PITSLRE) kinase expression is critical for osteosarcoma cell growth and proliferation. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 18, 4580–4588.CrossRefGoogle Scholar
  108. 108.
    Feng, Y., Sassi, S., Shen, J. K., et al. (2015). Targeting Cdk11 in osteosarcoma cells using the CRISPR-Cas9 system. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 33, 199–207.CrossRefGoogle Scholar
  109. 109.
    Jia, B., Choy, E., Cote, G., et al. (2014). Cyclin-dependent kinase 11 (CDK11) is crucial in the growth of liposarcoma cells. Cancer Letters, 342, 104–112.PubMedCrossRefGoogle Scholar
  110. 110.
    Chi, Y., Huang, S., Wang, L., et al. (2014). CDK11p58 inhibits ERalpha-positive breast cancer invasion by targeting integrin beta3 via the repression of ERalpha signaling. BMC Cancer, 14, 577.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Zong, H., Chi, Y., Wang, Y., et al. (2007). Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Molecular and Cellular Biology, 27, 7125–7142.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kren, B. T., Unger, G. M., Abedin, M. J., et al. (2015). Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy. Breast Cancer Research : BCR, 17, 19.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zhou, Y., Han, C., Li, D., et al. (2015). Cyclin-dependent kinase 11(p110) (CDK11(p110)) is crucial for human breast cancer cell proliferation and growth. Scientific Reports, 5, 10433.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ren, S., & Rollins, B. J. (2004). Cyclin C/CDK3 promotes Rb-dependent G0 exit. Cell, 117, 239–251.PubMedCrossRefGoogle Scholar
  115. 115.
    Li, S., MacLachlan, T. K., De Luca, A., et al. (1995). The CDC-2-related kinase, PISSLRE, is essential for cell growth and acts in G2 phase of the cell cycle. Cancer Research, 55, 3992–3995.PubMedGoogle Scholar
  116. 116.
    Blazek, D., Kohoutek, J., Bartholomeeusen, K., et al. (2011). The cyclin K/CDK12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes & Development, 25, 2158–2172.CrossRefGoogle Scholar
  117. 117.
    Blazek, D. (2012). The cyclin K/Cdk12 complex: an emerging new player in the maintenance of genome stability. Cell Cycle (Georgetown, Tex), 11, 1049–1050.CrossRefGoogle Scholar
  118. 118.
    Davidson, G., & Niehrs, C. (2010). Emerging links between CDK cell cycle regulators and Wnt signaling. Trends in Cell Biology, 20, 453–460.PubMedCrossRefGoogle Scholar
  119. 119.
    Park, M. H., Kim, S. Y., Kim, Y. J., et al. (2014). ALS2CR7 (CDK15) attenuates TRAIL induced apoptosis by inducing phosphorylation of survivin Thr34. Biochemical and Biophysical Research Communications, 450, 129–134.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yunfei Liao
    • 1
    • 2
  • Yong Feng
    • 1
    • 2
  • Jacson Shen
    • 1
  • Francis J. Hornicek
    • 1
  • Zhenfeng Duan
    • 1
  1. 1.Department of Orthopaedic Surgery, Sarcoma Biology LaboratoryMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Wuhan Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations