Cancer and Metastasis Reviews

, Volume 34, Issue 4, pp 765–773 | Cite as

The origin of prostate metastases: emerging insights

  • Matteo Santoni
  • Francesco Piva
  • Marina Scarpelli
  • Liang Cheng
  • Antonio Lopez-Beltran
  • Francesco Massari
  • Roberto Iacovelli
  • Rossana Berardi
  • Daniele Santini
  • Rodolfo Montironi


The outcome of patients with prostate cancer (PCa) is mainly dependent on the presence or absence of distant metastases. Although several advances have been made in understanding the biological basis of this tumor, the mechanisms underlying PCa metastatic spread are not fully clear. The lack of a clear origin for PCa metastasis may be partially due to the evidence of PCa heterogeneity between primary tumor and metastases and among different metastatic sites. Cross-metastatic seeding and the de novo monoclonal seeding of daughter metastases have been proposed as crucial events during metastasis. This process requires the contribution of tumor environment, which modulates cancer cell homing and growth, and involves several components including cancer stem cells (CSCs), tumor secreted microvesicles, circulating tumor cells (CTCs), and immune cells. In this review, we have focused on the recent findings on the origin of prostate metastasis, showing the contribution of tumor microenvironment to this evolutionary process.


Cancer stem cells Circulating tumor cells Exosomes Inflammation Metastasis Prostate cancer 


Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Aus, G., Robinson, D., Rosell, J., Sandblom, G., & Varenhorst, E. (2005). Survival in prostate carcinoma—outcomes from a prospective, population-based cohort of 8887 men with up to 15 years of follow-up. Cancer, 103(5), 943–951.PubMedCrossRefGoogle Scholar
  2. 2.
    Wyatt, A. W., Mo, F., Wang, Y., & Collins, C. C. (2013). The diverse heterogeneity of molecular alterations in prostate cancer identified through next-generation sequencing. Asian Journal of Andrology, 15(3), 301–308.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Berger, M. F., Lawrence, M. S., Demichelis, F., Drier, Y., Cibulskis, K., Sivachenko, A. Y., et al. (2011). The genomic complexity of primary human prostate cancer. Nature, 470(7333), 214–220.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Baca, S. C., Prandi, D., Lawrence, M. S., Mosquera, J. M., Romanel, A., Drier, Y., et al. (2013). Punctuated evolution of prostate cancer genomes. Cell, 153(3), 666–677.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Tomlins, S. A., Laxman, B., Varambally, S., Cao, X., Yu, J., & Helgeson, B. E. (2008). Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia, 10(2), 177–188.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Wang, L., Williamson, S. R., Zhang, S., Huang, J., Montironi, R., & Davison, D. D. (2014). Increased androgen receptor gene copy number is associated with TMPRSS2-ERG rearrangement in prostatic small cell carcinoma. Molecular Carcinogenesis. doi: 10.1002/mc.22162.Google Scholar
  7. 7.
    Attard, G., Jameson, C., Moreira, J., Flohr, P., Parker, C., & Dearnaley, D. (2009). Hormone-sensitive prostate cancer: a case of ETS gene fusion heterogeneity. Journal of Clinical Pathology, 62(4), 373–376.PubMedCrossRefGoogle Scholar
  8. 8.
    Lindberg, J., Kristiansen, A., Wiklund, P., Grönberg, H., & Egevad, L. (2015). Tracking the origin of metastatic prostate cancer. European Urology, 67(5), 819–822.PubMedCrossRefGoogle Scholar
  9. 9.
    Trudel, D., Downes, M. R., Sykes, J., Kron, K. J., Trachtenberg, J., & van der Kwast, T. H. (2014). Prognostic impact of intraductal carcinoma and large cribriform carcinoma architecture after prostatectomy in a contemporary cohort. European Journal of Cancer, 50(9), 1610–1616.PubMedCrossRefGoogle Scholar
  10. 10.
    Gundem, G., Van Loo, P., Kremeyer, B., Alexandrov, L. B., Tubio, J. M., Papaemmanuil, E., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. Nature, 520(7547), 353–357.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Hong, M. K., Macintyre, G., Wedge, D. C., Van Loo, P., Patel, K., & Lunke, S. (2015). Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nature Communications, 6, 6605.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Piva, F., Santoni, M., Scarpelli, M., Briganti, A., Montorsi, F., & Montironi, R. (2015). Re: Johan Lindberg, Anna Kristiansen, Peter Wiklund, Henrik Grönberg, Lars Egevad. Tracking the origin of metastatic prostate cancer. European Urology. doi: 10.1016/j.eururo.2015.07.011.Google Scholar
  13. 13.
    Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. SIMULATION, 76(2), 60–68.CrossRefGoogle Scholar
  14. 14.
    Chen, X. S., Ong, Y. S., & Lim, M. H. (2010). Research frontier: memetic computation—past, present & future. IEEE Computational Intelligence Magazine, 5(2), 24–36.CrossRefGoogle Scholar
  15. 15.
    Casás-Selves, M., & Degregori, J. (2011). How cancer shapes evolution, and how evolution shapes cancer. Evolution (NY), 4(4), 624–634.Google Scholar
  16. 16.
    Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. The New England Journal of Medicine, 355(12), 1253–1261.PubMedCrossRefGoogle Scholar
  17. 17.
    Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews Cancer, 5(4), 275–284.PubMedCrossRefGoogle Scholar
  18. 18.
    Rybak, A. P., Bristow, R. G., & Kapoor, A. (2015). Prostate cancer stem cells: deciphering the origins and pathways involved in prostate tumorigenesis and aggression. Oncotarget, 6(4), 1900–1919.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.PubMedCrossRefGoogle Scholar
  20. 20.
    Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.PubMedCrossRefGoogle Scholar
  21. 21.
    van der Pluijm, G. (2011). Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone, 48(1), 37–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Wen, S., Niu, Y., Yeh, S., & Chang, C. (2015). BM-MSCs promote prostate cancer progression via the conversion of normal fibroblasts to cancer-associated fibroblasts. International Journal of Oncolology. doi: 10.3892/ijo.2015.3060.Google Scholar
  23. 23.
    Tang, K.D., Holzapfel, B.M., Liu, J., Lee, T.K., Ma, S., Jovanovic, L. (2015). Tie-2 regulates the stemness and metastatic properties of prostate cancer cells. Oncotarget, in press.Google Scholar
  24. 24.
    Marian, L., Katarina, K., & Vladimir, B. (2013). Essentials of circulating tumor cells for clinical research and practice. Critival Reviews in Oncology/Hematology, 88(2), 338–356.CrossRefGoogle Scholar
  25. 25.
    Danila, D. C., Heller, G., Gignac, G. A., Gonzalez-Espinoza, R., Anand, A., & Tanaka, E. (2007). Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clinical Cancer Research, 13(23), 7053–7058.PubMedCrossRefGoogle Scholar
  26. 26.
    Okegawa, T., Nutahara, K., & Higashihara, E. (2009). Prognostic significance of circulating tumor cells in patients with hormone refractory prostate cancer. The Journal of Urology, 181(3), 1091–1097.PubMedCrossRefGoogle Scholar
  27. 27.
    Moreno, J. G., Miller, M. C., Gross, S., Allard, W. J., Gomella, L. G., & Terstappen, L. W. (2005). Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology, 65(4), 713–718.PubMedCrossRefGoogle Scholar
  28. 28.
    Scher, H. I., Jia, X., de Bono, J. S., Fleisher, M., Pienta, K. J., Raghavan, D., et al. (2009). Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. The Lancet Oncology, 10(3), 233–239.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Abe, Y., Matsumoto, S., Kito, K., & Ueda, N. (2000). Cloning and expression of a novel MAPKK-like protein kinase, lymphokine-activated killer T-cell-originated protein kinase, specifically expressed in the testis and activated lymphoid cells. The Journal of Biological Chemistry, 275(28), 21525–21531.PubMedCrossRefGoogle Scholar
  30. 30.
    Sun, H., Zhang, L., Shi, C., Hu, P., Yan, W., & Wang, Z. (2015). TOPK is highly expressed in circulating tumor cells, enabling metastasis of prostate cancer. Oncotarget, 6(14), 12392–12404.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Luga, V., Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., & Chiu, E. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 151(7), 1542–1556.PubMedCrossRefGoogle Scholar
  32. 32.
    Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., & Moreno-Bueno, G. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18(6), 883–891.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Chowdhury, R., Webber, J. P., Gurney, M., Mason, M. D., Tabi, Z., & Clayton, A. (2015). Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget, 6(2), 715–731.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Lundholm, M., Schröder, M., Nagaeva, O., Baranov, V., Widmark, A., Mincheva-Nilsson, L., et al. (2014). Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS One, 9(9), e108925.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Kawakami, K., Fujita, Y., Kato, T., Mizutani, K., Kameyama, K., Tsumoto, H., et al. (2015). Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. International Journal of Oncology, 47(1), 384–390.PubMedGoogle Scholar
  36. 36.
    Trerotola, M., Ganguly, K. K., Fazli, L., Fedele, C., Lu, H., Dutta, A., et al. (2015). Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget, 6(16), 14318–14328.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Sandvig, K., & Llorente, A. (2012). Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3. Molelucar & Cellular Proteomics, 11(7), M111.012914.CrossRefGoogle Scholar
  38. 38.
    Deryugina, E. I., Conn, E. M., Wortmann, A., Partridge, J. J., Kupriyanova, T. A., Ardi, V. C., et al. (2009). Functional role of cell surface CUB domain-containing protein 1 in tumor cell dissemination. Molecular Cancer Research, 7(8), 1197–1211.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Zöller, M. (2009). Tetraspanins: push and pull in suppressing and promoting metastasis. Nature Reviews Cancer, 9(1), 40–55.PubMedCrossRefGoogle Scholar
  40. 40.
    Tang, Y., Kesavan, P., Nakada, M. T., & Yan, L. (2004). Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Molecular Cancer Research, 2(2), 73–80.PubMedGoogle Scholar
  41. 41.
    Zhong, W. D., Liang, Y. X., Lin, S. X., Li, L., He, H. C., Bi, X. C., et al. (2012). Expression of CD147 is associated with prostate cancer progression. International Journal of Cancer, 130(2), 300–308.CrossRefGoogle Scholar
  42. 42.
    Gnanasekar, M., Thirugnanam, S., Zheng, G., Chen, A., & Ramaswamy, K. (2009). Gene silencing of translationally controlled tumor protein (TCTP) by siRNA inhibits cell growth and induces apoptosis of human prostate cancer cells. International Journal of Oncology, 34(5), 1241–1246.PubMedGoogle Scholar
  43. 43.
    Miao, H. Q., Lee, P., Lin, H., Soker, S., & Klagsbrun, M. (2000). Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. The FASEB Journal, 14(15), 2532–2539.PubMedCrossRefGoogle Scholar
  44. 44.
    Jia, H., Cheng, L., Tickner, M., Bagherzadeh, A., Selwood, D., & Zachary, I. (2010). Neuropilin-1 antagonism in human carcinoma cells inhibits migration and enhances chemosensitivity. British Journal of Cancer, 102(3), 541–552.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Øverbye, A., Skotland, T., Koehler, C.J., Thiede, B., Seierstad, T., Berge, V. (2015). Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget, in press.Google Scholar
  46. 46.
    Bar-Peled, L., Schweitzer, L.D., Zoncu, R., Sabatini, D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell, 150(6), 1196–1208.Google Scholar
  47. 47.
    Gu, T. L., Cherry, J., Tucker, M., Wu, J., Reeves, C., & Polakiewicz, R. D. (2010). Identification of activated Tnk1 kinase in Hodgkin’s lymphoma. Leukemia, 24(4), 861–865.PubMedCrossRefGoogle Scholar
  48. 48.
    Llorente, A., Skotland, T., Sylvänne, T., Kauhanen, D., Róg, T., Orlowski, A., et al. (2013). Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochima et Biophysica Acta, 1831(7), 1302–1309.CrossRefGoogle Scholar
  49. 49.
    Hessvik, N. P., Phuyal, S., Brech, A., Sandvig, K., & Llorente, A. (2012). Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochimica et Biophysica Acta, 1819, 1154–1163.PubMedCrossRefGoogle Scholar
  50. 50.
    Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. V., & Languino, L. R. (2015). The αvβ6 integrin is transferred intercellularly via exosomes. The Journal of Biological Chemistry, 290(8), 4545–4551.PubMedCrossRefGoogle Scholar
  51. 51.
    De Marzo, A. M., Platz, E. A., Sutcliffe, S., Xu, J., Grönberg, H., Drake, C. G., et al. (2007). Inflammation in prostate carcinogenesis. Nature Reviews Cancer, 7(4), 256–269.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Vignozzi, L., & Maggi, M. (2004). Prostate cancer: intriguing data on inflammation and prostate cancer. Nature Reviews. Urology, 11(7), 369–370.CrossRefGoogle Scholar
  53. 53.
    Sfanos, K. S., Hempe, H. A., & De Marzo, A. M. (2014). The role of inflammation in prostate cancer. Advances in Experimental Medicine and Biology, 816, 153–181.PubMedCrossRefGoogle Scholar
  54. 54.
    Wang, W., Bergh, A., & Damber, J. E. (2009). Morphological transition of proliferative inflammatory atrophy to high-grade intraepithelial neoplasia and cancer in human prostate. Prostate, 69(13), 1378–1386.PubMedCrossRefGoogle Scholar
  55. 55.
    Nguyen, D. P., Li, J., Yadav, S. S., & Tewari, A. K. (2014). Recent insights into NF-κB signalling pathways and the link between inflammation and prostate cancer. BJU International, 114(2), 168–176.PubMedCrossRefGoogle Scholar
  56. 56.
    Vidal, A. C., Howard, L. E., Moreira, D. M., Castro-Santamaria, R., Andriole, G. L., & Freedland, S. J. (2015). Aspirin, NSAIDs, and risk of prostate cancer: results from the REDUCE study. Clinical Cancer Research, 21(4), 756–762.PubMedCrossRefGoogle Scholar
  57. 57.
    Zarif, J. C., Taichman, R. S., & Pienta, K. J. (2014). TAM macrophages promote growth and metastasis within the cancer ecosystem. Oncoimmunology, 3;3(7), e941734.CrossRefGoogle Scholar
  58. 58.
    Soki, F. N., Koh, A. J., Jones, J. D., Kim, Y. W., Dai, J., Keller, E. T., Pienta, K. J., et al. (2014). Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. The Journal of Biological Chemistry, 289, 24560–24572.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Ding, X., Yang, D. R., Xia, L., Chen, B., Yu, S., Niu, Y., et al. (2015). Targeting TR4 nuclear receptor suppresses prostate cancer invasion via reduction of infiltrating macrophages with alteration of the TIMP-1/MMP2/MMP9 signals. Molecular Cancer, 14, 16.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284(49), 34342–34354.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Rittirsch, D., Flierl, M. A., & Ward, P. A. (2008). Harmful molecular mechanisms in sepsis. Nature Reviews Immunology, 8(10), 776–787.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Luo, Y., Jiang, Q.W., Wu, J.Y., Qiu, J.G., Zhang, W.J., Mei, X.L., et al. (2015). Regulation of migration and invasion by Toll-like receptor-9 signaling network in prostate cancer. Oncotarget, in press.Google Scholar
  63. 63.
    Santoni, M., Bracarda, S., Nabissi, M., Massari, F., Conti, A., Bria, E., et al. (2014). CXC and CC chemokines as angiogenic modulators in non-haematological tumors. Biomed Research International, 768758.Google Scholar
  64. 64.
    Izumi, K., Fang, L. Y., Mizokami, A., Namiki, M., Li, L., Lin, W. J., et al. (2013). Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Molecular Medicine, 5(9), 1383–1401.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Santoni, M., Conti, A., Piva, F., Massari, F., Ciccarese, C., Burattini, L., et al. (2015). Role of STAT3 pathway in genitourinary tumors. Future Science, in press.Google Scholar
  66. 66.
    Zhang, K., Zhao, H., Ji, Z., Zhang, C., Zhou, P., Wang, L., et al. (2015). Shp2 promotes metastasis of prostate cancer by attenuating the PAR3/PAR6/aPKC polarity protein complex and enhancing epithelial-to-mesenchymal transition. Oncogene. doi: 10.1038/onc.2015.184.Google Scholar
  67. 67.
    Kolijn, K., Verhoef, E.I., van Leenders, G.J. (2015) Morphological and immunohistochemical identification of epithelial-to-mesenchymal transition in clinical prostate cancer. Oncotarget, in press.Google Scholar
  68. 68.
    Lin, T. H., Izumi, K., Lee, S. O., Lin, W. J., Yeh, S., & Chang, C. (2013). Anti-androgen receptor ASC-J9 versus anti-androgens MDV3100 (Enzalutamide) or Casodex (Bicalutamide) leads to opposite effects on prostate cancer metastasis via differential modulation of macrophage infiltration and STAT3-CCL2 signaling. Cell Death & Disease. doi: 10.1038/cddis.2013.270.Google Scholar
  69. 69.
    Chen, Y., Tian, Y., Ji, Z., Liu, Z., & Shang, D. (2015). CC-chemokine receptor 7 is overexpressed and correlates with growth and metastasis in prostate cancer. Tumour Biology, 36(7), 5537–5541.PubMedCrossRefGoogle Scholar
  70. 70.
    Zalucha, J. L., Jung, Y., Joseph, J., Wang, J., Berry, J. E., Shiozawa, Y., et al. (2015). The role of osteoclasts in early dissemination of prostate cancer tumor cells. Journal of Cancer Stem Cell Research, 3, e1005.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Arnold, R. S., Fedewa, S. A., Goodman, M., Osunkoya, A. O., Kissick, H. T., Morrissey, C., et al. (2015). Bone metastasis in prostate cancer: recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone, 78, 81–86.PubMedCrossRefGoogle Scholar
  72. 72.
    Vicente-Dueñas, C., Gutiérrez de Diego, J., Rodríguez, F. D., Jiménez, R., & Cobaleda, C. (2009). The role of cellular plasticity in cancer development. Current Medicinal Chemistry, 16(28), 3676–3685.PubMedCrossRefGoogle Scholar
  73. 73.
    Bishop, J. L., Davies, A., Ketola, K., & Zoubeidi, A. (2015). Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. Endocrine Related Cancer, 22(3), R165–182.PubMedCrossRefGoogle Scholar
  74. 74.
    Santoni, M., Conti, A., Burattini, L., Berardi, R., Scarpelli, M., Cheng, L., et al. (2014). Neuroendocrine differentiation in prostate cancer: novel morphological insights and future therapeutic perspectives. Biochimica et Biophysica Acta-Reviews of Cancer, 1846(2), 630–637.CrossRefGoogle Scholar
  75. 75.
    Jadaan, D.Y., Jadaan, M.M., McCabe, J.P. (2015). Cellular plasticity in prostate cancer bone metastasis. Prostate Cancer, 651580, doi:  10.1155/2015/651580.
  76. 76.
    Xu, J., Wang, R., Xie, Z. H., Odero-Marah, V., Pathak, S., Multani, A., et al. (2006). Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate, 66(15), 1664–1673.PubMedCrossRefGoogle Scholar
  77. 77.
    Josson, S., Sharp, S., Sung, S. Y., Johnstone, P. A., Aneja, R., Wang, R., et al. (2010). Tumor-stromal interactions influence radiation sensitivity in epithelial- versus mesenchymal-like prostate cancer cells. Journal of Oncology. doi: 10.1155/2010/232831.PubMedCentralPubMedGoogle Scholar
  78. 78.
    D'Amico, L., Patanè, S., Grange, C., Bussolati, B., Isella, C., Fontani, L., et al. (2013). Primary breast cancer stem-like cells metastasise to bone, switch phenotype and acquire a bone tropism signature. British Journal of Cancer, 108(12), 2525–2536.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Shiozawa, Y., Pedersen, E. A., Havens, A. M., Jung, Y., Mishra, A., Joseph, J., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121(4), 1298–1312.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Eaton, C. L., Colombel, M., van der Pluijm, G., Cecchini, M., Wetterwald, A., Lippitt, J., et al. (2010). Evaluation of the frequency of putative prostate cancer stem cells in primary and metastatic prostate cancer. Prostate, 70(8), 875–882.PubMedGoogle Scholar
  81. 81.
    Fournier, P. G., Juárez, P., Jiang, G., Clines, G. A., Niewolna, M., Kim, H. S., et al. (2015). The TGF-β signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell, 27(6), 809–821.PubMedCrossRefGoogle Scholar
  82. 82.
    Bonci, D., Coppola, V., Patrizii, M., Addario, A., Cannistraci, A., Francescangeli, F., et al. (2015). A microRNA code for prostate cancer metastasis. Oncogene. doi: 10.1038/onc.2015.176.PubMedGoogle Scholar
  83. 83.
    Chang, Y. S., Chen, W. Y., Yin, J. J., Sheppard-Tillman, H., Huang, J., & Liu, Y. N. (2015). EGF receptor promotes prostate cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Research, 75(15), 3077–3086.PubMedCrossRefGoogle Scholar
  84. 84.
    Li, X., Liu, Y., Wu, B., Dong, Z., Wang, Y., Lu, J., et al. (2014). Potential role of the OPG/RANK/RANKL axis in prostate cancer invasion and bone metastasis. Oncology Report, 32(6), 2605–2611.Google Scholar
  85. 85.
    Hall, C. L., Kang, S., MacDougald, O. A., & Keller, E. T. (2006). Role of Wnts in prostate cancer bone metastases. Journal of Cellular Biochemestry, 97(4), 661–672.CrossRefGoogle Scholar
  86. 86.
    Iuliani, M., Pantano, F., Buttigliero, C., Fioramonti, M., Bertaglia, V., Vincenzi, B., et al. (2015). Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment. Oncotarget, 6(14), 12520–12528.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Gatenby, R. A., Silva, A. S., Gillies, R. J., & Frieden, B. R. (2009). Adaptive therapy. Cancer Research, 69(11), 4894–4903.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Santoni, M., Scarpelli, M., Mazzucchelli, R., Lopez-Beltran, A., Cheng, L., Epstein, J. I., et al. (2015). Current histopathologic and molecular characterizations of prostate cancer: towards individualized prognosis and therapies. European Urology. doi: 10.1016/j.eururo.2015.05.041.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Matteo Santoni
    • 1
  • Francesco Piva
    • 2
  • Marina Scarpelli
    • 3
  • Liang Cheng
    • 4
  • Antonio Lopez-Beltran
    • 5
  • Francesco Massari
    • 6
  • Roberto Iacovelli
    • 7
  • Rossana Berardi
    • 1
  • Daniele Santini
    • 8
  • Rodolfo Montironi
    • 3
  1. 1.Medical OncologyUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Department of Specialistic Clinical and Odontostomatological SciencesPolytechnic University of MarcheAnconaItaly
  3. 3.Section of Pathological AnatomyPolytechnic University of the Marche Region, School of Medicine, United HospitalsAnconaItaly
  4. 4.Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisUSA
  5. 5.Department of SurgeryCordoba University Medical SchoolCordobaSpain
  6. 6.Medical Oncology, Azienda Ospedaliera Universitaria IntegrataUniversity of VeronaVeronaItaly
  7. 7.Medical Oncology Unit of Urogenital and Head & Neck TumorsEuropean Institute of Oncology|MilanItaly
  8. 8.Department of Medical OncologyCampus Bio-Medico University of RomeRomeItaly

Personalised recommendations