Advertisement

Cancer and Metastasis Reviews

, Volume 34, Issue 3, pp 417–428 | Cite as

Synovial sarcoma is a gateway to the role of chromatin remodeling in cancer

  • Stefan K. Zöllner
  • Claudia Rössig
  • Jeffrey A. Toretsky
Clinical

Abstract

Patients afflicted with synovial sarcoma share the fate of other translocation positive sarcomas; the driver mutation for this cancer is known, yet no means to target the fusion protein SS18-SSX directly exist. Current chemotherapeutic regimens are minimally beneficial, particularly in patients with metastatic disease. SS18-SSX putatively promotes its oncogenic activity through protein-protein interactions that alter genetic programs through chromatin remodeling. This review discusses the functional protein network of SS18-SSX, both wild-type and fusion protein, considers its intrinsically disordered nature, and provides insights into potential therapeutic strategies. A comprehensive overview of the clinical characteristics reveals the need for newly targeted therapeutics based upon oncogenic transformation by the fusion protein SS18-SSX. The wild-type, non-fused proteins SS18 and SSX are presented including their molecular structure and biological function with regard to protein-protein interactions. The interactions of the wild-type proteins inform the oncogenic changes of the fusion protein. The SS18-SSX fusion protein and its protein interactions are described and evaluated for their biological consequences that lead to oncogenesis. This review illustrates the key protein interactions of SS18-SSX that may qualify as primary targets for small molecule-based disruption leading to the development of SS18-SSX-specific drugs. These novel targeted therapeutics may provide a specificity that ultimately improves survival while reducing morbidity of patients with synovial sarcoma.

Keywords

Synovial sarcoma SS18-SSX Fusion protein Protein interaction SWI/SNF Targeted therapy 

Notes

Acknowledgments

The authors would like to thank Cigall Kadoch, Ph.D., Harvard University, for her critical review and feedback on this manuscript. Support for this work has come from the Children’s Cancer Foundation, Baltimore, MD, St. Baldrick’s Foundation, Burroughs Wellcome Clinical Scientist Award in Translational Research (to J.A.T.), and Mildred-Scheel-Postdoktoranden-Programm of Deutsche Krebshilfe (to S.K.Z.), and NIH Grants R01CA133662 (to J.A.T.), R01CA138212 (to J.A.T.)

References

  1. 1.
    Dillon, P., et al. (1992). A prospective study of nonrhabdomyosarcoma soft tissue sarcomas in the pediatric age group. Journal of Pediatric Surgery, 27(2), 241–244.Google Scholar
  2. 2.
    McGrory, J. E., et al. (2000). Nonrhabdomyosarcoma soft tissue sarcomas in children. The Mayo Clinic experience. Clinical Orthopaedics and Related Research, 374, 247–258.PubMedCrossRefGoogle Scholar
  3. 3.
    Herzog, C. E. (2005). Overview of sarcomas in the adolescent and young adult population. Journal of Pediatric Hematology/Oncology, 27(4), 215–218.PubMedCrossRefGoogle Scholar
  4. 4.
    Raney, R. B. (2005). Synovial sarcoma in young people: background, prognostic factors, and therapeutic questions. Journal of Pediatric Hematology/Oncology, 27(4), 207–211.PubMedCrossRefGoogle Scholar
  5. 5.
    Weiss, S. (2008). Enzinger and Weiss’s soft tissue tumors (pp. 1161–1182). St. Louis: Mosby Inc.Google Scholar
  6. 6.
    Simon, G. (1865). Exstirpation einer sehr grossen, mit dicken Stiele angewachsenen Kneigelenkmaus mit gluklichem Erfolge. Arch Klin Chir, 6, 573–576.Google Scholar
  7. 7.
    Sabrazes, J., Loubat, E., de Grailly, R., & Magendie, J. (1934). Synovial sarcomes. Gaz Hebd Sc Med Bordeaux, 55, 754–762.Google Scholar
  8. 8.
    Ghadially, F. N. (1987). Is synovial sarcoma a carcinosarcoma of connective tissue? Ultrastructural Pathology, 11(2–3), 147–151.PubMedCrossRefGoogle Scholar
  9. 9.
    Smith, M. E., et al. (1995). Synovial sarcoma lack synovial differentiation. Histopathology, 26(3), 279–281.PubMedCrossRefGoogle Scholar
  10. 10.
    Garcia, C. B., et al. (2012). Reprogramming of mesenchymal stem cells by the synovial sarcoma-associated oncogene SYT-SSX2. Oncogene, 31(18), 2323–2334.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Hayakawa, K., et al. (2013). Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells. Biochemical and Biophysical Research Communications, 432(4), 713–719.PubMedCrossRefGoogle Scholar
  12. 12.
    Naka, N., et al. (2010). Synovial sarcoma is a stem cell malignancy. Stem Cells, 28(7), 1119–1131.PubMedGoogle Scholar
  13. 13.
    Falkenstern-Ge, R.F., et al. (2013) Primary pulmonary synovial sarcoma: a rare primary pulmonary tumor. Lung, 192(1), 211–4.Google Scholar
  14. 14.
    Wang, J. G., & Li, N. N. (2013). Primary cardiac synovial sarcoma. Annals of Thoracic Surgery, 95(6), 2202–2209.PubMedCrossRefGoogle Scholar
  15. 15.
    Schoolmeester, J. K., Cheville, J. C., & Folpe, A. L. (2014). Synovial sarcoma of the kidney: a clinicopathologic, immunohistochemical, and molecular genetic study of 16 cases. American Journal of Surgical Pathology, 38(1), 60–65.PubMedCrossRefGoogle Scholar
  16. 16.
    Billings, S. D., et al. (2000). Synovial sarcoma of the upper digestive tract: a report of two cases with demonstration of the X;18 translocation by fluorescence in situ hybridization. Modern Pathology, 13(1), 68–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Hiraga, H., et al. (1999). Histological and molecular evidence of synovial sarcoma of bone. A case report. Journal of Bone and Joint Surgery (American), 81(4), 558–563.Google Scholar
  18. 18.
    Haldar, M., et al. (2007). A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell, 11(4), 375–388.PubMedCrossRefGoogle Scholar
  19. 19.
    Haldar, M., et al. (2009). A CreER-based random induction strategy for modeling translocation-associated sarcomas in mice. Cancer Research, 69(8), 3657–3664.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Bakri, A., et al. (2012). Synovial sarcoma: imaging features of common and uncommon primary sites, metastatic patterns, and treatment response. AJR. American Journal of Roentgenology, 199(2), W208–W215.PubMedCrossRefGoogle Scholar
  21. 21.
    Jaganathan, S., et al. (2012). Spectrum of synovial pathologies: a pictorial assay. Current Problems in Diagnostic Radiology, 41(1), 30–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Spillane, A. J., et al. (2000). Synovial sarcoma: a clinicopathologic, staging, and prognostic assessment. Journal of Clinical Oncology, 18(22), 3794–3803.PubMedGoogle Scholar
  23. 23.
    Siegel, H. J., et al. (2007). Synovial sarcoma: clinicopathologic features, treatment, and prognosis. Orthopedics, 30(12), 1020–1025.Google Scholar
  24. 24.
    Saito, T., Nagai, M., & Ladanyi, M. (2006). SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug: a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma. Cancer Research, 66(14), 6919–6927.PubMedCrossRefGoogle Scholar
  25. 25.
    Su, L., et al. (2012). Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell, 21(3), 333–347.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Waterfall, J. J., & Meltzer, P. S. (2012). Targeting epigenetic misregulation in synovial sarcoma. Cancer Cell, 21(3), 323–324.PubMedCrossRefGoogle Scholar
  27. 27.
    Miettinen, M., et al. (1999). Epithelioid sarcoma: an immunohistochemical analysis of 112 classical and variant cases and a discussion of the differential diagnosis. Human Pathology, 30(8), 934–942.PubMedCrossRefGoogle Scholar
  28. 28.
    van de Rijn, M., et al. (1999). Poorly differentiated synovial sarcoma: an analysis of clinical, pathologic, and molecular genetic features. American Journal of Surgical Pathology, 23(1), 106–112.PubMedCrossRefGoogle Scholar
  29. 29.
    Folpe, A. L., et al. (1998). Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high-grade malignant peripheral nerve sheath tumors. American Journal of Surgical Pathology, 22(6), 673–682.PubMedCrossRefGoogle Scholar
  30. 30.
    Sato, O., et al. (2005). Expression of epidermal growth factor receptor, ERBB2 and KIT in adult soft tissue sarcomas: a clinicopathologic study of 281 cases. Cancer, 103(9), 1881–1890.PubMedCrossRefGoogle Scholar
  31. 31.
    Teng, H. W., et al. (2011). Prevalence and prognostic influence of genomic changes of EGFR pathway markers in synovial sarcoma. Journal of Surgical Oncology, 103(8), 773–781.PubMedCrossRefGoogle Scholar
  32. 32.
    Ray, A., & Huh, W. W. (2012). Current state-of-the-art systemic therapy for pediatric soft tissue sarcomas. Current Oncology Reports, 14(4), 311–319.PubMedCrossRefGoogle Scholar
  33. 33.
    Shi, W., et al. (2013). Long-term treatment outcomes for patients with synovial sarcoma: a 40-year experience at the University of Florida. American Journal of Clinical Oncology, 36(1), 83–88.PubMedCrossRefGoogle Scholar
  34. 34.
    Ferrari, A., et al. (2012). Synovial sarcoma in children and adolescents: a critical reappraisal of staging investigations in relation to the rate of metastatic involvement at diagnosis. European Journal of Cancer, 48(9), 1370–1375.PubMedCrossRefGoogle Scholar
  35. 35.
    Tunn, P. U., et al. (2008). Sentinel node biopsy in synovial sarcoma. European Journal of Surgical Oncology, 34(6), 704–707.PubMedCrossRefGoogle Scholar
  36. 36.
    Sultan, I., et al. (2009). Comparing children and adults with synovial sarcoma in the Surveillance, Epidemiology, and End Results program, 1983 to 2005: an analysis of 1268 patients. Cancer, 115(15), 3537–3547.PubMedCrossRefGoogle Scholar
  37. 37.
    Lagarde, P., et al. (2013). Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. Journal of Clinical Oncology, 31(5), 608–615.PubMedCrossRefGoogle Scholar
  38. 38.
    Dantonello, T. M., et al. (2009). Cooperative trial CWS-91 for localized soft tissue sarcoma in children, adolescents, and young adults. Journal of Clinical Oncology, 27(9), 1446–1455.PubMedCrossRefGoogle Scholar
  39. 39.
    Palmerini, E., et al. (2009). Synovial sarcoma: retrospective analysis of 250 patients treated at a single institution. Cancer, 115(13), 2988–2998.PubMedCrossRefGoogle Scholar
  40. 40.
    Andrassy, R. J., et al. (2001). Synovial sarcoma in children: surgical lessons from a single institution and review of the literature. Journal of the American College of Surgeons, 192(3), 305–313.PubMedCrossRefGoogle Scholar
  41. 41.
    Brecht, I. B., et al. (2006). Grossly-resected synovial sarcoma treated by the German and Italian Pediatric Soft Tissue Sarcoma Cooperative Groups: discussion on the role of adjuvant therapies. Pediatric Blood & Cancer, 46(1), 11–17.CrossRefGoogle Scholar
  42. 42.
    Chen, L., et al. (2012). Cancer/testis antigen SSX2 enhances invasiveness in MCF-7 cells by repressing ERalpha signaling. International Journal of Oncology, 40(6), 1986–1994.PubMedGoogle Scholar
  43. 43.
    Guillou, L., et al. (2004). Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. Journal of Clinical Oncology, 22(20), 4040–4050.PubMedCrossRefGoogle Scholar
  44. 44.
    Ladenstein, R., et al. (1993). Synovial sarcoma of childhood and adolescence. Report of the German CWS-81 study. Cancer, 71(11), 3647–3655.PubMedCrossRefGoogle Scholar
  45. 45.
    Okcu, M. F., et al. (2003). Synovial sarcoma of childhood and adolescence: a multicenter, multivariate analysis of outcome. Journal of Clinical Oncology, 21(8), 1602–1611.PubMedCrossRefGoogle Scholar
  46. 46.
    Pappo, A. S., et al. (1994). Synovial sarcoma in children and adolescents: the St Jude Children’s Research Hospital experience. Journal of Clinical Oncology, 12(11), 2360–2366.PubMedGoogle Scholar
  47. 47.
    Guadagnolo, B. A., et al. (2007). Long-term outcomes for synovial sarcoma treated with conservation surgery and radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 69(4), 1173–1180.PubMedCrossRefGoogle Scholar
  48. 48.
    Krieg, A. H., et al. (2011). Synovial sarcomas usually metastasize after >5 years: a multicenter retrospective analysis with minimum follow-up of 10 years for survivors. Annals of Oncology, 22(2), 458–467.PubMedCrossRefGoogle Scholar
  49. 49.
    Bergh, P., et al. (1999). Synovial sarcoma: identification of low and high risk groups. Cancer, 85(12), 2596–2607.PubMedCrossRefGoogle Scholar
  50. 50.
    Ferrari, A., et al. (2012). Salvage rates and prognostic factors after relapse in children and adolescents with initially localised synovial sarcoma. European Journal of Cancer, 48(18), 3448–3455.PubMedCrossRefGoogle Scholar
  51. 51.
    Amary, M. F., Diss, T. C., & Flanagan, A. M. (2007). Molecular characterization of a novel variant of a SYT-SSX1 fusion transcript in synovial sarcoma. Histopathology, 51(4), 559–561.PubMedCrossRefGoogle Scholar
  52. 52.
    Jagdis, A., et al. (2009). Prospective evaluation of TLE1 as a diagnostic immunohistochemical marker in synovial sarcoma. American Journal of Surgical Pathology, 33(12), 1743–1751.PubMedCrossRefGoogle Scholar
  53. 53.
    Ladanyi, M., et al. (2002). Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Research, 62(1), 135–140.PubMedGoogle Scholar
  54. 54.
    Przybyl, J., et al. (2012). Recurrent and novel SS18-SSX fusion transcripts in synovial sarcoma: description of three new cases. Tumour Biology, 33(6), 2245–2253.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Smith, H. A., & McNeel, D. G. (2010). The SSX family of cancer-testis antigens as target proteins for tumor therapy. Clinical and Developmental Immunology, 2010, 150591.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Brodin, B., et al. (2001). Cloning and characterization of spliced fusion transcript variants of synovial sarcoma: SYT/SSX4, SYT/SSX4v, and SYT/SSX2v. Possible regulatory role of the fusion gene product in wild type SYT expression. Gene, 268(1–2), 173–182.PubMedCrossRefGoogle Scholar
  57. 57.
    Skytting, B., et al. (1999). A novel fusion gene, SYT-SSX4, in synovial sarcoma. Journal of the National Cancer Institute, 91(11), 974–975.PubMedCrossRefGoogle Scholar
  58. 58.
    Kadoch, C., & Crabtree, G. R. (2013). Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell, 153(1), 71–85.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Wei, Y., et al. (2003). Characteristic sequence motifs located at the genomic breakpoints of the translocation t(X;18) in synovial sarcomas. Oncogene, 22(14), 2215–2222.PubMedCrossRefGoogle Scholar
  60. 60.
    Kanoe, H., et al. (1999). Characteristics of genomic breakpoints in TLS-CHOP translocations in liposarcomas suggest the involvement of Translin and topoisomerase II in the process of translocation. Oncogene, 18(3), 721–729.PubMedCrossRefGoogle Scholar
  61. 61.
    Zucman-Rossi, J., et al. (1998). Chromosome translocation based on illegitimate recombination in human tumors. Proceedings of the National Academy of Sciences of the United States of America, 95(20), 11786–11791.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Sandberg, A. A., & Bridge, J. A. (2002). Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Synovial sarcoma. Cancer Genetics and Cytogenetics, 133(1), 1–23.PubMedCrossRefGoogle Scholar
  63. 63.
    Nagai, M., et al. (2001). Analysis of transforming activity of human synovial sarcoma-associated chimeric protein SYT-SSX1 bound to chromatin remodeling factor hBRM/hSNF2 alpha. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 3843–3848.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Limon, J., Dal Cin, P., & Sandberg, A. A. (1986). Translocations involving the X chromosome in solid tumors: presentation of two sarcomas with t(X;18)(q13;p11). Cancer Genetics and Cytogenetics, 23(1), 87–91.PubMedCrossRefGoogle Scholar
  65. 65.
    Turc-Carel, C., et al. (1986). Translocation X;18 in synovial sarcoma. Cancer Genetics and Cytogenetics, 23(1), 93.PubMedCrossRefGoogle Scholar
  66. 66.
    Sun, B., et al. (2006). Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. European Journal of Cancer Prevention, 15(3), 258–265.PubMedCrossRefGoogle Scholar
  67. 67.
    Bozzi, F., et al. (2008). Molecular characterization of synovial sarcoma in children and adolescents: evidence of akt activation. Translational Oncology, 1(2), 95–101.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Horvai, A. E., Kramer, M. J., & O’Donnell, R. (2006). Beta-catenin nuclear expression correlates with cyclin D1 expression in primary and metastatic synovial sarcoma: a tissue microarray study. Archives of Pathology and Laboratory Medicine, 130(6), 792–798.PubMedGoogle Scholar
  69. 69.
    Pretto, D., et al. (2006). The synovial sarcoma translocation protein SYT-SSX2 recruits beta-catenin to the nucleus and associates with it in an active complex. Oncogene, 25(26), 3661–3669.PubMedCrossRefGoogle Scholar
  70. 70.
    Ishibe, T., et al. (2005). Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: potential application of signal inhibitors to molecular target therapy. Clinical Cancer Research, 11(7), 2702–2712.PubMedCrossRefGoogle Scholar
  71. 71.
    Barco, R., et al. (2007). The synovial sarcoma SYT-SSX2 oncogene remodels the cytoskeleton through activation of the ephrin pathway. Molecular Biology of the Cell, 18(10), 4003–4012.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Jones, K. B., et al. (2013). SS18-SSX2 and the mitochondrial apoptosis pathway in mouse and human synovial sarcomas. Oncogene, 32(18), 2365–2371.Google Scholar
  73. 73.
    Mancuso, T., et al. (2000). Analysis of SYT-SSX fusion transcripts and bcl-2 expression and phosphorylation status in synovial sarcoma. Laboratory Investigation, 80(6), 805–813.PubMedCrossRefGoogle Scholar
  74. 74.
    de Bruijn, D. R., et al. (1996). Isolation and characterization of the mouse homolog of SYT, a gene implicated in the development of human synovial sarcomas. Oncogene, 13(3), 643–648.PubMedGoogle Scholar
  75. 75.
    Clark, J., et al. (1994). Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nature Genetics, 7(4), 502–508.PubMedCrossRefGoogle Scholar
  76. 76.
    Thaete, C., et al. (1999). Functional domains of the SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Human Molecular Genetics, 8(4), 585–591.PubMedCrossRefGoogle Scholar
  77. 77.
    Brett, D., et al. (1997). The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localised in nuclear bodies. Human Molecular Genetics, 6(9), 1559–1564.PubMedCrossRefGoogle Scholar
  78. 78.
    dos Santos, N. R., et al. (1997). Nuclear localization of SYT, SSX and the synovial sarcoma-associated SYT-SSX fusion proteins. Human Molecular Genetics, 6(9), 1549–1558.PubMedCrossRefGoogle Scholar
  79. 79.
    Toretsky, J. A., & Wright, P. E. (2014). Assemblages: functional units formed by cellular phase separation. Journal of Cell Biology, 206(5), 579–588.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    de Bruijn, D. R., et al. (2001). The synovial sarcoma associated protein SYT interacts with the acute leukemia associated protein AF10. Oncogene, 20(25), 3281–3289.PubMedCrossRefGoogle Scholar
  81. 81.
    Eid, J. E., et al. (2000). p300 interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion. Cell, 102(6), 839–848.PubMedCrossRefGoogle Scholar
  82. 82.
    Ito, T., et al. (2004). SYT, a partner of SYT-SSX oncoprotein in synovial sarcomas, interacts with mSin3A, a component of histone deacetylase complex. Laboratory Investigation, 84(11), 1484–1490.PubMedCrossRefGoogle Scholar
  83. 83.
    Middeljans, E., et al. (2012). SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes. PLoS One, 7(3), e33834.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Wang, X., Haswell, J. R., & Roberts, C. W. (2014). Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer—mechanisms and potential therapeutic insights. Clinical Cancer Research, 20(1), 21–27.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Wang, F., Marshall, C. B., & Ikura, M. (2013). Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cellular and Molecular Life Sciences, 70(21), 3989–4008.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang, W., et al. (1996). Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO Journal, 15(19), 5370–5382.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Wang, W., et al. (1996). Diversity and specialization of mammalian SWI/SNF complexes. Genes and Development, 10(17), 2117–2130.PubMedCrossRefGoogle Scholar
  88. 88.
    Perani, M., et al. (2003). Conserved SNH domain of the proto-oncoprotein SYT interacts with components of the human chromatin remodelling complexes, while the QPGY repeat domain forms homo-oligomers. Oncogene, 22(50), 8156–8167.PubMedCrossRefGoogle Scholar
  89. 89.
    Debernardi, S., et al. (2002). The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood, 99(1), 275–281.PubMedCrossRefGoogle Scholar
  90. 90.
    Okada, Y., et al. (2005). hDOT1L links histone methylation to leukemogenesis. Cell, 121(2), 167–178.PubMedCrossRefGoogle Scholar
  91. 91.
    Bannister, A. J., & Kouzarides, T. (1996). The CBP co-activator is a histone acetyltransferase. Nature, 384(6610), 641–643.PubMedCrossRefGoogle Scholar
  92. 92.
    Ogryzko, V. V., et al. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87(5), 953–959.PubMedCrossRefGoogle Scholar
  93. 93.
    Shiama, N. (1997). The p300/CBP family: integrating signals with transcription factors and chromatin. Trends in Cell Biology, 7(6), 230–236.PubMedCrossRefGoogle Scholar
  94. 94.
    Huang, Z. Q., et al. (2003). A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO Journal, 22(9), 2146–2155.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Leo, C., & Chen, J. D. (2000). The SRC family of nuclear receptor coactivators. Gene, 245(1), 1–11.PubMedCrossRefGoogle Scholar
  96. 96.
    Xu, J., & Li, Q. (2003). Review of the in vivo functions of the p160 steroid receptor coactivator family. Molecular Endocrinology, 17(9), 1681–1692.PubMedCrossRefGoogle Scholar
  97. 97.
    McKenna, N. J., Lanz, R. B., & O’Malley, B. W. (1999). Nuclear receptor coregulators: cellular and molecular biology. Endocrine Reviews, 20(3), 321–344.PubMedGoogle Scholar
  98. 98.
    Nan, X., et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683), 386–389.PubMedCrossRefGoogle Scholar
  99. 99.
    Nakamura, T., et al. (2002). ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Molecular Cell, 10(5), 1119–1128.PubMedCrossRefGoogle Scholar
  100. 100.
    Silverstein, R. A., & Ekwall, K. (2005). Sin3: a flexible regulator of global gene expression and genome stability. Current Genetics, 47(1), 1–17.PubMedCrossRefGoogle Scholar
  101. 101.
    Kato, H., et al. (2002). SYT associates with human SNF/SWI complexes and the C-terminal region of its fusion partner SSX1 targets histones. Journal of Biological Chemistry, 277(7), 5498–5505.PubMedCrossRefGoogle Scholar
  102. 102.
    Kato, M., et al. (2012). Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell, 149(4), 753–767.PubMedCrossRefGoogle Scholar
  103. 103.
    Perani, M., et al. (2005). The proto-oncoprotein SYT interacts with SYT-interacting protein/co-activator activator (SIP/CoAA), a human nuclear receptor co-activator with similarity to EWS and TLS/FUS family of proteins. Journal of Biological Chemistry, 280(52), 42863–42876.PubMedCrossRefGoogle Scholar
  104. 104.
    Iwasaki, T., Chin, W. W., & Ko, L. (2001). Identification and characterization of RRM-containing coactivator activator (CoAA) as TRBP-interacting protein, and its splice variant as a coactivator modulator (CoAM). Journal of Biological Chemistry, 276(36), 33375–33383.PubMedCrossRefGoogle Scholar
  105. 105.
    Auboeuf, D., et al. (2004). CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Molecular and Cellular Biology, 24(1), 442–453.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Auboeuf, D., et al. (2002). Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science, 298(5592), 416–419.PubMedCrossRefGoogle Scholar
  107. 107.
    Tamborini, E., et al. (2001). Identification of a novel spliced variant of the SYT gene expressed in normal tissues and in synovial sarcoma. British Journal of Cancer, 84(8), 1087–1094.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    de Leeuw, B., Balemans, M., & Geurts van Kessel, A. (1996). A novel Kruppel-associated box containing the SSX gene (SSX3) on the human X chromosome is not implicated in t(X;18)-positive synovial sarcomas. Cytogenetics and Cell Genetics, 73(3), 179–183.PubMedCrossRefGoogle Scholar
  109. 109.
    dos Santos, N. R., et al. (2000). Heterogeneous expression of the SSX cancer/testis antigens in human melanoma lesions and cell lines. Cancer Research, 60(6), 1654–1662.PubMedGoogle Scholar
  110. 110.
    Gure, A. O., et al. (1997). SSX: a multigene family with several members transcribed in normal testis and human cancer. International Journal of Cancer, 72(6), 965–971.CrossRefGoogle Scholar
  111. 111.
    de Bruijn, D. R., et al. (2008). The C terminus of the synovial sarcoma-associated SSX proteins interacts with the LIM homeobox protein LHX4. Oncogene, 27(5), 653–662.PubMedCrossRefGoogle Scholar
  112. 112.
    Crew, A. J., et al. (1995). Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO Journal, 14(10), 2333–2340.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Gure, A. O., et al. (2002). The SSX gene family: characterization of 9 complete genes. International Journal of Cancer, 101(5), 448–453.CrossRefGoogle Scholar
  114. 114.
    dos Santos, N. R., de Bruijn, D. R., & van Kessel, A. G. (2001). Molecular mechanisms underlying human synovial sarcoma development. Genes, Chromosomes & Cancer, 30(1), 1–14.CrossRefGoogle Scholar
  115. 115.
    Naka, N., et al. (2002). Expression of SSX genes in human osteosarcomas. International Journal of Cancer, 98(4), 640–642.CrossRefGoogle Scholar
  116. 116.
    Mischo, A., et al. (2006). Prospective study on the expression of cancer testis genes and antibody responses in 100 consecutive patients with primary breast cancer. International Journal of Cancer, 118(3), 696–703.CrossRefGoogle Scholar
  117. 117.
    Taylor, B. J., et al. (2005). SSX cancer testis antigens are expressed in most multiple myeloma patients: co-expression of SSX1, 2, 4, and 5 correlates with adverse prognosis and high frequencies of SSX-positive PCs. Journal of Immunotherapy, 28(6), 564–575.PubMedCrossRefGoogle Scholar
  118. 118.
    Cronwright, G., et al. (2005). Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Research, 65(6), 2207–2215.PubMedCrossRefGoogle Scholar
  119. 119.
    dos Santos, N. R., et al. (2000). Delineation of the protein domains responsible for SYT, SSX, and SYT-SSX nuclear localization. Experimental Cell Research, 256(1), 192–202.PubMedCrossRefGoogle Scholar
  120. 120.
    Soulez, M., et al. (1999). SSX and the synovial-sarcoma-specific chimaeric protein SYT-SSX co-localize with the human Polycomb group complex. Oncogene, 18(17), 2739–2746.PubMedCrossRefGoogle Scholar
  121. 121.
    Huntley, S., et al. (2006). A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Research, 16(5), 669–677.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Vogel, M. J., et al. (2006). Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Research, 16(12), 1493–1504.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    de Bruijn, D. R., et al. (2002). The cancer-related protein SSX2 interacts with the human homologue of a Ras-like GTPase interactor, RAB3IP, and a novel nuclear protein, SSX2IP. Genes, Chromosomes & Cancer, 34(3), 285–298.CrossRefGoogle Scholar
  124. 124.
    Lim, F. L., et al. (1998). A KRAB-related domain and a novel transcription repression domain in proteins encoded by SSX genes that are disrupted in human sarcomas. Oncogene, 17(15), 2013–2018.PubMedCrossRefGoogle Scholar
  125. 125.
    Schuettengruber, B., et al. (2007). Genome regulation by polycomb and trithorax proteins. Cell, 128(4), 735–745.PubMedCrossRefGoogle Scholar
  126. 126.
    Schwartz, Y. B., & Pirrotta, V. (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nature Reviews Genetics, 8(1), 9–22.PubMedCrossRefGoogle Scholar
  127. 127.
    Di Croce, L., & Helin, K. (2013). Transcriptional regulation by Polycomb group proteins. Nature Structural and Molecular Biology, 20(10), 1147–1155.PubMedCrossRefGoogle Scholar
  128. 128.
    Wang, J., et al. (2013). Subnuclear distribution of SSX regulates its function. Molecular and Cellular Biochemistry, 381(1–2), 17–29.PubMedCrossRefGoogle Scholar
  129. 129.
    Dong, W. F., et al. (1997). Cloning, expression, and chromosomal localization to 11p12-13 of a human LIM/HOMEOBOX gene, hLim-1. DNA and Cell Biology, 16(6), 671–678.PubMedGoogle Scholar
  130. 130.
    Kawamata, N., et al. (2002). A novel chromosomal translocation t(1;14)(q25;q32) in pre-B acute lymphoblastic leukemia involves the LIM homeodomain protein gene, Lhx4. Oncogene, 21(32), 4983–4991.PubMedCrossRefGoogle Scholar
  131. 131.
    Wu, H. K., & Minden, M. D. (1997). Transcriptional activation of human LIM-HOX gene, hLH-2, in chronic myelogenous leukemia is due to a cis-acting effect of Bcr-Abl. Biochemical and Biophysical Research Communications, 233(3), 806–812.PubMedCrossRefGoogle Scholar
  132. 132.
    Yamaguchi, M., Yamamoto, K., & Miura, O. (2003). Aberrant expression of the LHX4 LIM-homeobox gene caused by t(1;14)(q25;q32) in chronic myelogenous leukemia in biphenotypic blast crisis. Genes, Chromosomes & Cancer, 38(3), 269–273.CrossRefGoogle Scholar
  133. 133.
    Cironi, L., et al. (2009). Epigenetic features of human mesenchymal stem cells determine their permissiveness for induction of relevant transcriptional changes by SYT-SSX1. PLoS One, 4(11), e7904.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Kia, S. K., et al. (2008). SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Molecular and Cellular Biology, 28(10), 3457–3464.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Wilson, W. H., et al. (2010). Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. The Lancet Oncology, 11(12), 1149–1159.PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Francis, N. J., Kingston, R. E., & Woodcock, C. L. (2004). Chromatin compaction by a polycomb group protein complex. Science, 306(5701), 1574–1577.PubMedCrossRefGoogle Scholar
  137. 137.
    Bantignies, F., & Cavalli, G. (2011). Polycomb group proteins: repression in 3D. Trends in Genetics, 27(11), 454–464.PubMedCrossRefGoogle Scholar
  138. 138.
    Mousavi, K., et al. (2012). Polycomb protein Ezh1 promotes RNA polymerase II elongation. Molecular Cell, 45(2), 255–262.PubMedCrossRefGoogle Scholar
  139. 139.
    Wilson, B. G., et al. (2010). Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell, 18(4), 316–328.PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Chen, Y., et al. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. Journal of Biological Chemistry, 283(26), 17969–17978.PubMedCrossRefGoogle Scholar
  141. 141.
    Tan, J. Z., et al. (2014). EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacologica Sinica, 35(2), 161–174.PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Margueron, R., & Reinberg, D. (2011). The Polycomb complex PRC2 and its mark in life. Nature, 469(7330), 343–349.PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Changchien, Y. C., et al. (2012). Poorly differentiated synovial sarcoma is associated with high expression of enhancer of zeste homologue 2 (EZH2). Journal of Translational Medicine, 10, 216.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Lubieniecka, J. M., et al. (2008). Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Research, 68(11), 4303–4310.PubMedCrossRefGoogle Scholar
  145. 145.
    Garcia, C. B., Shaffer, C. M., & Eid, J. E. (2012). Genome-wide recruitment to Polycomb-modified chromatin and activity regulation of the synovial sarcoma oncogene SYT-SSX2. BMC Genomics, 13(1), 189.PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Howard, P. W., & Maurer, R. A. (2000). Identification of a conserved protein that interacts with specific LIM homeodomain transcription factors. Journal of Biological Chemistry, 275(18), 13336–13342.PubMedCrossRefGoogle Scholar
  147. 147.
    Ali, S. A., et al. (2010). Transcriptional corepressor TLE1 functions with Runx2 in epigenetic repression of ribosomal RNA genes. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4165–4169.PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    Kawasaki, H., et al. (2000). ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature, 405(6783), 195–200.PubMedCrossRefGoogle Scholar
  149. 149.
    Bhoumik, A., & Ronai, Z. (2008). ATF2: a transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle, 7(15), 2341–2345.PubMedCrossRefGoogle Scholar
  150. 150.
    Lau, E., & Ronai, Z. A. (2012). ATF2 - at the crossroad of nuclear and cytosolic functions. Journal of Cell Science, 125(Pt 12), 2815–2824.PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Erkizan, H. V., et al. (2009). A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nature Medicine, 15(7), 750–756.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Stefan K. Zöllner
    • 1
    • 3
  • Claudia Rössig
    • 3
  • Jeffrey A. Toretsky
    • 1
    • 2
  1. 1.Department of OncologyGeorgetown UniversityWashingtonUSA
  2. 2.Department of PediatricsGeorgetown UniversityWashingtonUSA
  3. 3.Department of Pediatric Hematology and OncologyUniversity Childrens Hospital MünsterMünsterGermany

Personalised recommendations