Cancer and Metastasis Reviews

, Volume 34, Issue 2, pp 209–216 | Cite as

Application of clinical bioinformatics in lung cancer-specific biomarkers



The fact that lung cancer is a heterogeneous disease suggests that there is a high likelihood that effective lung cancer biomarkers will need to address patient-specific molecular defects, clinical characters, and aspects of the tumor microenvironment. In this transition, clinical bioinformatics tools and resources are the most appropriate means to improve the analysis, as major biological databases are now containing clinical data alongside genomics, proteomics, and other biological data. Clinical bioinformatics comprises a series of concepts and approaches that have been used successfully both to delineate novel biological mechanisms and to drive translational advances in individualized healthcare. In this article, we outline several of emerging clinical bioinformatics-based strategies as they apply specifically to lung cancer.


Clinical bioinformatics Lung cancer Biomarkers Network 



This work was supported by the National Natural Science Foundation of China (81100534,91230204, 81270099, 81320108001, 81270131, 81300010), the Shanghai Rising Star Program (13QA1400800). The work was also supported by Zhongshan Distinguished Professor Grant (XDW), The Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Zhejiang Provincial Natural Science Foundation (Z2080988), Zhejiang Provincial Science Technology Department Foundation (2010C14011), and Ministry of Education, Academic Special Science and Research Foundation for PhD Education (20130071110043). The authors have no commercial or other associations that might pose a conflict of interest in connection with the submitted material.


  1. 1.
    Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90.Google Scholar
  2. 2.
    Chen, Z., Fillmore, C. M., Hammerman, P. S., Kim, C. F., & Wong, K. K. (2014). Non-small-cell lung cancers: a heterogeneous set of diseases. Nature Reviews Cancer, 14(8), 535–546.PubMedCrossRefGoogle Scholar
  3. 3.
    Nana-Sinkam, S. P., & Powell, C. A. (2013). Molecular biology of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 143(5 Suppl), e30S–e39S.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Cagle, P. T., Allen, T. C., & Olsen, R. J. (2013). Lung cancer biomarkers: present status and future developments. Archives of Pathology and Laboratory Medicine, 137(9), 1191–1198.PubMedCrossRefGoogle Scholar
  5. 5.
    Kelloff, G. J., & Sigman, C. C. (2012). Cancer biomarkers: selecting the right drug for the right patient. Nature Reviews Drug Discovery, 11(3), 201–214.PubMedCrossRefGoogle Scholar
  6. 6.
    Zer, A., & Leighl, N. (2014). Promising targets and current clinical trials in metastatic non-squamous NSCLC. Frontiers Oncology, 4, 329.CrossRefGoogle Scholar
  7. 7.
    Kim, E. S., Hirsh, V., Mok, T., Socinski, M. A., Gervais, R., Wu, Y. L., et al. (2008). Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet, 372(9652), 1809–1818.PubMedCrossRefGoogle Scholar
  8. 8.
    Korpanty, G. J., Graham, D. M., Vincent, M. D., & Leighl, N. B. (2014). Biomarkers that currently affect clinical practice in lung cancer: EGFR, ALK, MET, ROS-1, and KRAS. Frontiers Oncology, 4, 204.CrossRefGoogle Scholar
  9. 9.
    Mok, T. S. (2011). Personalized medicine in lung cancer: what we need to know. Nature Reviews Clinical Oncology, 8(11), 661–668.PubMedCrossRefGoogle Scholar
  10. 10.
    Shigematsu, H., Lin, L., Takahashi, T., Nomura, M., Suzuki, M., Wistuba, I. I., et al. (2005). Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. Journal of the National Cancer Institute, 97(5), 339–346.PubMedCrossRefGoogle Scholar
  11. 11.
    Giaccone, G., & Rodriguez, J. A. (2005). EGFR inhibitors: what have we learned from the treatment of lung cancer? Nature Clinical Practice Oncology, 2(11), 554–561.PubMedCrossRefGoogle Scholar
  12. 12.
    da Cunha Santos, G., Shepherd, F. A., & Tsao, M. S. (2011). EGFR mutations and lung cancer. Annual Review of Pathology, 6, 49–69.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, X., & Liotta, L. (2011). Clinical bioinformatics: a new emerging science. Journal of Clinical Bioinformatics, 1(1), 1. doi: 10.1186/2043-9113-1-1.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R., Ozenberger, B. A., Ellrott, K., et al. (2013). The Cancer Genome Atlas pan-cancer analysis project. Nature Genetics, 45(10), 1113–1120.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Akbani, R., Ng, P. K., Werner, H. M., Shahmoradgoli, M., Zhang, F., Ju, Z., et al. (2014). A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nature Communications, 5, 3887. doi: 10.1038/ncomms4887.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Schwarz, E., Leweke, F. M., Bahn, S., & Liò, P. (2009). Clinical bioinformatics for complex disorders: a schizophrenia case study. BMC Bioinformatics, 10(Suppl 12), S6. doi: 10.1186/1471-2105-10-S12-S6.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Nishino, M., Jackman, D. M., Hatabu, H., Yeap, B. Y., Cioffredi, L. A., Yap, J. T., et al. (2010). New Response Evaluation Criteria in Solid Tumors (RECIST) guidelines for advanced non-small cell lung cancer: comparison with original RECIST and impact on assessment of tumor response to targeted therapy. AJR. American Journal of Roentgenology, 195(3), W221–w228.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Lee, H. Y., Lee, K. S., Ahn, M. J., Hwang, H. S., Lee, J. W., Park, K., et al. (2011). New CT response criteria in non-small cell lung cancer: proposal and application in EGFR tyrosine kinase inhibitor therapy. Lung Cancer, 73(1), 63–69.PubMedCrossRefGoogle Scholar
  19. 19.
    Imai, K., Minamiya, Y., Saito, H., Motoyama, S., Sato, Y., Ito, A., et al. (2014). Diagnostic imaging in the preoperative management of lung cancer. Surgery Today, 44(7), 1197–1206.PubMedCrossRefGoogle Scholar
  20. 20.
    Peng, H. (2008). Bioimage informatics: a new area of engineering biology. Bioinformatics, 24(17), 1827–1836.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Bauer, S., Wiest, R., Nolte, L. P., & Reyes, M. (2013). A survey of MRI-based medical image analysis for brain tumor studies. Physics in Medicine and Biology, 58(13), R97–R129.PubMedCrossRefGoogle Scholar
  22. 22.
    Eklund, A., Dufort, P., Forsberg, D., & LaConte, S. M. (2013). Medical image processing on the GPU—past, present and future. Medical Image Analysis, 17(8), 1073–1094.PubMedCrossRefGoogle Scholar
  23. 23.
    Caon, M., Sedlář, J., Bajger, M., & Lee, G. (2014). Computer-assisted segmentation of CT images by statistical region merging for the production of voxel models of anatomy for CT dosimetry. Australasian Physical and Engineering Sciences in Medicine, 37(2), 393–403.PubMedCrossRefGoogle Scholar
  24. 24.
    Kipli, K., Kouzani, A. Z., & Williams, L. J. (2013). Towards automated detection of depression from brain structural magnetic resonance images. Neuroradiology, 55(5), 567–584.PubMedCrossRefGoogle Scholar
  25. 25.
    Shi, P., Huang, Y., & Hong, J. (2014). Automated three-dimensional reconstruction and morphological analysis of dendritic spines based on semi-supervised learning. Biomedical Optics Express, 5(5), 1541–1553.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Meyer, C., Ma, B., Kunju, L. P., Davenport, M., & Piert, M. (2013). Challenges in accurate registration of 3-D medical imaging and histopathology in primary prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 40(Suppl 1), S72–S78. doi: 10.1007/s00259-013-2382-2.PubMedCrossRefGoogle Scholar
  27. 27.
    Yeh, F. C., Ye, Q., Hitchens, T. K., Wu, Y. L., Parwani, A. V., & Ho, C. (2014). Mapping stain distribution in pathology slides using whole slide imaging. Journal of Pathology Informatics, 5, 1. doi: 10.4103/2153-3539.126140.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Kovarik, M., Hronek, M., & Zadak, Z. (2014). Clinically relevant determinants of body composition, function and nutritional status as mortality predictors in lung cancer patients. Lung Cancer, 84(1), 1–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Sánchez-Lara, K., Turcott, J. G., Juárez, E., Guevara, P., Núñez-Valencia, C., Oñate-Ocaña, L. F., et al. (2012). Association of nutrition parameters including bioelectrical impedance and systemic inflammatory response with quality of life and prognosis in patients with advanced non-small-cell lung cancer: a prospective study. Nutrition and Cancer, 64(4), 526–534.PubMedCrossRefGoogle Scholar
  30. 30.
    Prado, C. M., Lieffers, J. R., McCargar, L. J., Reiman, T., Sawyer, M. B., Martin, L., et al. (2008). Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. The Lancet Oncology, 9(7), 629–635.PubMedCrossRefGoogle Scholar
  31. 31.
    Jafri, S. H., Shi, R., & Mills, G. (2013). Advance lung cancer inflammation index (ALI) at diagnosis is a prognostic marker in patients with metastatic non-small cell lung cancer (NSCLC): a retrospective review. BMC Cancer, 13, 158. doi: 10.1186/1471-2407-13-158.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Piskorz, L., Lesiak, T., Brocki, M., Klimek-Piskorz, E., Smigielski, J., Misiak, P., et al. (2011). Biochemical and functional indices of malnutrition in patients with operable, non-microcelullar lung cancer. Nutrición Hospitalaria, 26(5), 1025–1032. doi: 10.1590/S0212-16112011000500016.PubMedGoogle Scholar
  33. 33.
    Barbosa-Silva, M. C., & Barros, A. J. (2005). Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Current Opinion in Clinical Nutrition and Metabolic Care, 8(3), 311–317.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen, H., Song, Z., Qian, M., Bai, C., & Wang, X. (2012). Selection of disease-specific biomarkers by integrating inflammatory mediators with clinical informatics in AECOPD patients: a preliminary study. Journal of Cellular and Molecular Medicine, 16(6), 1286–1297.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Chen, H., Wang, Y., Bai, C., & Wang, X. (2012). Alterations of plasma inflammatory biomarkers in the healthy and chronic obstructive pulmonary disease patients with or without acute exacerbation. Journal of Proteomics, 75(10), 2835–2843.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen, H., & Wang, X. (2011). Significance of bioinformatics in research of chronic obstructive pulmonary disease. Journal of Clinical Bioinformatics, 1, 35. doi: 10.1186/2043-9113-1-35.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Gottlieb, L. M., Tirozzi, K. J., Manchanda, R., Burns, A. R., & Sandel, M. T. (2015). Moving electronic medical records upstream: incorporating social determinants of health. American Journal of Preventive Medicine, 48(2), 215–218.PubMedCrossRefGoogle Scholar
  38. 38.
    Amberger, J., Bocchini, C. A., Scott, A. F., & Hamosh, A. (2009). McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Research, 37(Database issue), D793–D796.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Junttila, M. R., & de Sauvage, F. J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 501(7467), 346–354.PubMedCrossRefGoogle Scholar
  40. 40.
    Goldstein, D. B. (2009). Common genetic variation and human traits. The New England Journal of Medicine, 360(17), 1696–1698.PubMedCrossRefGoogle Scholar
  41. 41.
    Schadt, E. E. (2009). Molecular networks as sensors and drivers of common human diseases. Nature, 461(7261), 218–223.PubMedCrossRefGoogle Scholar
  42. 42.
    Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.PubMedCrossRefGoogle Scholar
  43. 43.
    Xu, J., & Li, Y. (2006). Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics, 22(22), 2800–2805.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang, J., Peng, X., Peng, W., & Wu, F. X. (2014). Dynamic protein interaction network construction and applications. Proteomics, 14(4–5), 338–352.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu, X., Chen, L., & Wang, X. (2014). Network biomarkers, interaction networks and dynamical network biomarkers in respiratory diseases. Clinical and Translational Medicine, 3, 16. doi: 10.1186/2001-1326-3-16.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Zhongshan Hospital of Fudan University, Biomedical Research Center, Shanghai Institute of Clinical BioinformaticsFucan University Center for Clinical BioinformaticsShanghaiChina

Personalised recommendations