Cancer and Metastasis Reviews

, Volume 34, Issue 2, pp 265–275 | Cite as

New strategies to develop new medications for lung cancer and metastasis

  • Yujie Zhao
  • Alex A. AdjeiEmail author


With the advances in cancer and molecular biology and the rapid progress in genomics, significant progress has been made in the treatment of lung cancer in the past decade. Targeted therapies have been developed for nonsmall cell lung cancer (NSCLC), and significant improvement in survival has been achieved. There is still, however, no cure for advanced NSCLC. Resistance to initial therapy is universal, and the lethal outcome of metastatic disease still remains. Approaches to preventing metastases and overcoming resistance to therapy are necessary to ensure long-term survival of patients with advanced lung cancer.


NSCLC Lung cancer Tyrosine kinase inhibitors ALK EGFR Immunotherapy PD-1 PD-L1 CTLA-1 



Supported by a Conquer Cancer Foundation Drug Development Research Professorship (AAA).


  1. 1.
  2. 2.
    Sharma, S. V., Bell, D. W., Settleman, J., & Haber, D. A. (2007). Epidermal growth factor receptor mutations in lung cancer. Nature Reviews Cancer, 7(3), 169–181. doi: 10.1038/nrc2088.PubMedCrossRefGoogle Scholar
  3. 3.
    Marchetti, A., Martella, C., Felicioni, L., Barassi, F., Salvatore, S., Chella, A., et al. (2005). EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. Journal of Clinical Oncology, 23(4), 857–865. doi: 10.1200/JCO.2005.08.043.PubMedCrossRefGoogle Scholar
  4. 4.
    Shigematsu, H., Lin, L., Takahashi, T., Nomura, M., Suzuki, M., Wistuba, I. I., et al. (2005). Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. Journal of the National Cancer Institute, 97(5), 339–346. doi: 10.1093/jnci/dji055.PubMedCrossRefGoogle Scholar
  5. 5.
    Kosaka, T., Yatabe, Y., Endoh, H., Kuwano, H., Takahashi, T., & Mitsudomi, T. (2004). Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Research, 64(24), 8919–8923. doi: 10.1158/0008-5472.CAN-04-2818.PubMedCrossRefGoogle Scholar
  6. 6.
    Janne, P. A., Engelman, J. A., & Johnson, B. E. (2005). Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. Journal of Clinical Oncology, 23(14), 3227–3234. doi: 10.1200/JCO.2005.09.985.PubMedCrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Riely, G. J., Politi, K. A., Miller, V. A., & Pao, W. (2006). Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clinical Cancer Research, 12(24), 7232–7241. doi: 10.1158/1078-0432.CCR-06-0658.PubMedCrossRefGoogle Scholar
  10. 10.
    Linardou, H., Dahabreh, I. J., Bafaloukos, D., Kosmidis, P., & Murray, S. (2009). Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nature Reviews. Clinical Oncology, 6(6), 352–366. doi: 10.1038/nrclinonc.2009.62.PubMedCrossRefGoogle Scholar
  11. 11.
    Stella, G. M., Luisetti, M., Inghilleri, S., Cemmi, F., Scabini, R., Zorzetto, M., et al. (2012). Targeting EGFR in non-small-cell lung cancer: lessons, experiences, strategies. Respiratory Medicine, 106(2), 173–183. doi: 10.1016/j.rmed.2011.10.015.PubMedCrossRefGoogle Scholar
  12. 12.
    Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448(7153), 561–566. doi: 10.1038/nature05945.PubMedCrossRefGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
    Bergethon, K., Shaw, A. T., Ou, S. H., Katayama, R., Lovly, C. M., McDonald, N. T., et al. (2012). ROS1 rearrangements define a unique molecular class of lung cancers. Journal of Clinical Oncology, 30(8), 863–870. doi: 10.1200/JCO.2011.35.6345.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Takeuchi, K., Soda, M., Togashi, Y., Suzuki, R., Sakata, S., Hatano, S., et al. (2012). RET, ROS1 and ALK fusions in lung cancer. Nature Medicine, 18(3), 378–381. doi: 10.1038/nm.2658.PubMedCrossRefGoogle Scholar
  17. 17.
    Shaw, A. T., Camidge, D. R., Engelman, J. A., Solomon, B. J., Kwak, E. L., Clark, J. W., et al. (2012). Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. Journal of Clinical Oncology, 30(15_suppl), 7508.Google Scholar
  18. 18.
    Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., et al. (2006). Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. New England Journal of Medicine, 355(24), 2542–2550. doi: 10.1056/NEJMoa061884.PubMedCrossRefGoogle Scholar
  19. 19. - Anchor-NSCLC (2014). Accessed Jan 21 2015.
  20. 20.
  21. 21.
    Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304(5676), 1497–1500. doi: 10.1126/science.1099314.PubMedCrossRefGoogle Scholar
  22. 22.
    Eberhard, D. A., Johnson, B. E., Amler, L. C., Goddard, A. D., Heldens, S. L., Herbst, R. S., et al. (2005). Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. Journal of Clinical Oncology, 23(25), 5900–5909. doi: 10.1200/JCO.2005.02.857.PubMedCrossRefGoogle Scholar
  23. 23.
    Sakurada, A., Shepherd, F. A., & Tsao, M. S. (2006). Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: impact of primary or secondary mutations. Clinical Lung Cancer, 7(Suppl 4), S138–144.PubMedCrossRefGoogle Scholar
  24. 24.
    Rosell, R., Carcereny, E., Gervais, R., Vergnenegre, A., Massuti, B., Felip, E., et al. (2012). Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncology, 13(3), 239–246. doi: 10.1016/S1470-2045(11)70393-X.PubMedCrossRefGoogle Scholar
  25. 25.
    Fukuoka, M., Wu, Y. L., Thongprasert, S., Sunpaweravong, P., Leong, S. S., Sriuranpong, V., et al. (2011). Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). Journal of Clinical Oncology, 29(21), 2866–2874. doi: 10.1200/JCO.2010.33.4235.PubMedCrossRefGoogle Scholar
  26. 26.
    Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., et al. (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. New England Journal of Medicine, 361(10), 947–957. doi: 10.1056/NEJMoa0810699.PubMedCrossRefGoogle Scholar
  27. 27.
    Balak, M. N., Gong, Y., Riely, G. J., Somwar, R., Li, A. R., Zakowski, M. F., et al. (2006). Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clinical Cancer Research, 12(21), 6494–6501. doi: 10.1158/1078-0432.CCR-06-1570.PubMedCrossRefGoogle Scholar
  28. 28.
    Kobayashi, S., Boggon, T. J., Dayaram, T., Janne, P. A., Kocher, O., Meyerson, M., et al. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 352(8), 786–792. doi: 10.1056/NEJMoa044238.PubMedCrossRefGoogle Scholar
  29. 29.
    Kosaka, T., Yatabe, Y., Endoh, H., Yoshida, K., Hida, T., Tsuboi, M., et al. (2006). Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clinical Cancer Research, 12(19), 5764–5769. doi: 10.1158/1078-0432.CCR-06-0714.PubMedCrossRefGoogle Scholar
  30. 30.
    Godin-Heymann, N., Ulkus, L., Brannigan, B. W., McDermott, U., Lamb, J., Maheswaran, S., et al. (2008). The T790M "gatekeeper" mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Molecular Cancer Therapeutics, 7(4), 874–879. doi: 10.1158/1535-7163.MCT-07-2387.PubMedCrossRefGoogle Scholar
  31. 31.
    Ware, K. E., Hinz, T. K., Kleczko, E., Singleton, K. R., Marek, L. A., Helfrich, B. A., et al. (2013). A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis, 2, e39. doi: 10.1038/oncsis.2013.4.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Yun, C. H., Mengwasser, K. E., Toms, A. V., Woo, M. S., Greulich, H., Wong, K. K., et al. (2008). The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2070–2075. doi: 10.1073/pnas.0709662105.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kwak, E. L., Sordella, R., Bell, D. W., Godin-Heymann, N., Okimoto, R. A., Brannigan, B. W., et al. (2005). Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7665–7670. doi: 10.1073/pnas.0502860102.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Miller, V. A., Hirsh, V., Cadranel, J., Chen, Y. M., Park, K., Kim, S. W., et al. (2012). Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncology, 13(5), 528–538. doi: 10.1016/S1470-2045(12)70087-6.PubMedCrossRefGoogle Scholar
  35. 35.
    Reckamp, K. L., Giaccone, G., Camidge, D. R., Gadgeel, S. M., Khuri, F. R., Engelman, J. A., et al. (2014). A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan-HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non-small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer, 120(8), 1145–1154. doi: 10.1002/cncr.28561.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Tjin Tham Sjin, R., Lee, K., Walter, A. O., Dubrovskiy, A., Sheets, M., Martin, T. S., et al. (2014). In vitro and in vivo characterization of irreversible mutant-selective EGFR inhibitors that are wild-type sparing. Molecular Cancer Therapeutics, 13(6), 1468–1479. doi: 10.1158/1535-7163.MCT-13-0966.PubMedCrossRefGoogle Scholar
  37. 37.
    Walter, A. O., Sjin, R. T., Haringsma, H. J., Ohashi, K., Sun, J., Lee, K., et al. (2013). Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discovery, 3(12), 1404–1415. doi: 10.1158/2159-8290.CD-13-0314.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Sequist, L. V., Soria J. C., Wakelee H. A., Camidge D. R.,Varga A, Solomon B. J. et al. (2014). First-inhuman evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M). J Clin Oncol, 32(5 s), abstr 8010.Google Scholar
  39. 39.
  40. 40.
    Cross, D. A., Ashton, S. E., Ghiorghiu, S., Eberlein, C., Nebhan, C. A., Spitzler, P. J., et al. (2014). AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discovery, 4(9), 1046–1061. doi: 10.1158/2159-8290.CD-14-0337.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Yang J., Kim. D., Planchard D., Ohe Y., Ramalingam S. S., Ahn M. et al. (2014). Updated safety and efficacy from a phase i study of azd9291 in patients (pts) with EGFR-TKI-resistant non-small cell lung cancer (NSCLC). Annals of Oncology, 25(4 s); 449PDGoogle Scholar
  42. 42.
    Janne, P. A., Ramalingam S. S., Yang J., Ahn M.J., Kim D., Kim S. et al. (2014). Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients (pts) with EGFR inhibitor–resistant non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 32(5 s), suppl; abstr 8009.Google Scholar
  43. 43.
  44. 44. (2015). Accessed Jan 25, 2015.
  45. 45.
  46. 46.
  47. 47.
    Sakagami, H., Konagai, S., Yamamoto, H., Tanaka, H., Matsuya, T., Mori, M., et al. (2014). ASP8273, a novel mutant-selective irreversible EGFR inhibitor, inhibits growth of non-small cell lung cancer (NSCLC) cells with EGFR activating and T790M resistance mutations. Cancer Research, 74(19 s), 1728. doi: 10.1158/1538-7445.AM2014-1728.
  48. 48.
    Murakami, H., Nokihara, H., Shimizu, T., Seto, T., Keating, A., Krivoshik, A. et al. (2014). Antitumor activity ofASP8273, an irreversible mutant selective EGFR-TKI, in NSCLC patients with tumors harboring EGFR activating mutations and T790M resistance mutation. 26th, European Journal of Cancer, 50(s 6), 168. doi: 10.1016/S0959-8049(14)70730-0.
  49. 49.
  50. 50.
    Lee, K. O., Cha, M. Y., Kim, M., Song, J. Y., Lee, J. H., Kim, Y. H., et al. (2014). Discovery of HM61713 as anorally available and mutant EGFR selective inhibitor. Cancer Research, 74(19 s):Abstract nr LB-100. doi: 10.1158/1538-7445.AM2014-LB-100.
  51. 51.
    Kim, D. W., Lee, D. H., Kang, J. H., Park, K., Han, J. Y., Lee, J. S., Jang, I. J., et al. (2014). Clinical activity and safety of HM61713, an EGFR-mutant selective inhibitor, in advanced non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations who had received EGFR tyrosine kinase inhibitors (TKIs). Journal of Clinical Oncology, 32(5 s), 8011.Google Scholar
  52. 52.
    Morris, S. W., Kirstein, M. N., Valentine, M. B., Dittmer, K. G., Shapiro, D. N., Saltman, D. L., et al. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 263(5151), 1281–1284.PubMedCrossRefGoogle Scholar
  53. 53.
    Choi, Y. L., Takeuchi, K., Soda, M., Inamura, K., Togashi, Y., Hatano, S., et al. (2008). Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Research, 68(13), 4971–4976. doi: 10.1158/0008-5472.CAN-07-6158.PubMedCrossRefGoogle Scholar
  54. 54.
    Koivunen, J. P., Mermel, C., Zejnullahu, K., Murphy, C., Lifshits, E., Holmes, A. J., et al. (2008). EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clinical Cancer Research, 14(13), 4275–4283. doi: 10.1158/1078-0432.CCR-08-0168.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Soda, M., Takada, S., Takeuchi, K., Choi, Y. L., Enomoto, M., Ueno, T., et al. (2008). A mouse model for EML4-ALK-positive lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(50), 19893–19897. doi: 10.1073/pnas.0805381105.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Ardini, E., & Galvani, A. (2012). ALK Inhibitors, a Pharmaceutical Perspective. Front Oncology, 2, 17. doi: 10.3389/fonc.2012.00017.CrossRefGoogle Scholar
  57. 57.
    Kwak, E. L., Bang, Y. J., Camidge, D. R., Shaw, A. T., Solomon, B., Maki, R. G., et al. (2010). Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. New England Journal of Medicine, 363(18), 1693–1703. doi: 10.1056/NEJMoa1006448.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Shaw, A. T., Kim, D. W., Nakagawa, K., Seto, T., Crino, L., Ahn, M. J., et al. (2013). Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. New England Journal of Medicine, 368(25), 2385–2394. doi: 10.1056/NEJMoa1214886.PubMedCrossRefGoogle Scholar
  59. 59.
    Maillet, D., Martel-Lafay, I., Arpin, D., & Perol, M. (2013). Ineffectiveness of crizotinib on brain metastases in two cases of lung adenocarcinoma with EML4-ALK rearrangement. Journal of Thoracic Oncology, 8(4), e30–31. doi: 10.1097/JTO.0b013e318288dc2d.PubMedCrossRefGoogle Scholar
  60. 60.
    Gainor, J. F., Ou, S. H., Logan, J., Borges, L. F., & Shaw, A. T. (2013). The central nervous system as a sanctuary site in ALK-positive non-small-cell lung cancer. Journal of Thoracic Oncology, 8(12), 1570–1573. doi: 10.1097/JTO.0000000000000029.PubMedCrossRefGoogle Scholar
  61. 61.
    Awad, M. M., & Shaw, A. T. (2014). ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clinical Advances in Hematology and Oncology, 12(7), 429–439.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Sakamoto, H., Tsukaguchi, T., Hiroshima, S., Kodama, T., Kobayashi, T., Fukami, T. A., et al. (2011). CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell, 19(5), 679–690. doi: 10.1016/j.ccr.2011.04.004.PubMedCrossRefGoogle Scholar
  63. 63.
    Kodama, T., Tsukaguchi, T., Satoh, Y., Yoshida, M., Watanabe, Y., Kondoh, O., et al. (2014). Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Molecular Cancer Therapeutics, 13(12), 2910–2918. doi: 10.1158/1535-7163.MCT-14-0274.PubMedCrossRefGoogle Scholar
  64. 64.
    Gadgeel, S. M., Gandhi, L., Riely, G. J., Chiappori, A. A., West, H. L., Azada, M. C., et al. (2014). Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncology, 15(10), 1119–1128. doi: 10.1016/S1470-2045(14)70362-6.PubMedCrossRefGoogle Scholar
  65. 65.
  66. 66.
    Squillace, R. M., Anjum, R., Miller, D., Vodala, S., Moran, L., Wang, F., et al. (2014). AP26113 possesses pan-inhibitory activity versus crizotinib-resistant ALK mutants and oncogenic ROS1 fusions. Cancer Research, 73, 5655.CrossRefGoogle Scholar
  67. 67.
    Rivera, V. M., Wang, F., Anjum, R., Zhang, S., Squillace, R., Keats, J., et al. (2012). AP26113 is a dual ALK/EGFR inhibitor: Characterization against EGFR T790M in cell and mouse models of NSCLC. Cancer Research, 72, 1794.CrossRefGoogle Scholar
  68. 68.
    Zhang, S., Wang, F., Keats, J., Ning, Y., Wardwell, S. D., Moran, L., et al. (2010). AP26113, a potent ALKinhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066. Cancer Res, 70(8s):Abstract nr LB-298. doi: 10.1158/1538-7445.AM10-LB-298.
  69. 69.
    Gettinger, S. N., Bazhenova, L., Salgia, R., Langer, C. J., Gold, K. A., Rosell, R., et al. (2014). Updated efficacy and safety of the ALK inhibitor AP26113 in patients (pts) with advanced malignancies, including ALK+ non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 32(5s), abstr 8047.Google Scholar
  70. 70.
  71. 71.
  72. 72.
    Mori, M., Ueno, Y., Konagai, S., Fushiki, H., Shimada, I., Kondoh, Y., et al. (2014). The selective anaplastic lymphoma receptor tyrosine kinase inhibitor ASP3026 induces tumor regression and prolongs survival in non-small cell lung cancer model mice. Molecular Cancer Therapeutics, 13(2), 329–340. doi: 10.1158/1535-7163.MCT-13-0395.PubMedCrossRefGoogle Scholar
  73. 73.
    Maitland, L. M., Ou, S. I., Tolcher, A. W., LoRusso, P., Bahceci, E., Ball, H. A., et al. (2014). Safety, activity, and pharmacokinetics of an oral anaplastic lymphoma kinase (ALK) inhibitor, ASP3026, observed in a “fast follower” phase 1 trial design. Journal of Clinical Oncology, 32(5s), 2624.Google Scholar
  74. 74.
    Greenwald, R. J., Freeman, G. J., & Sharpe, A. H. (2005). The B7 family revisited. Annual Review of Immunology, 23, 515–548. doi: 10.1146/annurev.immunol.23.021704.115611.PubMedCrossRefGoogle Scholar
  75. 75.
    Teft, W. A., Kirchhof, M. G., & Madrenas, J. (2006). A molecular perspective of CTLA-4 function. Annual Review of Immunology, 24, 65–97. doi: 10.1146/annurev.immunol.24.021605.090535.PubMedCrossRefGoogle Scholar
  76. 76.
    Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Medicine, 8(8), 793–800. doi: 10.1038/nm730.PubMedGoogle Scholar
  77. 77.
    Freeman, G. J., Long, A. J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., et al. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. Journal of Experimental Medicine, 192(7), 1027–1034.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Dong, H., Zhu, G., Tamada, K., & Chen, L. (1999). B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Medicine, 5(12), 1365–1369. doi: 10.1038/70932.PubMedCrossRefGoogle Scholar
  79. 79.
    Wang, C., Thudium, K. B., Han, M., Wang, X. T., Huang, H., Feingersh, D., et al. (2014). In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res, 2(9), 846–856. doi: 10.1158/2326-6066.CIR-14-0040.PubMedCrossRefGoogle Scholar
  80. 80.
  81. 81.
  82. 82.
    Brahmer, J. R., Horn, L., Gandhi, L., Spigel, D. R., Antonia, S. J., Rizvi, N. A., et al. (2014) Nivolumab (anti-PD-1,BMS-936558, ONO-4538) in patients (pts) with advanced non-small-cell lung cancer (NSCLC): Survival and clinical activity by subgroup analysis. Journal of Clinical Oncology, 32(5s). abstr 8112.Google Scholar
  83. 83.
  84. 84.
  85. 85.
    Garon, E. B., Gandhi, L., Rizvi, N., Hui, R., Balmanoukian, A. S., Patnaik, A. et al. (2014). Antitumor activity ofpembrolizumab (Pembro; MK-3475) and correlation with programmed death ligand 1 (PD-L1) expression in a pooled analysis of patients (pts) with advanced non-small cell lung carcinoma (NSCLC). Annals of Oncology, 25(5):1-41. doi: 10.1093/annonc/mdu438.
  86. 86.
  87. 87.
  88. 88.
    Herbst, R. S., Soria, J. C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., et al. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528), 563–567. doi: 10.1038/nature14011.PubMedCrossRefGoogle Scholar
  89. 89.
    Spigel, D. R., Scott, N. G., Horn, L., Herbst, R. S., Gandhi, L., Gordon, M. S., et al. (2013). Clinical activity,safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). Journal Clinical Oncology, 31(suppl), abstr 8008.Google Scholar
  90. 90.
  91. 91.
    Lutzk, J., Scott, J. A., Blake-Haskins, A., Li X., Robbins, P. B., Shalabi, A. M., et al. (2014). A phase 1 study ofMEDI4736, an anti–PD-L1 antibody, in patients with advanced solid tumors. Journal of Clinical Oncology, 32(5s), abstr 3001.Google Scholar
  92. 92.
  93. 93.
  94. 94.
    Lynch, T. J., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R., et al. (2012). Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. Journal of Clinical Oncology, 30(17), 2046–2054. doi: 10.1200/JCO.2011.38.4032.PubMedCrossRefGoogle Scholar
  95. 95.
  96. 96.
  97. 97.
    Zatloukal, P., Heo, D. S., Park, K., Kang, J., Butts, C., Bradford, D., et al. (2009). Randomized phase IIclinical trial comparing tremelimumab (CP-675,206) with best supportive care (BSC) following first-line platinum-based therapy in patients (pts) with advanced non-small cell lung cancer (NSCLC). Journal Clinical Oncology, 27(15s), abstr 8071.Google Scholar
  98. 98.
  99. 99.
    Friboulet, L., Li, N., Katayama, R., Lee, C. C., Gainor, J. F., Crystal, A. S., et al. (2014). The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discovery, 4(6), 662–673. doi: 10.1158/2159-8290.CD-13-0846.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Sharma, P., Wagner, K., Wolchok, J. D., & Allison, J. P. (2011). Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nature Reviews Cancer, 11(11), 805–812. doi: 10.1038/nrc3153.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Melero, I., Grimaldi, A. M., Perez-Gracia, J. L., & Ascierto, P. A. (2013). Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Clinical Cancer Research, 19(5), 997–1008. doi: 10.1158/1078-0432.CCR-12-2214.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MedicineRoswell Park Cancer InstituteBuffaloUSA

Personalised recommendations