Advertisement

Cancer and Metastasis Reviews

, Volume 34, Issue 1, pp 19–40 | Cite as

Anti-vascular therapies in ovarian cancer: moving beyond anti-VEGF approaches

  • Hyun-Jin Choi
  • Guillermo N. Armaiz Pena
  • Sunila Pradeep
  • Min Soon Cho
  • Robert L. Coleman
  • Anil K. SoodEmail author
Article

Abstract

Resistance to chemotherapy is among the most important issues in the management of ovarian cancer. Unlike cancer cells, which are heterogeneous as a result of remarkable genetic instability, stromal cells are considered relatively homogeneous. Thus, targeting the tumor microenvironment is an attractive approach for cancer therapy. Arguably, anti-vascular endothelial growth factor (anti-VEGF) therapies hold great promise, but their efficacy has been modest, likely owing to redundant and complementary angiogenic pathways. Components of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and other pathways may compensate for VEGF blockade and allow angiogenesis to occur despite anti-VEGF treatment. In addition, hypoxia induced by anti-angiogenesis therapy modifies signaling pathways in tumor and stromal cells, which induces resistance to therapy. Because of tumor cell heterogeneity and angiogenic pathway redundancy, combining cytotoxic and targeted therapies or combining therapies targeting different pathways can potentially overcome resistance. Although targeted therapy is showing promise, much more work is needed to maximize its impact, including the discovery of new targets and identification of individuals most likely to benefit from such therapies.

Keywords

Ovarian cancer Targeted therapy Angiogenesis Anti-vascular agent Resistance to anti-VEGF therapy 

Notes

Acknowledgments

Portions of this work were supported by grants from the US National Institutes of Health (P50CA083639, P50CA098258, CA109298, U54 CA151668, CA177909, UH2TR000943, T32CA101642, and CA16672), the Department of Defense (OC120547 and OC093416), a Program Project Development Grant, and an Ann Schreiber-mentored Investigators Award from the Ovarian Cancer Research Fund, CPRIT RP110595, the Bettyann Asche Murray Distinguished Professorship, the Chapman Foundation, the Meyer and Ida Gordon Foundation, the Gilder Foundation, the RGK Foundation, the Judi A. Rees Ovarian Cancer Research Fund, and the Blanton-Davis Ovarian Cancer Research Program. We thank Zachary S. Bohannan, Dawn Chalaire, and Arthur Gelmis for editorial review.

References

  1. 1.
    Agarwal, R., & Kaye, S. B. (2003). Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Reviews Cancer, 3, 502–516.PubMedCrossRefGoogle Scholar
  2. 2.
    Balvert-Locht, H. R., Coebergh, J. W., Hop, W. C., et al. (1991). Improved prognosis of ovarian cancer in The Netherlands during the period 1975–1985: a registry-based study. Gynecologic Oncology, 42, 3–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Ozols, R. F., Bundy, B. N., Greer, B. E., et al. (2003). Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a gynecologic oncology group study. Journal of Clinical Oncology, 21, 3194–3200.PubMedCrossRefGoogle Scholar
  4. 4.
    du Bois, A., Neijt, J. P., & Thigpen, J. T. (1999). First line chemotherapy with carboplatin plus paclitaxel in advanced ovarian cancer—a new standard of care? Annals of Oncology, 10(Suppl 1), 35–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Biagi, J. J., & Eisenhauer, E. A. (2003). Systemic treatment policies in ovarian cancer: the next 10 years. International Journal of Gynecological Cancer, 13(Suppl 2), 231–240.PubMedCrossRefGoogle Scholar
  6. 6.
    Neijt, J. P., Engelholm, S. A., Tuxen, M. K., et al. (2000). Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. Journal of Clinical Oncology, 18, 3084–3092.PubMedGoogle Scholar
  7. 7.
    Greenlee, R. T., Hill-Harmon, M. B., Murray, T., & Thun, M. (2001). Cancer statistics, 2001. CA: A Cancer Journal for Clinicians, 51, 15–36.Google Scholar
  8. 8.
    Gore, M. E., Fryatt, I., Wiltshaw, E., & Dawson, T. (1990). Treatment of relapsed carcinoma of the ovary with cisplatin or carboplatin following initial treatment with these compounds. Gynecologic Oncology, 36, 207–211.PubMedCrossRefGoogle Scholar
  9. 9.
    Wernert, N., Locherbach, C., Wellmann, A., Behrens, P., & Hugel, A. (2001). Presence of genetic alterations in microdissected stroma of human colon and breast cancers. Anticancer Research, 21, 2259–2264.PubMedGoogle Scholar
  10. 10.
    Allinen, M., Beroukhim, R., Cai, L., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6, 17–32.PubMedCrossRefGoogle Scholar
  11. 11.
    Fukino, K., Shen, L., Patocs, A., Mutter, G. L., & Eng, C. (2007). Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA, 297, 2103–2111.PubMedCrossRefGoogle Scholar
  12. 12.
    Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute, 82, 4–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Eskander, R. N., & Randall, L. M. (2011). Bevacizumab in the treatment of ovarian cancer. Biologics, 5, 1–5.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Ferrara, N., & Kerbel, R. S. (2005). Angiogenesis as a therapeutic target. Nature, 438, 967–974.PubMedCrossRefGoogle Scholar
  15. 15.
    Konerding, M. A., Fait, E., & Gaumann, A. (2001). 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. British Journal of Cancer, 84, 1354–1362.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Denekamp, J. (1982). Endothelial cell proliferation as a novel approach to targeting tumour therapy. British Journal of Cancer, 45, 136–139.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hinnen, P., & Eskens, F. A. (2007). Vascular disrupting agents in clinical development. British Journal of Cancer, 96, 1159–1165.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Holwell, S. E., Cooper, P. A., Thompson, M. J., et al. (2002). Anti-tumor and anti-vascular effects of the novel tubulin-binding agent combretastatin A-1 phosphate. Anticancer Research, 22, 3933–3940.PubMedGoogle Scholar
  19. 19.
    Tozer, G. M., Prise, V. E., Wilson, J., et al. (1999). Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Research, 59, 1626–1634.PubMedGoogle Scholar
  20. 20.
    Marysael, T., Ni, Y., Lerut, E., & de Witte, P. (2011). Influence of the vascular damaging agents DMXAA and ZD6126 on hypericin distribution and accumulation in RIF-1 tumors. Journal of Cancer Research and Clinical Oncology, 137, 1619–1627.PubMedCrossRefGoogle Scholar
  21. 21.
    Nathan, P., Zweifel, M., Padhani, A. R., et al. (2012). Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clinical Cancer Research, 18, 3428–3439.PubMedCrossRefGoogle Scholar
  22. 22.
    Zweifel, M., Jayson, G. C., Reed, N. S., et al. (2011). Phase II trial of combretastatin A4 phosphate, carboplatin, and paclitaxel in patients with platinum-resistant ovarian cancer. Annals of Oncology, 22, 2036–2041.PubMedCrossRefGoogle Scholar
  23. 23.
    Ching, L. M., Cao, Z., Kieda, C., Zwain, S., Jameson, M. B., & Baguley, B. C. (2002). Induction of endothelial cell apoptosis by the antivascular agent 5,6-Dimethylxanthenone-4-acetic acid. British Journal of Cancer, 86, 1937–1942.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fredriksson, L., Li, H., Fieber, C., Li, X., & Eriksson, U. (2004). Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO Journal, 23, 3793–3802.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kazlauskas, A., & Cooper, J. A. (1989). Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell, 58, 1121–1133.PubMedCrossRefGoogle Scholar
  26. 26.
    Antoniades, H. N., & Hunkapiller, M. W. (1983). Human platelet-derived growth factor (PDGF): amino-terminal amino acid sequence. Science, 220, 963–965.PubMedCrossRefGoogle Scholar
  27. 27.
    Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes and Development, 22, 1276–1312.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Jain, R. K. (2003). Molecular regulation of vessel maturation. Nature Medicine, 9, 685–693.PubMedCrossRefGoogle Scholar
  29. 29.
    Abramsson, A., Kurup, S., Busse, M., et al. (2007). Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes and Development, 21, 316–331.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Benjamin, L. E., Hemo, I., & Keshet, E. (1998). A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 125, 1591–1598.PubMedGoogle Scholar
  31. 31.
    Oikawa, T., Onozawa, C., Sakaguchi, M., Morita, I., & Murota, S. (1994). Three isoforms of platelet-derived growth factors all have the capability to induce angiogenesis in vivo. Biological and Pharmaceutical Bulletin, 17, 1686–1688.PubMedCrossRefGoogle Scholar
  32. 32.
    Lu, C., Thaker, P. H., Lin, Y. G., et al. (2008). Impact of vessel maturation on antiangiogenic therapy in ovarian cancer. American Journal of Obstetrics and Gynecology, 198(477), e471–e479. discussion 477 e479–410.Google Scholar
  33. 33.
    Valius, M., & Kazlauskas, A. (1993). Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell, 73, 321–334.PubMedCrossRefGoogle Scholar
  34. 34.
    Coughlin, S. R., Escobedo, J. A., & Williams, L. T. (1989). Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science, 243, 1191–1194.PubMedCrossRefGoogle Scholar
  35. 35.
    Heldin, C. H., Ostman, A., & Ronnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochimica et Biophysica Acta, 1378, F79–F113.PubMedGoogle Scholar
  36. 36.
    Yao, R., & Cooper, G. M. (1995). Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science, 267, 2003–2006.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang, J. S., Huang, S. S., & Deuel, T. F. (1984). Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell, 39, 79–87.PubMedCrossRefGoogle Scholar
  38. 38.
    Greenhalgh, D. G., Sprugel, K. H., Murray, M. J., & Ross, R. (1990). PDGF and FGF stimulate wound healing in the genetically diabetic mouse. American Journal of Pathology, 136, 1235–1246.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Hellberg, C., Ostman, A., & Heldin, C. H. (2010). PDGF and vessel maturation. Recent Results in Cancer Research, 180, 103–114.PubMedCrossRefGoogle Scholar
  40. 40.
    Gaengel, K., Genove, G., Armulik, A., & Betsholtz, C. (2009). Endothelial-mural cell signaling in vascular development and angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 630–638.PubMedCrossRefGoogle Scholar
  41. 41.
    Quaegebeur, A., Segura, I., & Carmeliet, P. (2010). Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron, 68, 321–323.PubMedCrossRefGoogle Scholar
  42. 42.
    Ribatti, D., Vacca, A., Roccaro, A. M., Crivellato, E., & Presta, M. (2003). Erythropoietin as an angiogenic factor. European Journal of Clinical Investigation, 33, 891–896.PubMedCrossRefGoogle Scholar
  43. 43.
    Crawford, Y., Kasman, I., Yu, L., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15, 21–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E., & Hanahan, D. (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. Journal of Clinical Investigation, 111, 1287–1295.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Erber, R., Thurnher, A., Katsen, A. D., et al. (2004). Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB Journal, 18, 338–340.PubMedGoogle Scholar
  46. 46.
    Jo, N., Mailhos, C., Ju, M., et al. (2006). Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. American Journal of Pathology, 168, 2036–2053.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hasumi, Y., Klosowska-Wardega, A., Furuhashi, M., Ostman, A., Heldin, C. H., & Hellberg, C. (2007). Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling. International Journal of Cancer, 121, 2606–2614.PubMedCrossRefGoogle Scholar
  48. 48.
    Gerhardt, H., & Semb, H. (2008). Pericytes: gatekeepers in tumour cell metastasis? Journal of Molecular Medicine (Berl), 86, 135–144.CrossRefGoogle Scholar
  49. 49.
    Alberts, D. S., Liu, P. Y., Wilczynski, S. P., et al. (2007). Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211). International Journal of Gynecological Cancer, 17, 784–788.PubMedCrossRefGoogle Scholar
  50. 50.
    Coleman, R. L., Broaddus, R. R., Bodurka, D. C., et al. (2006). Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant epithelial ovarian and primary peritoneal cancers. Gynecologic Oncology, 101, 126–131.PubMedCrossRefGoogle Scholar
  51. 51.
    Posadas, E. M., Kwitkowski, V., Kotz, H. L., et al. (2007). A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer, 110, 309–317.PubMedCrossRefGoogle Scholar
  52. 52.
    Safra, T., Andreopoulou, E., Levinson, B., et al. (2010). Weekly paclitaxel with intermittent imatinib mesylate (Gleevec): tolerance and activity in recurrent epithelial ovarian cancer. Anticancer Research, 30, 3243–3247.PubMedGoogle Scholar
  53. 53.
    Matulonis, U. A., Berlin, S., Ivy, P., et al. (2009). Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. Journal of Clinical Oncology, 27, 5601–5606.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Raja, F. A., Griffin, C. L., Qian, W., et al. (2011). Initial toxicity assessment of ICON6: a randomised trial of cediranib plus chemotherapy in platinum-sensitive relapsed ovarian cancer. British Journal of Cancer, 105, 884–889.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wilhelm, S., Carter, C., Lynch, M., et al. (2006). Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery, 5, 835–844.PubMedCrossRefGoogle Scholar
  56. 56.
    Kane, R. C., Farrell, A. T., Saber, H., et al. (2006). Sorafenib for the treatment of advanced renal cell carcinoma. Clinical Cancer Research, 12, 7271–7278.PubMedCrossRefGoogle Scholar
  57. 57.
    Kane, R. C., Farrell, A. T., Madabushi, R., et al. (2009). Sorafenib for the treatment of unresectable hepatocellular carcinoma. The Oncologist, 14, 95–100.PubMedCrossRefGoogle Scholar
  58. 58.
    Matei, D., Sill, M. W., Lankes, H. A., et al. (2011). Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. Journal of Clinical Oncology, 29, 69–75.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Welch, S. A., Hirte, H. W., Elit, L., et al. (2010). Sorafenib in combination with gemcitabine in recurrent epithelial ovarian cancer: a study of the Princess Margaret Hospital Phase II Consortium. International Journal of Gynecological Cancer, 20, 787–793.PubMedCrossRefGoogle Scholar
  60. 60.
    Ramasubbaiah, R., Perkins, S. M., Schilder, J., et al. (2011). Sorafenib in combination with weekly topotecan in recurrent ovarian cancer, a phase I/II study of the Hoosier Oncology Group. Gynecologic Oncology, 123, 499–504.PubMedCrossRefGoogle Scholar
  61. 61.
    Herzog, T. J., Scambia, G., Kim, B. G., et al. (2013). A randomized phase II trial of maintenance therapy with sorafenib in front-line ovarian carcinoma. Gynecologic Oncology, 130, 25–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Ledermann, J. A., Hackshaw, A., Kaye, S., et al. (2011). Randomized phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer. Journal of Clinical Oncology, 29, 3798–3804.PubMedCrossRefGoogle Scholar
  63. 63.
    Izzedine, H., Buhaescu, I., Rixe, O., & Deray, G. (2007). Sunitinib malate. Cancer Chemotheraphy and Pharmacology, 60, 357–364.CrossRefGoogle Scholar
  64. 64.
    Biagi, J. J., Oza, A. M., Chalchal, H. I., et al. (2011). A phase II study of sunitinib in patients with recurrent epithelial ovarian and primary peritoneal carcinoma: an NCIC Clinical Trials Group Study. Annals of Oncology, 22, 335–340.PubMedCrossRefGoogle Scholar
  65. 65.
    Friedlander, M., Hancock, K. C., Rischin, D., et al. (2010). A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecologic Oncology, 119, 32–37.PubMedCrossRefGoogle Scholar
  66. 66.
    Normanno, N., De Luca, A., Bianco, C., et al. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366, 2–16.PubMedCrossRefGoogle Scholar
  67. 67.
    Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2, 127–137.PubMedCrossRefGoogle Scholar
  68. 68.
    Cascone, T., Herynk, M. H., Xu, L., et al. (2011). Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. Journal of Clinical Investigation, 121, 1313–1328.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Viloria-Petit, A., Crombet, T., Jothy, S., et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Research, 61, 5090–5101.PubMedGoogle Scholar
  70. 70.
    Vergote, I. B., Jimeno, A., Joly, F., et al. (2014). Randomized phase III study of erlotinib versus observation in patients with no evidence of disease progression after first-line platin-based chemotherapy for ovarian carcinoma: a European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group, and Gynecologic Cancer Intergroup Study. Journal of Clinical Oncology, 32, 320–326.PubMedCrossRefGoogle Scholar
  71. 71.
    Pakkala, S., & Ramalingam, S. S. (2009). Combined inhibition of vascular endothelial growth factor and epidermal growth factor signaling in non-small-cell lung cancer therapy. Clinical Lung Cancer, 10(Suppl 1), S17–S23.PubMedCrossRefGoogle Scholar
  72. 72.
    Kimelman, D., & Kirschner, M. (1987). Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell, 51, 869–877.PubMedCrossRefGoogle Scholar
  73. 73.
    De Moerlooze, L., Spencer-Dene, B., Revest, J. M., Hajihosseini, M., Rosewell, I., & Dickson, C. (2000). An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development, 127, 483–492.PubMedGoogle Scholar
  74. 74.
    Beenken, A., & Mohammadi, M. (2009). The FGF family: biology, pathophysiology and therapy. Nature Reviews Drug Discovery, 8, 235–253.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Johnson, D. E., & Williams, L. T. (1993). Structural and functional diversity in the FGF receptor multigene family. Advances in Cancer Research, 60, 1–41.PubMedCrossRefGoogle Scholar
  76. 76.
    Bae, J. H., & Schlessinger, J. (2010). Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Molecules and Cells, 29, 443–448.PubMedCrossRefGoogle Scholar
  77. 77.
    Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine and Growth Factor Reviews, 16, 139–149.PubMedCrossRefGoogle Scholar
  78. 78.
    Cunningham, D. L., Sweet, S. M., Cooper, H. J., & Heath, J. K. (2010). Differential phosphoproteomics of fibroblast growth factor signaling: identification of Src family kinase-mediated phosphorylation events. Journal of Proteome Research, 9, 2317–2328.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Klint, P., & Claesson-Welsh, L. (1999). Signal transduction by fibroblast growth factor receptors. Frontiers in Bioscience, 4, D165–D177.PubMedCrossRefGoogle Scholar
  80. 80.
    Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R., & Rusnati, M. (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine and Growth Factor Reviews, 16, 159–178.PubMedCrossRefGoogle Scholar
  81. 81.
    Cross, M. J., & Claesson-Welsh, L. (2001). FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends in Pharmacological Sciences, 22, 201–207.PubMedCrossRefGoogle Scholar
  82. 82.
    Presta, M., Tiberio, L., Rusnati, M., Dell’Era, P., & Ragnotti, G. (1991). Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells. Cell Regulation, 2, 719–726.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Shono, T., Kanetake, H., & Kanda, S. (2001). The role of mitogen-activated protein kinase activation within focal adhesions in chemotaxis toward FGF-2 by murine brain capillary endothelial cells. Experimental Cell Research, 264, 275–283.PubMedCrossRefGoogle Scholar
  84. 84.
    Casanovas, O., Hicklin, D. J., Bergers, G., & Hanahan, D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 8, 299–309.PubMedCrossRefGoogle Scholar
  85. 85.
    Compagni, A., Wilgenbus, P., Impagnatiello, M. A., Cotten, M., & Christofori, G. (2000). Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Research, 60, 7163–7169.PubMedGoogle Scholar
  86. 86.
    Giavazzi, R., Sennino, B., Coltrini, D., et al. (2003). Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. American Journal of Pathology, 162, 1913–1926.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nissen, L. J., Cao, R., Hedlund, E. M., et al. (2007). Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. Journal of Clinical Investigation, 117, 2766–2777.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lieu, C., Heymach, J., Overman, M., Tran, H., & Kopetz, S. (2011). Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clinical Cancer Research, 17, 6130–6139.PubMedCrossRefGoogle Scholar
  89. 89.
    Fujii, T., & Kuwano, H. (2010). Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2. In Vitro Cellular and Developmental Biology - Animal, 46, 487–491.PubMedCrossRefGoogle Scholar
  90. 90.
    Pepper, M. S., Ferrara, N., Orci, L., & Montesano, R. (1992). Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochemical and Biophysical Research Communications, 189, 824–831.PubMedCrossRefGoogle Scholar
  91. 91.
    Kopetz, S., Hoff, P. M., Morris, J. S., et al. (2010). Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. Journal of Clinical Oncology, 28, 453–459.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Batchelor, T. T., Sorensen, A. G., di Tomaso, E., et al. (2007). AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 11, 83–95.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473, 298–307.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Augustin, H. G., Koh, G. Y., Thurston, G., & Alitalo, K. (2009). Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nature Reviews Molecular Cell Biology, 10, 165–177.PubMedCrossRefGoogle Scholar
  95. 95.
    Sundberg, C., Kowanetz, M., Brown, L. F., Detmar, M., & Dvorak, H. F. (2002). Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Laboratory Investigation, 82, 387–401.PubMedCrossRefGoogle Scholar
  96. 96.
    Winkler, F., Kozin, S. V., Tong, R. T., et al. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell, 6, 553–563.PubMedGoogle Scholar
  97. 97.
    Maisonpierre, P. C., Suri, C., Jones, P. F., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55–60.PubMedCrossRefGoogle Scholar
  98. 98.
    Scharpfenecker, M., Fiedler, U., Reiss, Y., & Augustin, H. G. (2005). The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. Journal of Cell Science, 118, 771–780.PubMedCrossRefGoogle Scholar
  99. 99.
    Bach, F., Uddin, F. J., & Burke, D. (2007). Angiopoietins in malignancy. European Journal of Surgical Oncology, 33, 7–15.PubMedCrossRefGoogle Scholar
  100. 100.
    Carmeliet, P., & Jain, R. K. (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature Reviews Drug Discovery, 10, 417–427.PubMedCrossRefGoogle Scholar
  101. 101.
    Falcon, B. L., Hashizume, H., Koumoutsakos, P., et al. (2009). Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. American Journal of Pathology, 175, 2159–2170.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Koh, Y. J., Kim, H. Z., Hwang, S. I., et al. (2010). Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell, 18, 171–184.PubMedCrossRefGoogle Scholar
  103. 103.
    Herbst, R. S., Hong, D., Chap, L., et al. (2009). Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. Journal of Clinical Oncology, 27, 3557–3565.PubMedCrossRefGoogle Scholar
  104. 104.
    Birchmeier, C., Birchmeier, W., Gherardi, E., & Vande Woude, G. F. (2003). Met, metastasis, motility and more. Nature Reviews Molecular Cell Biology, 4, 915–925.PubMedCrossRefGoogle Scholar
  105. 105.
    Funakoshi, H., & Nakamura, T. (2003). Hepatocyte growth factor: from diagnosis to clinical applications. Clinica Chimica Acta, 327, 1–23.CrossRefGoogle Scholar
  106. 106.
    Bottaro, D. P., Rubin, J. S., Faletto, D. L., et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science, 251, 802–804.PubMedCrossRefGoogle Scholar
  107. 107.
    Bolanos-Garcia, V. M. (2005). MET meet adaptors: functional and structural implications in downstream signalling mediated by the Met receptor. Molecular and Cellular Biochemistry, 276, 149–157.PubMedCrossRefGoogle Scholar
  108. 108.
    Yu, J., Miehlke, S., Ebert, M. P., et al. (2000). Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer, 88, 1801–1806.PubMedCrossRefGoogle Scholar
  109. 109.
    Dharmawardana, P. G., Giubellino, A., & Bottaro, D. P. (2004). Hereditary papillary renal carcinoma type I. Current Molecular Medicine, 4, 855–868.PubMedCrossRefGoogle Scholar
  110. 110.
    Bussolino, F., Di Renzo, M. F., Ziche, M., et al. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. Journal of Cell Biology, 119, 629–641.PubMedCrossRefGoogle Scholar
  111. 111.
    Kitajima, Y., Ide, T., Ohtsuka, T., & Miyazaki, K. (2008). Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Science, 99, 1341–1347.PubMedCrossRefGoogle Scholar
  112. 112.
    Kubota, T., Taiyoh, H., Matsumura, A., et al. (2009). NK4, an HGF antagonist, prevents hematogenous pulmonary metastasis by inhibiting adhesion of CT26 cells to endothelial cells. Clinical and Experimental Metastasis, 26, 447–456.PubMedCrossRefGoogle Scholar
  113. 113.
    Sulpice, E., Ding, S., Muscatelli-Groux, B., et al. (2009). Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biology of the Cell, 101, 525–539.PubMedCrossRefGoogle Scholar
  114. 114.
    Puri, N., Khramtsov, A., Ahmed, S., et al. (2007). A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Research, 67, 3529–3534.PubMedCrossRefGoogle Scholar
  115. 115.
    Cantelmo, A. R., Cammarota, R., Noonan, D. M., et al. (2010). Cell delivery of Met docking site peptides inhibit angiogenesis and vascular tumor growth. Oncogene, 29, 5286–5298.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gherardi, E., Birchmeier, W., Birchmeier, C., & Woude, G. V. (2012). Targeting MET in cancer: rationale and progress. Nature Reviews Cancer, 12, 89–103.PubMedCrossRefGoogle Scholar
  117. 117.
    Hara, S., Nakashiro, K., Klosek, S. K., Ishikawa, T., Shintani, S., & Hamakawa, H. (2006). Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells. Oral Oncology, 42, 593–598.PubMedCrossRefGoogle Scholar
  118. 118.
    Ide, T., Kitajima, Y., Miyoshi, A., et al. (2006). Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. International Journal of Cancer, 119, 2750–2759.PubMedCrossRefGoogle Scholar
  119. 119.
    Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., & Comoglio, P. M. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3, 347–361.PubMedCrossRefGoogle Scholar
  120. 120.
    Qian, F., Engst, S., Yamaguchi, K., et al. (2009). Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Research, 69, 8009–8016.PubMedCrossRefGoogle Scholar
  121. 121.
    Nakagawa, T., Tohyama, O., Yamaguchi, A., et al. (2010). E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Science, 101, 210–215.PubMedCrossRefGoogle Scholar
  122. 122.
    You, W. K., & McDonald, D. M. (2008). The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Reports, 41, 833–839.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Shojaei, F., Lee, J. H., Simmons, B. H., et al. (2010). HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Research, 70, 10090–10100.PubMedCrossRefGoogle Scholar
  124. 124.
    Tomioka, D., Maehara, N., Kuba, K., et al. (2001). Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Research, 61, 7518–7524.PubMedGoogle Scholar
  125. 125.
    Burgess, T., Coxon, A., Meyer, S., et al. (2006). Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Research, 66, 1721–1729.PubMedCrossRefGoogle Scholar
  126. 126.
    Martin, L. P., Sill, M., Shahin, M. S., et al. (2014). A phase II evaluation of AMG 102 (rilotumumab) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 132, 526–530.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Buckanovich, R. J., Berger, R., Sella, A., et al. (2011). Results from phase II randomized discontinuation trial. Journal of Clinical Oncology ASCO Annual Meeting. 29, abstract 5008.Google Scholar
  128. 128.
    Pasquale, E. B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell, 133, 38–52.PubMedCrossRefGoogle Scholar
  129. 129.
    Walker-Daniels, J., Hess, A. R., Hendrix, M. J., & Kinch, M. S. (2003). Differential regulation of EphA2 in normal and malignant cells. American Journal of Pathology, 162, 1037–1042.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Pasquale, E. B. (1997). The Eph family of receptors. Current Opinion in Cell Biology, 9, 608–615.PubMedCrossRefGoogle Scholar
  131. 131.
    Thaker, P. H., Deavers, M., Celestino, J., et al. (2004). EphA2 expression is associated with aggressive features in ovarian carcinoma. Clinical Cancer Research, 10, 5145–5150.PubMedCrossRefGoogle Scholar
  132. 132.
    Cheng, N., Brantley, D. M., Liu, H., et al. (2002). Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Molecular Cancer Research, 1, 2–11.PubMedCrossRefGoogle Scholar
  133. 133.
    Spannuth, W. A., Sood, A. K., & Coleman, R. L. (2008). Angiogenesis as a strategic target for ovarian cancer therapy. Nature Clinical Practice Oncology, 5, 194–204.PubMedCrossRefGoogle Scholar
  134. 134.
    Lu, X. S., Sun, W., Ge, C. Y., Zhang, W. Z., & Fan, Y. Z. (2013). Contribution of the PI3K/MMPs/Ln-5gamma2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. International Journal of Oncology, 42, 2103–2115.PubMedGoogle Scholar
  135. 135.
    Hess, A. R., Seftor, E. A., Gardner, L. M., et al. (2001). Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Research, 61, 3250–3255.PubMedGoogle Scholar
  136. 136.
    Landen, C. N., Jr., Chavez-Reyes, A., Bucana, C., et al. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Research, 65, 6910–6918.PubMedCrossRefGoogle Scholar
  137. 137.
    Adam, M. G., Berger, C., Feldner, A., et al. (2013). Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circulation Research, 113, 1206–1218.PubMedCrossRefGoogle Scholar
  138. 138.
    Hu, W., Lu, C., Dong, H. H., et al. (2011). Biological roles of the Delta family Notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Research, 71, 6030–6039.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Gale, N. W., Dominguez, M. G., Noguera, I., et al. (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proceedings of the National Academy of Sciences of the United States of America, 101, 15949–15954.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Lobov, I. B., Renard, R. A., Papadopoulos, N., et al. (2007). Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proceedings of the National Academy of Sciences of the United States of America, 104, 3219–3224.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Thurston, G., Noguera-Troise, I., & Yancopoulos, G. D. (2007). The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Reviews Cancer, 7, 327–331.PubMedCrossRefGoogle Scholar
  142. 142.
    Ridgway, J., Zhang, G., Wu, Y., et al. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444, 1083–1087.PubMedCrossRefGoogle Scholar
  143. 143.
    Li, J. L., Sainson, R. C., Shi, W., et al. (2007). Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Research, 67, 11244–11253.PubMedCrossRefGoogle Scholar
  144. 144.
    Tolcher, A. W., Messersmith, W. A., Mikulski, S. M., et al. (2012). Phase I study of RO4929097, a gamma secretase inhibitor of notch signaling, in patients with refractory metastatic or locally advanced solid tumors. Journal of Clinical Oncology, 30, 2348–2353.PubMedCrossRefGoogle Scholar
  145. 145.
    Sahebjam, S., Bedard, P. L., Castonguay, V., et al. (2013). A phase i study of the combination of ro4929097 and cediranib in patients with advanced solid tumours (PJC-004/NCI 8503). British Journal of Cancer, 109, 943–949.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Diaz-Padilla, I., Hirte, H., Oza, A. M., et al. (2013). A phase Ib combination study of RO4929097, a gamma-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Investigational New Drugs, 31, 1182–1191.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Strosberg, J. R., Yeatman, T., Weber, J., et al. (2012). A phase II study of RO4929097 in metastatic colorectal cancer. European Journal of Cancer, 48, 997–1003.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Reviews, 22, 337–358.PubMedCrossRefGoogle Scholar
  149. 149.
    Ma, W. W., & Adjei, A. A. (2009). Novel agents on the horizon for cancer therapy. CA: A Cancer Journal for Clinicians, 59, 111–137.Google Scholar
  150. 150.
    Frame, M. C. (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochimica et Biophysica Acta, 1602, 114–130.PubMedGoogle Scholar
  151. 151.
    Trevino, J. G., Summy, J. M., Gray, M. J., et al. (2005). Expression and activity of SRC regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Research, 65, 7214–7222.PubMedCrossRefGoogle Scholar
  152. 152.
    Kanda, S., Miyata, Y., Kanetake, H., & Smithgall, T. E. (2007). Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (review). International Journal of Molecular Medicine, 20, 113–121.PubMedGoogle Scholar
  153. 153.
    Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., & Béliveau, R. (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Molecular Biology of the Cell, 14, 334–347.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Eliceiri, B. P., Puente, X. S., Hood, J. D., et al. (2002). Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. Journal of Cell Biology, 157, 149–160.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Kim, Y. M., Lee, Y. M., Kim, H. S., et al. (2002). TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. Journal of Biological Chemistry, 277, 6799–6805.PubMedCrossRefGoogle Scholar
  156. 156.
    Laird, A. D., Li, G., Moss, K. G., et al. (2003). Src family kinase activity is required for signal tranducer and activator of transcription 3 and focal adhesion kinase phosphorylation and vascular endothelial growth factor signaling in vivo and for anchorage-dependent and -independent growth of human tumor cells. Molecular Cancer Therapeutics, 2, 461–469.PubMedGoogle Scholar
  157. 157.
    Bankhead, C. (2010). ESMO: failed trials dominate gyn cancer session. Accessed 14 Oct 2010.Google Scholar
  158. 158.
    McNeish, I. A., Ledermann, J. A., Webber, L. C., et al. (2013). A randomized placebo-controlled trial of saracatinib (AZD0530) plus weekly paclitaxel in platinum-resistant ovarian, fallopian-tube, or primary peritoneal cancer (SaPPrOC). Journal of Clinical Oncology, 31.Google Scholar
  159. 159.
    Hermann, C., Assmus, B., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2000). Insulin-mediated stimulation of protein kinase Akt: a potent survival signaling cascade for endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 402–409.PubMedCrossRefGoogle Scholar
  160. 160.
    Granville, C. A., Memmott, R. M., Gills, J. J., & Dennis, P. A. (2006). Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clinical Cancer Research, 12, 679–689.PubMedCrossRefGoogle Scholar
  161. 161.
    Frisch, S. M., & Ruoslahti, E. (1997). Integrins and anoikis. Current Opinion in Cell Biology, 9, 701–706.PubMedCrossRefGoogle Scholar
  162. 162.
    Gerber, H. P., McMurtrey, A., Kowalski, J., et al. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Journal of Biological Chemistry, 273, 30336–30343.PubMedCrossRefGoogle Scholar
  163. 163.
    Brunet, A., Bonni, A., Zigmond, M. J., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857–868.PubMedCrossRefGoogle Scholar
  164. 164.
    Yang, D., Sun, Y., Hu, L., et al. (2013). Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell, 23, 186–199.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Bianco, R., Garofalo, S., Rosa, R., et al. (2008). Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. British Journal of Cancer, 98, 923–930.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Jin, H., & Varner, J. (2004). Integrins: roles in cancer development and as treatment targets. British Journal of Cancer, 90, 561–565.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Ruegg, C., & Mariotti, A. (2003). Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cellular and Molecular Life Sciences, 60, 1135–1157.PubMedGoogle Scholar
  168. 168.
    da Silva, R. G., Tavora, B., Robinson, S. D., et al. (2010). Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. American Journal of Pathology, 177, 1534–1548.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Assoian, R. K. (1997). Anchorage-dependent cell cycle progression. Journal of Cell Biology, 136, 1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Urbich, C., Dernbach, E., Reissner, A., Vasa, M., Zeiher, A. M., & Dimmeler, S. (2002). Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 69–75.PubMedCrossRefGoogle Scholar
  171. 171.
    Abedi, H., & Zachary, I. (1997). Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. Journal of Biological Chemistry, 272, 15442–15451.PubMedCrossRefGoogle Scholar
  172. 172.
    Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., & Cheresh, D. A. (1995). Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. Journal of Clinical Investigation, 96, 1815–1822.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Gutheil, J. C., Campbell, T. N., Pierce, P. R., et al. (2000). Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clinical Cancer Research, 6, 3056–3061.PubMedGoogle Scholar
  174. 174.
    Stupp, R., & Ruegg, C. (2007). Integrin inhibitors reaching the clinic. Journal of Clinical Oncology, 25, 1637–1638.PubMedCrossRefGoogle Scholar
  175. 175.
    Shibata, K., Kikkawa, F., Nawa, A., Suganuma, N., & Hamaguchi, M. (1997). Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Research, 57, 5416–5420.PubMedGoogle Scholar
  176. 176.
    Sawada, K., Mitra, A. K., Radjabi, A. R., et al. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Research, 68, 2329–2339.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Park, C. C., Zhang, H., Pallavicini, M., et al. (2006). Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Research, 66, 1526–1535.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Bhaskar, V., Zhang, D., Fox, M., et al. (2007). A function blocking anti-mouse integrin alpha5beta1 antibody inhibits angiogenesis and impedes tumor growth in vivo. Journal of Translational Medicine, 5, 61.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Bhaskar, V., Fox, M., Breinberg, D., et al. (2008). Volociximab, a chimeric integrin alpha5beta1 antibody, inhibits the growth of VX2 tumors in rabbits. Investigational New Drugs, 26, 7–12.PubMedCrossRefGoogle Scholar
  180. 180.
    Ramakrishnan, V., Bhaskar, V., Law, D. A., et al. (2006). Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. Journal of Experimental Therapeutics and Oncology, 5, 273–286.PubMedGoogle Scholar
  181. 181.
    Bell-McGuinn, K. M., Matthews, C. M., Ho, S. N., et al. (2011). A phase II, single-arm study of the anti-alpha5beta1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecologic Oncology, 121, 273–279.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Naylor, M. S., Stamp, G. W., Foulkes, W. D., Eccles, D., & Balkwill, F. R. (1993). Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. Journal of Clinical Investigation, 91, 2194–2206.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Wu, S., Boyer, C. M., Whitaker, R. S., et al. (1993). Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Research, 53, 1939–1944.PubMedGoogle Scholar
  184. 184.
    Kulbe, H., Thompson, R., Wilson, J. L., et al. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67, 585–592.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Jin, D. K., Shido, K., Kopp, H. G., et al. (2006). Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nature Medicine, 12, 557–567.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Kaplan, R. N., Riba, R. D., Zacharoulis, S., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Kryczek, I., Lange, A., Mottram, P., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65, 465–472.PubMedGoogle Scholar
  188. 188.
    Aguayo, A., Kantarjian, H., Manshouri, T., et al. (2000). Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood, 96, 2240–2245.PubMedGoogle Scholar
  189. 189.
    Charles, K. A., Kulbe, H., Soper, R., et al. (2009). The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. Journal of Clinical Investigation, 119, 3011–3023.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Kulbe, H., Chakravarty, P., Leinster, D. A., et al. (2012). A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Research, 72, 66–75.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Madhusudan, S., Muthuramalingam, S. R., Braybrooke, J. P., et al. (2005). Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. Journal of Clinical Oncology, 23, 5950–5959.PubMedCrossRefGoogle Scholar
  192. 192.
    Giuntoli, R. L., 2nd, Webb, T. J., Zoso, A., et al. (2009). Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Research, 29, 2875–2884.PubMedGoogle Scholar
  193. 193.
    Lane, D., Matte, I., Rancourt, C., & Piche, A. (2011). Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer, 11, 210.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Dankbar, B., Padro, T., Leo, R., et al. (2000). Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood, 95, 2630–2636.PubMedGoogle Scholar
  195. 195.
    Nilsson, M. B., Langley, R. R., & Fidler, I. J. (2005). Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Research, 65, 10794–10800.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Rabinovich, A., Medina, L., Piura, B., Segal, S., & Huleihel, M. (2007). Regulation of ovarian carcinoma SKOV-3 cell proliferation and secretion of MMPs by autocrine IL-6. Anticancer Research, 27, 267–272.PubMedGoogle Scholar
  197. 197.
    Scambia, G., Testa, U., Benedetti Panici, P., et al. (1995). Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. British Journal of Cancer, 71, 354–356.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Guo, Y., Nemeth, J., O’Brien, C., et al. (2010). Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clinical Cancer Research, 16, 5759–5769.PubMedCrossRefGoogle Scholar
  199. 199.
    Coward, J., Kulbe, H., Chakravarty, P., et al. (2011). Interleukin-6 as a therapeutic target in human ovarian cancer. Clinical Cancer Research, 17, 6083–6096.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.PubMedCrossRefGoogle Scholar
  201. 201.
    Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296.PubMedCrossRefGoogle Scholar
  202. 202.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.PubMedCrossRefGoogle Scholar
  203. 203.
    Fattal, E., & Bochot, A. (2006). Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Advanced Drug Delivery Reviews, 58, 1203–1223.PubMedCrossRefGoogle Scholar
  204. 204.
    Bitko, V., Musiyenko, A., Shulyayeva, O., & Barik, S. (2005). Inhibition of respiratory viruses by nasally administered siRNA. Nature Medicine, 11, 50–55.PubMedCrossRefGoogle Scholar
  205. 205.
    Ozpolat, B., Sood, A. K., & Lopez-Berestein, G. (2010). Nanomedicine based approaches for the delivery of siRNA in cancer. Journal of Internal Medicine, 267, 44–53.PubMedCrossRefGoogle Scholar
  206. 206.
    Zhou, J., Shum, K. T., Burnett, J. C., & Rossi, J. J. (2013). Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals (Basel), 6, 85–107.CrossRefGoogle Scholar
  207. 207.
    Tan, W. B., Jiang, S., & Zhang, Y. (2007). Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 28, 1565–1571.PubMedCrossRefGoogle Scholar
  208. 208.
    Lee, J. H., Lee, K., Moon, S. H., Lee, Y., Park, T. G., & Cheon, J. (2009). All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angewandte Chemie International Edition in English, 48, 4174–4179.CrossRefGoogle Scholar
  209. 209.
    Yu, D., Peng, P., Dharap, S. S., et al. (2005). Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. Journal of Controlled Release, 110, 90–102.PubMedCrossRefGoogle Scholar
  210. 210.
    Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41, 189–207.PubMedCrossRefGoogle Scholar
  211. 211.
    Nikitenko, N. A., & Prassolov, V. S. (2013). Non-viral delivery and therapeutic application of small interfering RNAs. Acta Naturae, 5, 35–53.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Davis, M. E., Zuckerman, J. E., Choi, C. H., et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 464, 1067–1070.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Heidel, J. D., Yu, Z., Liu, J. Y., et al. (2007). Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proceedings of the National Academy of Sciences of the United States of America, 104, 5715–5721.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Matei, D., Emerson, R. E., Schilder, J., et al. (2008). Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier Oncology Group trial. Cancer, 113, 723–732.PubMedCrossRefGoogle Scholar
  215. 215.
    Juretzka, M., Hensley, M. L., Tew, W., et al. (2008). A phase 2 trial of oral imatinib in patients with epithelial ovarian, fallopian tube, or peritoneal carcinoma in second or greater remission. European Journal of Gynaecological Oncology, 29, 568–572.PubMedGoogle Scholar
  216. 216.
    Liu, J. F., Tolaney, S. M., Birrer, M., et al. (2013). A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. European Journal of Cancer, 49, 2972–2978.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Hjalmarson, A. (1990). Heart rate and beta-adrenergic mechanisms in acute myocardial infarction. Basic Research in Cardiology, 85(Suppl 1), 325–333.PubMedGoogle Scholar
  218. 218.
    Bodnar, L., Gornas, M., & Szczylik, C. (2011). Sorafenib as a third line therapy in patients with epithelial ovarian cancer or primary peritoneal cancer: a phase II study. Gynecologic Oncology, 123, 33–36.PubMedCrossRefGoogle Scholar
  219. 219.
    Campos, S. M., Penson, R. T., Matulonis, U., et al. (2013). A phase II trial of sunitinib malate in recurrent and refractory ovarian, fallopian tube and peritoneal carcinoma. Gynecologic Oncology, 128, 215–220.PubMedCrossRefGoogle Scholar
  220. 220.
    Baumann, K. H., du Bois, A., Meier, W., et al. (2012). A phase II trial (AGO 2.11) in platinum-resistant ovarian cancer: a randomized multicenter trial with sunitinib (SU11248) to evaluate dosage, schedule, tolerability, toxicity and effectiveness of a multitargeted receptor tyrosine kinase inhibitor monotherapy. Annals of Oncology, 23, 2265–2271.PubMedCrossRefGoogle Scholar
  221. 221.
    Karlan, B. Y., Oza, A. M., Richardson, G. E., et al. (2012). Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. Journal of Clinical Oncology, 30, 362–371.PubMedCrossRefGoogle Scholar
  222. 222.
    Secord, A. A., Teoh, D. K., Barry, W. T., et al. (2012). A phase I trial of dasatinib, an SRC-family kinase inhibitor, in combination with paclitaxel and carboplatin in patients with advanced or recurrent ovarian cancer. Clinical Cancer Research, 18, 5489–5498.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Schilder, R. J., Brady, W. E., Lankes, H. A., et al. (2012). Phase II evaluation of dasatinib in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 127, 70–74.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Behbakht, K., Sill, M. W., Darcy, K. M., et al. (2011). Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent and recurrent epithelial ovarian and primary peritoneal malignancies: a Gynecologic Oncology Group study. Gynecologic Oncology, 123, 19–26.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Temkin, S. M., Yamada, S. D., & Fleming, G. F. (2010). A phase I study of weekly temsirolimus and topotecan in the treatment of advanced and/or recurrent gynecologic malignancies. Gynecologic Oncology, 117, 473–476.PubMedCrossRefGoogle Scholar
  226. 226.
    Kollmannsberger, C., Hirte, H., Siu, L. L., et al. (2012). Temsirolimus in combination with carboplatin and paclitaxel in patients with advanced solid tumors: a NCIC-CTG, phase I, open-label dose-escalation study (IND 179). Annals of Oncology, 23, 238–244.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hyun-Jin Choi
    • 1
  • Guillermo N. Armaiz Pena
    • 1
  • Sunila Pradeep
    • 1
  • Min Soon Cho
    • 4
  • Robert L. Coleman
    • 1
  • Anil K. Sood
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Gynecologic Oncology and Reproductive Medicine Unit 1362The University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Cancer BiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Center for RNA Interference and Non-Coding RNAThe University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.Section of Benign Hematology, Department of Pulmonary MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations