Cancer and Metastasis Reviews

, Volume 33, Issue 4, pp 1109–1124 | Cite as

Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art

  • J. Michael Randall
  • Frederick Millard
  • Razelle Kurzrock
Clinical

Abstract

Renal cell carcinoma (RCC) is among the most prevalent malignancies in the USA. Most RCCs are sporadic, but hereditary syndromes associated with RCC account for 2–3 % of cases and include von Hippel-Lindau, hereditary leiomyomatosis, Birt-Hogg-Dube, tuberous sclerosis, hereditary papillary RCC, and familial renal carcinoma. In the past decade, our understanding of the genetic mutations associated with sporadic forms of RCC has increased considerably, with the most common mutations in clear cell RCC seen in the VHL, PBRM1, BAP1, and SETD2 genes. Among these, BAP1 mutations are associated with aggressive disease and decreased survival. Several targeted therapies for advanced RCC have been approved and include sunitinib, sorafenib, pazopanib, axitinib (tyrosine kinase inhibitors (TKIs) with anti-vascular endothelial growth factor (VEGFR) activity), everolimus, and temsirolimus (TKIs that inhibit mTORC1, the downstream part of the PI3K/AKT/mTOR pathway). High-dose interleukin 2 (IL-2) immunotherapy and the combination of bevacizumab plus interferon-α are also approved treatments. At present, there are no predictive genetic markers to direct therapy for RCC, perhaps because the vast majority of trials have been evaluated in unselected patient populations, with advanced metastatic disease. This review will focus on our current understanding of the molecular genetics of RCC, and how this may inform therapeutics.

Keywords

Renal cell carcinoma Targeted therapy Molecular aberrations Investigational agents Prognostic markers 

References

  1. 1.
    Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 10–29.Google Scholar
  2. 2.
    Cohen, H. T., & McGovern, F. (2005). Renal-cell carcinoma. New England Journal of Medicine, 353, 2477–2490.PubMedGoogle Scholar
  3. 3.
    Lopez-Beltran, A., Carrasco, J. C., Cheng, L., Scarpelli, M., Kirkali, Z., & Montironi, R. (2009). 2009 update on the classification of renal epithelial tumors in adults. International Journal of Urology, 16, 432–443.PubMedGoogle Scholar
  4. 4.
    Albiges, L., Molinie, V., & Escudier, B. (2012). Non-clear cell renal cell carcinoma: does the mammalian target of rapamycin represent a rational therapeutic target? The Oncologist, 17, 1051–1062.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Rini, B. I., Campbell, S. C., & Escudier, B. (2009). Renal cell carcinoma. Lancet, 373, 1119–1132.PubMedGoogle Scholar
  6. 6.
    Forbes, S. A., Bindal, N., Bamford, S., Cole, C., Kok, C. Y., Beare, D., et al. (2011). COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Research, 39, D945–D950. doi:10.1093/nar/gkq929.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Nickerson, M. L., Jaeger, E., Yangu, S., Dorocher, J. A., Mahurakar, S., Zaridze, D., et al. (2008). Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clinical Cancer Research, 14, 4726–4734.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Kim, W. Y., & Kaelin, W. G. (2004). Role of VHL gene mutation in human cancer. Journal of Clinical Oncology, 22, 4991–5004.PubMedGoogle Scholar
  9. 9.
    Varela, I., Tarpey, P., Raine, K., Huang, D., Ong, C. K., Stephens, P., et al. (2011). Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal cell carcinoma. Nature, 469, 539–542.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Duns, G., Hofstra, R. M., Sietzema, J. G., Hollema, H., vanDuivenbode, I., Kuik, A., et al. (2012). Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development. Human Mutation, 33, 1059–1062.PubMedGoogle Scholar
  11. 11.
    Hakimi, A. A., Ostrovnaya, I., Reva, B., Schultz, N., Chen, Y.-B., Gonen, M., et al. (2013). Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clinical Cancer Research. doi:10.1158/1078-0432.CCR-12-3886.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Pena-Llopis, S., Vega-Rubin-de-Celis, S., Liao, A., Leng, N., Pavia-Jimenez, A., Wang, S., et al. (2012). BAP1 loss defines a new class of renal cell carcinoma. Nature Genetics, 44, 751–759.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Dalgliesh, G. L., Furge, K., Greenman, C., Chen, L., Bignell, G., Butler, A., et al. (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature, 463, 360–363.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Hakimi, A. A., Chen, Y.-B., Wren, J., Gonen, M., Abdel-Wahab, O., Heguy, A., et al. (2013). Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. European Urology, 63, 848–854.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Duns, G., van den Berg, E., van Duivenbode, I., Osinga, J., Hollema, H., Hofstra, R. M., et al. (2010). Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Research, 70, 4287–4291.PubMedGoogle Scholar
  16. 16.
    Guo, G., Gui, Y., Gao, S., Tang, A., Hu, X., Huang, Y., et al. (2012). Frequent mutation of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nature Genetics, 44, 17–19.Google Scholar
  17. 17.
    Zhang, X., Xu, R., Zhu, B., Yang, X., Ding, X., Duan, S., et al. (2007). Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development, 134, 901–908.PubMedGoogle Scholar
  18. 18.
    Muller, P. A. J., & Vousden, K. H. (2013). p53 mutations in cancer. Nature Cell Biology, 15, 2–8.PubMedGoogle Scholar
  19. 19.
    Niu, X., Zhang, T., Liao, L., Zhou, L., Linder, D., Zhou, M., et al. (2012). The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene, 31, 776–786.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Li, W.-D., Li, Q. R., Xu, S. N., Wei, F. J., Ye, Z. J., Cheng, J. K., et al. (2013). Exome sequencing identifies an MLL3 gene germ line mutation in a pedigree of colorectal cancer and acute myeloid leukemia. Blood, 121, 1478–1479.PubMedGoogle Scholar
  21. 21.
    Liu, P., Morrison, C., Wang, L., Xiong, D., Vedell, P., Cui, P., et al. (2012). Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing. Carcinogenesis, 33, 1270–1276.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Mayers, C. M., Wadell, J., McLean, K., Venere, M., Malik, M., Shibata, T., et al. (2010). The rho guanine nucleotide exchange factor AKAP13 (BRX) is essential for cardiac development in mice. Journal of Biological Chemistry, 285, 12344–12354.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., et al. (2012). Single-cell exome sequencing reveals single nucleotide mutation characteristics of a kidney tumor. Cell, 148, 886–895.PubMedGoogle Scholar
  24. 24.
    Shankar, J., Messenberg, A., Chan, J., Underhill, T. M., Foster, L. J., & Nabi, I. R. (2010). Pseudopodial actin dynamics control epithelia-mesenchymal transition in metastatic cancer cells. Cancer Research, 70, 3780–3790.PubMedGoogle Scholar
  25. 25.
    Berghs, S., Aggujaro, D., Dirkx, R., Maksimova, E., Stabach, P., Hermel, J. M., et al. (2000). Beta IV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in central and peripheral nervous system. Journal of Cell Biology, 151, 985–1002.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Robinson, R., Carpenter, D., Shaw, M.-A., Halsall, J., & Hopkins, P. (2006). Mutation in RYR1 in malignant hyperthermia and central core disease. Human Mutation, 27, 977–989.PubMedGoogle Scholar
  27. 27.
    Carlsson, E., Ranki, A., Sipila, L., Karenko, L., Abdel-Rahman, W., Ovaska, K., et al. (2012). Potential role of a navigator gene NAV3 in colorectal cancer. British Journal of Cancer, 106, 517–524.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Lamason, R., McCully, R., Lew, S., & Pomerantz, J. (2010). Oncogenic CARD11 mutation induce hyperactive signaling by disrupting autoinhibition by the PKC-responsive inhibitory domain. Biochemistry, 38, 8240–8250.Google Scholar
  29. 29.
    Gandhi, P. N., Chen, S. G., & Wilson-Delfosse, A. L. (2009). Leucine-rich repeat kinase 2 (LRRK2): a key player in the pathogenesis of Parkinson’s disease. Journal of Neuroscience Research, 87, 1283–1295.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Sansal, I., & Sellers, W. R. (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. Journal of Clinical Oncology, 22, 2954–2963.PubMedGoogle Scholar
  31. 31.
    Guo, C., Chang, C.-C., Wortham, M., Chen, L. H., Kernagis, D. H., Qin, X., et al. (2012). Global indentification of MLL2-targeted local reveals MLL2’s role in diverse signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 109, 17603–17608.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Karakas, B., Bachman, K., & Park, B. (2006). Mutation of the PIK3CA oncogene in human cancers. British Journal of Cancer, 94, 455–459.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Lee, J., & Paull, T. (2007). Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene, 26, 7741–7748.PubMedGoogle Scholar
  34. 34.
    Sehrawat, S., Emandez, T., Culler, X., Takahashi, M., Ono, Y., Komarova, Y., et al. (2011). AKAP9 regulation of microtubule dynamics promotes Epac-1 induced endothelial barrier properties. Blood, 117, 708–718.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Walters, J. T. R., Corvin, A., Owen, M. J., Williams, H., Dragovic, M., Quinn, E. M., et al. (2010). Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia. Archives of General Psychiatry, 67, 692–700.PubMedGoogle Scholar
  36. 36.
    Huang, J., & Manning, B. D. (2008). The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochemistry Journal, 412, 179–190.Google Scholar
  37. 37.
    Sato, D., Lionel, A. C., Leblond, C. S., Prasad, A., Pinto, D., Walker, S., et al. (2012). SHANK1 deletions in males with autism spectrum disorder. American Journal of Human Genetics, 90, 879–887.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Charfi, C., Voisin, V., Levros, L. C., Edouard, E., & Rassert, E. (2011). Gene profiling of Graffi murine leukemia virus-induced lymphoid leukemias: identification of leukemia markers and Fmn2 as a potential oncogene. Blood, 117, 1899–1910.PubMedGoogle Scholar
  39. 39.
    Akamatsu, S., Takata, R., Haiman, C. A., Takahashi, A., Inoue, T., Kubo, M., et al. (2012). Common variants at 11q12, 10q26, and 3p11.2 are associated with protease cancer susceptibility in Japanese. Nature Genetics, 44, 426–430.PubMedGoogle Scholar
  40. 40.
    Hanson, D., Murray, P., Black, G., & Clayton, P. (2011). The genetics of 3-M syndrome: unravelling a potential new regulatory growth pathway. Hormone Research in Pædiatrics, 76, 369–378.PubMedGoogle Scholar
  41. 41.
    McDaneld, T. G., & Spurlock, D. (2008). Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt. Journal of Animal Science, 86, 2897–2902.PubMedGoogle Scholar
  42. 42.
    Lahoz, A., & Hall, A. (2012). A tumor suppressor role for srGAP3 in mammary epithelial cells. Oncogene. doi:10.1038/onc.2012.489.PubMedGoogle Scholar
  43. 43.
    Rimkunas, V. M., Crosby, K., Li, D., Hu, Y., Kelly, M. E., Gu, T. L., et al. (2012). Analysis of receptor tyrosine kinase ROS1- positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clinical Cancer Research, 18, 4449–4457.PubMedGoogle Scholar
  44. 44.
    Wu, R.-C., Wang, T.-L., & Shih, I.-M. (2014). The emerging roles of ARID1A in tumor suppression. Cancer Biology and Therapy, 15, 655–664.PubMedGoogle Scholar
  45. 45.
    Witkiewicz, A. K., Knudsen, K. E., Dicker, A. P., & Knudsen, E. S. (2011). The meaning of of p16(ink4a) expression in tumors: functional significance, clinical associations, and future developments. Cell Cycle, 15, 2497–2503.Google Scholar
  46. 46.
    Liu, W., Morito, D., Takashima, S., Mineharu, Y., Kobayashi, H., Hitomi, T., et al. (2011). Identification of RNF213 as susceptibility gene for Moyamoya disease and its possible role in vascular development. PLoS One, 6, e22542.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Mandai, K., Rikitake, Y., Shimono, Y., & Takai, Y. (2013). Afadin/AF-6 and canoe: roles in cell adhesion and beyond. Progress in Molecular Biology and Translational Science, 116, 433–454.PubMedGoogle Scholar
  48. 48.
    Cheung, N., So, C. W., Yam, J. W. P., So, C. K. C., Poon, R. Y. C., Jin, D. Y., et al. (2004). Subcellular localization of EEN/endophilin A2, a fusion partner gene in leukaemia. Biochemistry Journal, 383, 27–35.Google Scholar
  49. 49.
    Meissner, B., Kridel, R., Lim, R., Rogic, S., Tse, K., Scott, D. W., et al. (2013). The E3 ubiquitin ligase UBR5 is recurrently mutated in mantle cell lymphoma. Blood, 121, 3161–3164.PubMedGoogle Scholar
  50. 50.
    Ye, Y., Pringle, L., Lau, A., Riquelme, D., Wang, H., Jiang, T., et al. (2010). TRE17/USP6 oncogene translocated in aneurysmal bone cyst induces matrix metalloproteinase production via activation of NK-kappa beta. Oncogene, 29(3619–29).Google Scholar
  51. 51.
    vanHaaften, G., Dalgliesh, G. L., Davies, H., Chen, L., Bignell, G., Greenman, C., et al. (2009). Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nature Genetics, 41, 521–523.Google Scholar
  52. 52.
    Bjornsson, J., Short, M. P., Kwiatkowski, D. J., & Henske, E. (1996). Tuberous sclerosis-associated renal cell carcinoma. American Journal of Pathology, 149, 1201–1208.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Zbar, B., Glenn, G., Merino, M., Middelton, L., Peterson, J., Toro, J., et al. (2007). Familial renal carcinoma: clinical evaluation, clinical subtypes and risk of renal carcinoma development. Journal of Urology, 177, 461–465.PubMedGoogle Scholar
  54. 54.
    Farley, M., Schmidt, L., Mester, J., Pena-Llopis, S., Pavia-Jimenez, A., Christie, A., et al. (2013). A novel germline BAP1 mutation predisposes to familial clear-cell renal cell carcinoma. Molecular Cancer Research, 11, 1061–1071.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Lonser, R. R., Glenn, G. M., Walther, M., Chew, E. Y., Libutti, S. K., Lineham, W. M., et al. (2003). von Hippel-Lindau disease. Lancet, 361, 2059–2067.PubMedGoogle Scholar
  56. 56.
    Linehan, W. M., Pinto, P. A., Bratslavsky, G., Pfaffenroth, E., Merino, M., Vocke, C. D., et al. (2009). Hereditary kidney cancer: unique opportunity for disease-based therapy. Cancer, 115, 2252–2261.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Schmidt, L., Junker, K., Nakaigawa, N., Kinjerski, T., Weirich, G., Miller, M., et al. (1999). Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene, 18, 2343–2350.PubMedGoogle Scholar
  58. 58.
    Schmidt, L., Junker, K., Weirich, G., Glenn, G., Choyke, P., Lubensky, I., et al. (1998). Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Research, 58, 1719–1722.PubMedGoogle Scholar
  59. 59.
    Coleman, J. A., & Russo, P. (2009). Hereditary and familial kidney cancer. Current Opinion in Urology, 19, 478–485.PubMedGoogle Scholar
  60. 60.
    Toro, J., Wei, M., Glen, G., Weinreich, M., Toure, O., Vocke, C., et al. (2008). BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dube syndrome: a new series of 50 families and a review of published reports. Journal of Medical Genetics, 45, 321–331.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Shuin, T., Tamasaki, I., Tamura, K., Okuda, H., Furihata, M., & Ashida, S. (2006). Von Hippel-Lindau disease: molecular pathological basis, clinical criteria, genetic testing, clinical features of tumors and treatment. Japanese Journal of Clinical Oncology, 36, 337–343.PubMedGoogle Scholar
  62. 62.
    Popova, T., Hebert, L., Jacquemin, V., Gad, S., Caux-Moncoutier, V., Dubois-d’Enghien, C., et al. (2013). Germline BAP1 mutations predispose to renal cell carcinoma. American Journal of Human Genetics. doi:10.1016/j.ajhg/2013.1004.1012.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Macher-Goeppinger, S., Roth, W., Wagener, N., Hohenfellner, M., Penzel, R., Haferkamp, A., et al. (2012). Molecular heterogeneity of TFE activation in renal cell carcinoma. Modern Pathology, 25, 308–315.PubMedGoogle Scholar
  64. 64.
    Klaassen, Z., Tatem, A., Burnette, J. O., Donohoe, J. M., & Terris, M. K. (2012). Adult Xp11 translocation associated renal cell carcinoma: time to recognize. Urology, 80, 965–968.PubMedGoogle Scholar
  65. 65.
    Audenet, F., Yates, D. R., Cancel-Tassin, G., Cussenot, O., & Roupret, M. (2011). Genetic pathways involved in carcinogenesis of clear cell renal cell carcinoma: genomics towards personalized medicine. BJU International, 12, 1864–1870.Google Scholar
  66. 66.
    Shen, C., & Kaelin, W. G. (2013). The VHL/HIF axis in clear cell renal carcinoma. Seminars in Cancer Biology, 23, 18–25.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Choueiri, T. K., Pomerantz, M. M., & Signoretti, S. (2013). Renal-cell carcinoma: a step closer to a new classification. Lancet Oncology, 14, 105–106.Google Scholar
  68. 68.
    Pollack, J. R., & Shain, A. H. (2013). The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One, 8(1), e55119. doi:10.1371/journal.pone.0055119.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Kapur, P., Pena-Llopis, S., Christie, A., Zhrebker, L., Pavia-Jimenez, A., Rathmell, W. K., et al. (2013). Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncology, 14, 159–167.Google Scholar
  70. 70.
    Morales, C., Kurban, G., Yap, S., Matevski, D., Evans, A., & Jewett, M. A. (2012). Clinical role of the SWI/SNF complex gene PBRM1 in clear cell renal cell carcinoma [abstract] (pp. 31–32). Rockville: 13th Annual Meeting of the Society of Urologic Oncology.Google Scholar
  71. 71.
    Pawlowski, R., Muhl, S. M., Sulser, T., Krek, W., Moch, H., & Schraml, P. (2013). Loss of PBRM1 expression is associated with renal cell carcinoma progression. International Journal of Cancer, 132, E11–E17.Google Scholar
  72. 72.
    Carbone, M., Yang, H., Pass, H., Krausz, T., Testa, J. R., & Gaudino, G. (2013). BAP1 and cancer. Nature Reviews Cancer, 13, 153–159.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Jensen, D. E., Proctor, M., Marquis, S. T., Gardner, H. P., Ha, S. I., Chodosh, L. A., et al. (1998). BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene, 16, 1097–1112.PubMedGoogle Scholar
  74. 74.
    Bott, M., Brevet, M., Taylor, B. S., Shimizu, S., Ito, T., Wang, L., et al. (2011). The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nature Genetics, 43, 668–672.PubMedGoogle Scholar
  75. 75.
    Cancer Genome Atlas Network. (2013). Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499, 43–49.Google Scholar
  76. 76.
    DeVita, V. T., Lawrence, T. S., & Rosenberg, S. A. (2008). Cancer: principles and practice of oncology (8th ed.). New York: Wolters Kluwer/Lippincott Williams & Wilkins.Google Scholar
  77. 77.
    Vanharata, S., Shu, W., Brenet, F., Hakimi, A. A., Heguy, A., Viale, A., et al. (2012). Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nature Medicine, 19, 53–56.Google Scholar
  78. 78.
    Staller, P., Sulitkova, J., Lisztwan, J., Moch, H., Oakeley, E., & Krek, W. (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 425, 307–311.PubMedGoogle Scholar
  79. 79.
    Zagzag, D., Krishnamachary, B., Yee, H., Okuyama, H., Chiriboga, L., Ali, M. A., et al. (2005). Stromal cell-derived factor-1a and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Research, 65, 6178–6188.PubMedGoogle Scholar
  80. 80.
    Wang, L., Chen, W., Gao, L., Yang, Q., Liu, B., Wu, Z., et al. (2012). High expression of CXCR4, CXCR7, and SDF-1 predicts poor survival in renal cell carcinoma. World Journal of Surgical Oncology, 10, 212.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Wang, L., Wang, L., Yang, B., Yang, Q., Qiao, S., Wang, Y., et al. (2009). Strong expression of chemokine receptor CXCR4 by renal cell carcinoma cells correlates with metastasis. Clinical and Experimental Metastasis, 26, 1049–1054.PubMedGoogle Scholar
  82. 82.
    Gassenmaier, M., Chen, D., Buchner, A., Henkel, L., Schiemann, M., Mack, B., et al. (2013). CXC chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis. Stem Cells, 31, 1467–1476.PubMedGoogle Scholar
  83. 83.
    Klapper, J. A., Downey, S. G., Smith, F., Yang, J. C., Hughes, M. S., Kammula, U. S., et al. (2008). High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: a retrospective analysis of response and survival in patients in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer, 113, 293–301.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Rini, B., de La Motte Rouge, T., Harzstark, A., Michaelson, M. D., Liu, G., Grunwald, V., et al. (2013). Five-year survival in patients with cytokine-refractory metastatic renal cell carcinoma treated with axitinib. Clinical Genitourinary Cancer, 11, 107–114.PubMedGoogle Scholar
  85. 85.
    DiBiase, S., Valicenti, R., Schultz, D., Xie, Y., Gomella, L., & Corn, B. (1997). Palliative irradiation for focally symptomatic metastatic renal cell carcinoma: support for dose escalation based on a biological model. Journal of Urology, 158, 746–749.PubMedGoogle Scholar
  86. 86.
    Karam, J., & Wood, C. (2011). The role of surgery in advance renal cell carcinoma: cytoreductive nephrectomy and metastectomy. Hematology/oncology Clinics of North America, 25, 753–764.PubMedGoogle Scholar
  87. 87.
    Silberstein, J., Millard, F., Mehrazin, R., Kopp, R., Bazzi, W., DiBlasio, C., et al. (2010). Feasiblity and efficacy of neoadjuvant sunitinib before nephron-sparing surgery. BJU International, 106, 1270–1276.PubMedGoogle Scholar
  88. 88.
    Kapoor, A., Wang, Y., Dishan, B., & Paulter, S. (2014). Update on cryoablation for treatment of small renal mass: oncologic control, renal function preservation, and rate of complications. Current Urology Reports, 15, 396.PubMedGoogle Scholar
  89. 89.
    Li, D., Pua, B., & Madoff, D. (2014). Role of embolization in the treatment of renal masses. Seminars in Interventional Radiology, 31, 70–81.PubMedGoogle Scholar
  90. 90.
    Flanigan, R., Salmon, S., Blumenstein, B., Bearman, S., Roy, V., McGrath, P., et al. (2001). Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. New England Journal of Medicine, 345, 1655–1659.PubMedGoogle Scholar
  91. 91.
    Heng, D. Y., Rini, B., Beuselinck, B., Lee, J., Knox, J. J., Bjarnason, G. A., et al. (2014). Cytoreductive nephrectomy (CN) in patients with synchronous metastases from renal cell carcinoma: results from the international metastatic renal cell carcinoma database consortium (IMDC). Journal of Clinical Oncology, 32(suppl 4), 396.Google Scholar
  92. 92.
    Rini, B. I., Escudier, B., Tomczak, P., Kaprin, A., Szczylik, C., Hutson, T. E., et al. (2011). Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet, 378, 1931–1939.PubMedGoogle Scholar
  93. 93.
    Escudier, B., Pluzanska, A., Koralewski, P., Ravaud, A., Bracarda, S., Szczylik, C., et al. (2007). Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet, 370, 2103–2111.PubMedGoogle Scholar
  94. 94.
    Houghton, P. J. (2010). Everolimus. Clinical Cancer Research, 16, 1368–1372.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Motzer, R. J., Escudier, B., Oudard, S., Hutson, T. E., Porta, C., Bracarda, S., et al. (2010). Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and prognostic factors. Cancer, 116(18), 4256–4265.PubMedGoogle Scholar
  96. 96.
    Coppin, C., Porzolt, F., Autenrieth, M., Kumpf, J., Coldman, A., & Wilt, T. (2004). Immunotherapy for advanced renal cell cancer. Cochrane Database of Systematic Reviews, 3, CD001425.Google Scholar
  97. 97.
    Sternberg, C. N., Davis, I. D., Mardiak, J., Szczylik, C., Lee, E., Wagstaff, J., et al. (2010). Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. Journal of Clinical Oncology, 28, 1061–1068.PubMedGoogle Scholar
  98. 98.
    Sternberg, C. N., Hawkins, R. E., Wagstaff, J., Salman, P., Mardiak, J., Barrios, C. H., et al. (2013). A randomised, double-blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: final overall survival results and safety update. European Journal of Cancer, 49, 1287–1296.PubMedGoogle Scholar
  99. 99.
    Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Siebles, M., et al. (2007). Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine, 356, 125–134.PubMedGoogle Scholar
  100. 100.
    Chow, L. Q. M., & Eckhart, S. G. (2007). Sunitinib: from rational design to clinical efficacy. Journal of Clinical Oncology, 25, 884–896.PubMedGoogle Scholar
  101. 101.
    Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Oudard, S., et al. (2009). Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 27, 3584–3590.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Hudes, G., Carducci, M., Tomczak, P., Dutcher, J., Figlin, R., Kapoor, A., et al. (2007). Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. New England Journal of Medicine, 356, 2271–2281.PubMedGoogle Scholar
  103. 103.
    Lockhart, A. C., Rothenberg, M. L., Dupont, J., Cooper, W., Chevalier, P., Sternas, L., et al. (2010). Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. Journal of Clinical Oncology, 28, 207–214.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Amin, A., Dudek, A., Logan, T., Lance, R. S., Holzbeierlein, J. M., Master, V. A., et al. (2013). Prolonged survival with personalized immunotherapy (AGS-003) in combination with sunitinib in unfavorable risk metastatic RCC (mRCC). Journal of Clinical Oncology, 31(suppl), 357.Google Scholar
  105. 105.
    Sarantopoulos, J., Dang, L. H., Lauer, R., Starodub, A., Hauke, R. J., Galsky, M. D., et al. (2013). A phase I/II trial of BNC105P with everolimus in metastatic renal cell carcinoma (mRCC) patients: updated phase I results of the disruptor-1 trial. Journal of Clinical Oncology, 31(suppl), 4563.Google Scholar
  106. 106.
    Mekhail, T., Masson, E., Fischer, B. S., Gong, J., Iyer, R., Gan, J., et al. (2010). Metabolism, excretion, and pharmacokinetics of oral brivanib in patients with advanced or metastatic solid tumors. Drug Metabolism and Disposition, 38, 1962–1966.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Finn, R. S., Kang, Y. K., Muchahy, M., Polite, B. N., Lim, H. Y., Walters, I., et al. (2012). Phase II, open-label study of brivanib as second-line therapy in patients with advanced hepatocellular carcinoma. Clinical Cancer Research, 18, 2090–2098.PubMedGoogle Scholar
  108. 108.
    Choueiri, T. K., Pal, S. K., McDermott, D. F., Ramies, D. A., Morrisey, S., Lee, Y., et al. (2012). Efficacy of cabozantinib (XL184) in patients (pts) with metastatic, refractory renal cell carcinoma (RCC). Journal of Clinical Oncology, 30(suppl), 4504.Google Scholar
  109. 109.
    Sridhar, S. S., Mackenzie, M. J., Hotte, S. J., Mukherjee, S. D., Tannock, I. F., Murray, N., et al. (2013). A phase II study of cediranib (AZD 2171) in treatment naive patients with progressive unresectable recurrent or metastatic renal cell carcinoma. A trial of the PMH phase 2 consortium. Investigational New Drugs. doi:10.1007/s10637-013-9931-1.PubMedGoogle Scholar
  110. 110.
    Keefe, S. M., Heitjan, D., Hennessey, M., Robinson, J., Mykulowicz, K., Marshall, A., et al. (2014). Interim results of a phase 1b/2a study evaluating the nano pharmaceutical CRLX101 with bevacizumab (bev) in the treatment of patients (pts) with refractory metastatic renal cell carcinoma (mRCC). Journal of Clinical Oncology, 32(suppl), 412.Google Scholar
  111. 111.
    Bendell, J., Gordon, M. S., Hurwitz, H., Condon, C., Yang, Y., Wilson, D., et al. (2011). Phase I study of ACE-041, a novel inhibitor of ALK1-mediated angiogenesis, in patients with advanced solid tumors. Journal of Clinical Oncology, 29(suppl), 3070.Google Scholar
  112. 112.
    Angevin, E., Lopez-Martin, J. A., Lin, C. C., Gschwend, J. E., Harzstark, A., Castellano, D., et al. (2012). Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma. Clinical Cancer Research, 19(5), 1257–1268.Google Scholar
  113. 113.
    Angevin, E., Grunwald, V., Ravaud, A., Castellano, D. E., Lin, C. C., Gschwend, J. E., et al. (2011). A phase II study of dovitinib (TKI258), an FGFR and VEGFR inhibitor, in patients with advanced or metastatic renal cell cancer (mRCC). Journal of Clinical Oncology, 29(suppl), 4551.Google Scholar
  114. 114.
    Motzer, R. J., Porta, C., Vogelzang, N. J., Sternberg, C. N., Szczylik, C., Zolnierek, J., et al. (2014). Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open label, randomised phase 3 trial. Lancet Oncology, 15, 286–296.Google Scholar
  115. 115.
    Pili, R., Shen, L., George, S., Hammers, H. J., Sandecki, A., Collins, C., et al. (2013). Phase I study of high-dose interleukin 2, aldesleukin, in combination with the histone deacetylase inhibitor, entinostat, in patients with metastatic renal cell carcinoma: safetly and tolerability results. Journal of Clinical Oncology, 31(suppl), 369.Google Scholar
  116. 116.
    Choueiri, T. K., Vaishampayan, U., Rosenberg, J. E., Logan, T. F., Harzstark, A., Bukowski, R. M., et al. (2013). Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. Journal of Clinical Oncology, 31, 181–186.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Belldegrun, A. S., Chamie, K., Kloepfer, P., Fall, B., Bevan, P., Storkel, S., et al. (2013). ARISER: a randomised double blind phase III study to evaluate adjuvant cG250 treatment versus placebo in patients with high-risk ccRCC—results and implications for adjuvant clinical trials. Journal of Clinical Oncology, 31(suppl), 4507.Google Scholar
  118. 118.
    Walter, S., Weinschenk, T., Stenzl, A., Zdrojowy, R., Pluzanska, A., Szczylik, C., et al. (2012). Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nature Medicine, 18, 1254–1261.PubMedGoogle Scholar
  119. 119.
    Bang, Y.-J., Su, W. C., Nam, D. H., Lim, W. T., Bauer, T. M., Brana, I., et al. (2014). Phase I study of the safety and efficacy of INC280 in patients with advanced MET-dependent solid tumors. Journal of Clinical Oncology, 32(suppl), 2520.Google Scholar
  120. 120.
    Molina, A. M., Hutson, T. E., Larkin, J. M., Gold, A., Andresen, C., Wood, K., et al. (2013). A phase Ib clinical trial of the multitargeted kinase inhibitor lenvatinib (E7080) in combination with everolimus for treatment of metastatic renal cell carcinoma (RCC). Journal of Clinical Oncology, 31(suppl 6), 358.Google Scholar
  121. 121.
    Tannir, N. M., Wong, Y. N., Kollmannsberger, C. K., Ernstoff, M. S., Perry, D. J., Appleman, L. J., et al. (2011). Phase 2 trial of linifanib (ABT-869) in patients with advanced renal cell cancer after sunitinib failure. European Journal of Cancer, 47, 2706–2714.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Ghamande, S., Lin, C., Cho, D., Coleman, T., Chaudhary, I., Cleary, J., et al. (2011). A phase I study of the novel DNA topoisomerase-1 inhibitor, TLC388, administered intravenously to patients with advanced solid tumors. Journal of Clinical Oncology, 29(suppl), e13618.Google Scholar
  123. 123.
    Jonasch, E., Corn, P. G., Pagliaro, L. C., Lara, P., Wang, X., Do, K.-A., et al. (2013). Randomized phase II CTEP study of MK2206 versus everolimus in VEGF inhibitor refractory renal cell carcinoma patients. Journal of Clinical Oncology, 31(suppl), 4517.Google Scholar
  124. 124.
    Cho, D. C., Sosman, J. A., Sznol, M., Gordon, M. S., Hollebecque, A., Hamid, O., et al. (2013). Clinical activity, safety, and biomarkers of MPDL3230A, an engineered PD-L1 antibody in patients with metastatic renal cell carcinoma (mRCC). Journal of Clinical Oncology, 31(suppl), 4505.Google Scholar
  125. 125.
    Borghaei, H., Alpaugh, K., Hedlund, G., Forsberg, G., Langer, C., Rogatko, A., et al. (2009). Phase I dose escalation, pharmacokinetic and pharmacodynamic study of naptumomab estafenatox alone in patients with advanced cancer and with docetaxel in patients with advanced non-small-cell lung cancer. Journal of Clinical Oncology, 27, 4116–4123.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Hawkins, R. E., Gore, M. E., Shparyk, Y., Bondar, V., Gladkov, O., Ganev, T., et al. (2013). A randomized phase II/III study of naptumomab estafenatox plus IFN-a versus IFN-a in advanced renal cell carcinoma. Journal of Clinical Oncology, 31(suppl), 3073.Google Scholar
  127. 127.
    Eisen, T., Shparyk, Y., Jones, R., MacLeod, N. J., Temple, G., Finnigan, H., et al. (2013). Phase II efficacy and safety study of nintedanib versus sunitinib in previously untreated renal cell carcinoma (RCC) patients. Journal of Clinical Oncology, 31(suppl), 4506.Google Scholar
  128. 128.
    Topalian, S. L., Hodi, S. F., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New England Journal of Medicine, 366, 2443–2454.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Brahmer, J. R., Tykodi, S. S., Chow, L. Q. M., Hwu, W.-J., Topalian, S. L., Hwu, P., et al. (2012). Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. New England Journal of Medicine, 366, 2455–2465.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Ribas, A., Hodi, S. F., Kefford, R., Hamid, O., Daud, A., Wolchok, J. D., et al. (2014). Efficacy and safety of the anti-PD-1 monoclonal antibody MK-3475 in 411 patients with melanoma (MEL). Journal of Clinical Oncology, 32(suppl), LBA9000.Google Scholar
  131. 131.
    Atkins, M. B., Kudchadkar, R. R., Sznol, M., McDermott, D. F., Lotern, M., Schachter, J., et al. (2014). Phase 2, multicenter, safety and efficacy of pidilizumab in patients with metastatic melanoma. Journal of Clinical Oncology, 32(suppl), 9001.Google Scholar
  132. 132.
    Garcia, J. A., Hudes, G. R., Choueiri, T. K., Stadler, W. M., Wood, L. S., Gurtler, J., et al. (2014). A phase 2, single-arm study of ramucirumab in patients with metastatic renal cell carcinoma with disease progression on or intolerance to tyrosine kinase inhibitor therapy. Cancer, 120, 1647–1655.PubMedGoogle Scholar
  133. 133.
    Eisen, T., Joensuu, H., Nathan, P. D., Harper, P. G., Wojtukiewicz, M. Z., Nicholson, S., et al. (2012). Regorafenib for patients with previously untreated metastatic or unresectable renal-cell carcinoma: a single-group phase 2 trial. Lancet Oncology, 13, 1055–1062.Google Scholar
  134. 134.
    Schoffski, P., Garcia, J. A., Stadler, W. M., Gil, T., Jonasch, E., Tagawa, S. T., et al. (2011). A phase II study of the efficacy and safety of AMG 102 in patients with metastatic renal cell carcinoma. BJU International, 108, 679–686.PubMedGoogle Scholar
  135. 135.
    Gordon, M., Just, R., Rosen, L., & Dorr, A. (2010). A phase I study of sonepiczumab (S), a humanized monoclonal antibody to sphingosine-1-phosphate (S1P), in patients with advanced solid tumors. Journal of Clinical Oncology, 28(suppl), 2560.Google Scholar
  136. 136.
    Puzanov, I., Sosman, J. A., Santoro, A., Martell, R. E., Dy, G. K., Goff, L. W., et al. (2012). Safety and efficacy of MET inhibitor tivantinib (ARQ 197) combined with sorafenib in patients (pts) with renal cell carcinoma (RCC) from a phase I study. Journal of Clinical Oncology, 30(suppl), 4545.Google Scholar
  137. 137.
    Rosen, L. S., Senzer, N., Mekhail, T., Ganapathi, R., Chai, F., Savage, R. E., et al. (2011). A phase I dose-escalation study of tivantinib (ARQ 197) in adult patients with metastatic solid tumors. Clinical Cancer Research, 17, 7754–7764.PubMedGoogle Scholar
  138. 138.
    Motzer, R. J., Nosov, D., Eisen, T., Bondarenko, I. N., Lesovoy, V., Lipatov, O. N., et al. (2012). Tivozanib versus sorafenib as initial targeted therapy for patients with advanced renal cell carcinoma: results from a phase III randomized, open-label, multicenter trial. Journal of Clinical Oncology, 30(suppl), 4501.Google Scholar
  139. 139.
    Motzer, R. J., Nosov, D., Eisen, T., Bondarenko, I., Lesovoy, V., Lipatov, O. N., et al. (2013). Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a phase III trial. Journal of Clinical Oncology, 31, 3791–3799.PubMedGoogle Scholar
  140. 140.
    Rini, B. I., Szczylik, C., Tannir, N. M., Koralewski, P., Tomczak, P., Deptala, A., et al. (2011). AMG 386 in combination with sorafenib in patients (pts) with metastatic renal cell cancer (mRCC): a randomized, double-blind, placebo-controlled, phase II study. Journal of Clinical Oncology, 29(suppl), 309.Google Scholar
  141. 141.
    Stamatakis, L., Shuch, B., Singer, E. A., Nix, J., Truong, H., Friend, J. C., et al. (2013). Phase II trial of vandetanib in Von Hippel-Lindau-associated renal cell carcinoma. Journal of Clinical Oncology, 31(suppl), 4584.Google Scholar
  142. 142.
    Gan, H. K., Lickliter, J., Millward, M., Gu, Y., Su, W., Frigault, M., et al. (2014). First-in-human phase I study of a selective c-Met inhibitor volitinib (HMP504/AZD6094) in patients with advanced solid tumors. Journal of Clinical Oncology, 32(suppl), 11111.Google Scholar
  143. 143.
    van Geel, R. M., Beijnen, J., & Schellens, J. (2012). Concise drug review, pazopanib and axitinib. The Oncologist, 17, 1081–1089.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Motzer, R. J., Hutson, T. E., Cella, D., Reeves, J., Hawkins, R., Guo, J., et al. (2013). Pazopanib versus sunitinib in metastatic renal-cell carcinoma. New England Journal of Medicine, 369, 722–731.PubMedGoogle Scholar
  145. 145.
    McDermott, D., Ghebremichael, S., Signoretti, S., Margolin, K., Clark, J., Sosman, J. A., et al. (2010). The high-dose aldesleukin (HD IL-2) select trial in patients with metastatic renal cell carcinoma (mRCC): preliminary assessment of clinical benefit. Journal of Clinical Oncology, 28(suppl), 4514.Google Scholar
  146. 146.
    Watanabe, S., Tanaka, J., Ota, T., Kondo, R., Tanaka, H., Kagamu, H., et al. (2011). Clinical responses to EGFR-tyrosine kinase inhibitor retreatment in non-small cell lung cancer patients who benefited from prior effective gefitinib therapy: a retrospective analysis. BMC Cancer, 11, 1.PubMedCentralPubMedGoogle Scholar
  147. 147.
    Naing, A., & Kurzrock, R. (2010). Chemotherapy resistance and retreatment: a dogma revisited. Clinical Colorectal Cancer, 9, E1–E4. doi:10.3816/CCC.2010.n.3026.PubMedGoogle Scholar
  148. 148.
    Naing, A., & Kurzrock, R. (2012). Dodging a dogma: is treating beyond progression beneficial. Cancer Chemotheraphy and Pharmacology, 71, 1385–1386.Google Scholar
  149. 149.
    Zama, I. N., Hutson, T. E., Elson, P., Cleary, J. M., Choueiri, T. K., Heng, D. Y., et al. (2010). Sunitinib rechallenge in metastatic renal cell carcinoma patients. Cancer, 116, 5400–5406.PubMedGoogle Scholar
  150. 150.
    Rini, B., Bellmunt, J., Clancy, J., Wang, K., Niellhammer, A., & Escudier, B. (2013). Randomized phase IIIB trial of temsirolimus and bevacizumab versus interferon and bevacizumab in metastatic renal cell carcinoma: results from intoract. Annals of Oncology, 23(suppl), LBA21_PR.Google Scholar
  151. 151.
    McDermott, D. F., Manola, J., Pins, M., Flaherty, K. T., Atkins, M. B., Dutcher, J., et al. (2013). The best trial (E2804): a randomized phase II study of VEGF, RAF kinase, and mTOR combination targeted therapy (CTT) with bevacizumab (bev), sorafenib (sor), and temsirolimus (tem) in advanced renal cell carcinoma (RCC). Journal of Clinical Oncology, 31(suppl), 345.Google Scholar
  152. 152.
    Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. New England Journal of Medicine, 369, 122–133.PubMedGoogle Scholar
  153. 153.
    Henary, H., Hong, D. S., Falchook, G. S., Tsimberidou, A., George, G., Wen, S., et al. (2013). Melanoma patients in a phase I clinic: molecular aberrations, targeted therapy and outcomes. Annals of Oncology, 24, 2158–2165.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Tsimberidou, A.-M., Iskander, N., Hong, D. S., Wheeler, J. J., Falchook, G., Fu, S., et al. (2012). Personalized medicine in a phase I clinical trials program: the MD Anderson cancer center initiative. Clinical Cancer Research, 18, 6373–6383.PubMedGoogle Scholar
  155. 155.
    Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal of Medicine, 364, 2507–2516.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Kwak, E., Bang, Y.-J., Camidge, D. R., Shaw, A. T., Solomon, B., Maki, R. G., et al. (2010). Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. New England Journal of Medicine, 363, 1693–1703.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Janku, F., Berry, D. A., Gong, J., Parsons, H. A., Stewart, D. J., & Kurzrock, R. (2012). Outcomes of phase II clinical trials with single-agent therapies in advanced/metastatic non-small cell lung cancer published between 2000 and 2009. Clinical Cancer Research, 18, 6356–6363.PubMedGoogle Scholar
  158. 158.
    Janku, F., Wheler, J., Westin, S. N., Moulder, S. L., Naing, A., Tsimberidou, A. M., et al. (2012). PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. Journal of Clinical Oncology, 30, 777–782.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Voss, M. H., Hakimi, A. A., Scott, S. N., Takeda, S., Liu, H., Chen, Y., et al. (2012). Genetic determinants of long-term response to rapalog therapy in advanced renal cell carcinoma (RCC). Journal of Clinical Oncology, 30(suppl), 4604.Google Scholar
  160. 160.
    Said, R., Hong, D. S., Warenke, C. L., Lee, J. J., Wheeler, J. J., Janku, F., et al. (2013). P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy. Oncotarget, 4, 705–714.PubMedCentralPubMedGoogle Scholar
  161. 161.
    Chung, A., Wu, X., Zhuang, G., Ngu, H., Kasman, I., Zhang, J., et al. (2013). An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nature Medicine, 19, 1114–1123.PubMedGoogle Scholar
  162. 162.
    Westin, J. R., & Kurzrock, R. (2012). It's about time: lessons for solid tumors from chronic myelogenous leukemia therapy. Molecular Cancer Therapeutics, 11, 2549–2555.Google Scholar
  163. 163.
    Smaldone, M. C., Fung, C., Uzzo, R., & Haas, N. B. (2011). Adjuvant and neoadjuvant therapies in high-risk renal cell carcinoma. Hematology/oncology Clinics of North America, 25, 765–791.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • J. Michael Randall
    • 1
  • Frederick Millard
    • 1
  • Razelle Kurzrock
    • 1
  1. 1.Department of Medicine, Division of Hematology/Oncology, UCSD Moores Cancer CenterUniversity of California, San DiegoLa JollaUSA

Personalised recommendations