Cancer and Metastasis Reviews

, Volume 33, Issue 4, pp 929–942 | Cite as

MTA family of proteins in prostate cancer: biology, significance, and therapeutic opportunities

Article

Abstract

This review summarizes our current understanding of the role of MTA family members, particularly MTA1, with a special emphasis on prostate cancer. The interest for the role of MTA1 in prostate cancer was boosted from our initial findings of MTA1 as a component of “vicious cycle” and a member of bone metastatic signature. Analysis of human prostate tissues, xenograft and transgenic mouse models of prostate cancer, and prostate cancer cell lines has provided support for the role of MTA1 in advanced disease and its potential role in initial stages of prostate tumor progression. Recent discoveries have highlighted a critical role for MTA1 in inflammation-triggered prostate tumorigenesis, epithelial-to-mesenchymal transition, prostate cancer survival pathways, and site metastasis. Evidence for MTA1 as an upstream negative regulator of tumor suppressor genes such as p53 and PTEN has also emerged. MTA1 is involved in prostate tumor angiogenesis by regulating several pro-angiogenic factors. Evidence for MTA1 as a prognostic marker for aggressive prostate cancer and disease recurrence has been described. Importantly, pharmacological dietary agents, namely resveratrol and its analogs, are potentially applicable to prostate cancer prevention, treatment, and control of cancer progression due to their potent inhibitory effects on MTA proteins.

Keywords

Prostate cancer MTA1 Chromatin remodeling Angiogenesis Resveratrol Pterostilbene Orthotopic xenografts 

Notes

Acknowledgments

This work was supported by the Department of Defense Prostate Cancer Research Program under award # W81XWH-13-1-0370 to ASL. Views and opinions of, and endorsements by the author (s) do not reflect those of the US Army of the Department of Defense. We are grateful to Dr. Richard L Summers (UMMC) for his continuous support.

References

  1. 1.
    Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Seminars in Oncology, 30(5 Suppl 16), 30–37.PubMedGoogle Scholar
  2. 2.
    Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. [Review]. Clinical and Experimental Metastasis, 26(3), 215–227. doi: 10.1007/s10585-008-9233-8.PubMedGoogle Scholar
  3. 3.
    Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.PubMedGoogle Scholar
  4. 4.
    Reddy, S. D., Pakala, S. B., Molli, P. R., Sahni, N., Karanam, N. K., Mudvari, P., et al. (2012). Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 287(33), 27843–27850. doi: 10.1074/jbc.M112.348474.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Cell, 113(2), 207–219.PubMedGoogle Scholar
  6. 6.
    Yao, Y. L., & Yang, W. M. (2003). The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. [Research Support, Non-U.S. Gov’t]. Journal of Biological Chemistry, 278(43), 42560–42568. doi: 10.1074/jbc.M302955200.PubMedGoogle Scholar
  7. 7.
    Simpson, A., Uitto, J., Rodeck, U., & Mahoney, M. G. (2001). Differential expression and subcellular distribution of the mouse metastasis-associated proteins Mta1 and Mta3. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Gene, 273(1), 29–39.PubMedGoogle Scholar
  8. 8.
    Kai, L., Samuel, S. K., & Levenson, A. S. (2010). Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. [Research Support, Non-U.S. Gov’t]. International Journal of Cancer, 126(7), 1538–1548. doi: 10.1002/ijc.24928.Google Scholar
  9. 9.
    Moon, H. E., Cheon, H., Chun, K. H., Lee, S. K., Kim, Y. S., Jung, B. K., et al. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 16(4), 929–935.PubMedGoogle Scholar
  10. 10.
    Moon, H. E., Cheon, H., & Lee, M. S. (2007). Metastasis-associated protein 1 inhibits p53-induced apoptosis. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 18(5), 1311–1314.PubMedGoogle Scholar
  11. 11.
    Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. [Research Support, Non-U.S. Gov′t]. EMBO Journal, 25(6), 1231–1241. doi: 10.1038/sj.emboj.7601025.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., et al. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Molecular Endocrinology, 20(9), 2020–2035. doi: 10.1210/me.2005-0063.PubMedGoogle Scholar
  13. 13.
    Kai, L., Wang, J., Ivanovic, M., Chung, Y. T., Laskin, W. B., Schulze-Hoepfner, F., et al. (2011). Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). [Research Support, Non-U.S. Gov′t]. Prostate, 71(3), 268–280. doi: 10.1002/pros.21240.PubMedGoogle Scholar
  14. 14.
    Dias, S. J., Zhou, X., Ivanovic, M., Gailey, M. P., Dhar, S., Zhang, L., et al. (2013). Nuclear MTA1 overexpression is associated with aggressive prostate cancer, recurrence and metastasis in African Americans. [Multicenter Study]. Science Reports, 3, 2331. doi: 10.1038/srep02331.Google Scholar
  15. 15.
    Hofer, M. D., Tapia, C., Browne, T. J., Mirlacher, M., Sauter, G., & Rubin, M. A. (2006). Comprehensive analysis of the expression of the metastasis-associated gene 1 in human neoplastic tissue. Archives of Pathology and Laboratory Medicine, 130(7), 989–996. doi: 10.1043/1543–2165(2006)130[989:CAOTEO]2.0.CO;2.PubMedGoogle Scholar
  16. 16.
    Martin, M. D., Hilsenbeck, S. G., Mohsin, S. K., Hopp, T. A., Clark, G. M., Osborne, C. K., et al. (2006). Breast tumors that overexpress nuclear metastasis-associated 1 (MTA1) protein have high recurrence risks but enhanced responses to systemic therapies. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Breast Cancer Research and Treatment, 95(1), 7–12. doi: 10.1007/s10549-005-9016-8.PubMedGoogle Scholar
  17. 17.
    Jang, K. S., Paik, S. S., Chung, H., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. [Research Support, Non-U.S. Gov′t]. Cancer Science, 97(5), 374–379. doi: 10.1111/j.1349-7006.2006.00186.x.PubMedGoogle Scholar
  18. 18.
    Kawasaki, G., Yanamoto, S., Yoshitomi, I., Yamada, S., & Mizuno, A. (2008). Overexpression of metastasis-associated MTA1 in oral squamous cell carcinomas: correlation with metastasis and invasion. [Comparative Study]. International Journal of Oral and Maxillofacial Surgery, 37(11), 1039–1046. doi: 10.1016/j.ijom.2008.05.020.PubMedGoogle Scholar
  19. 19.
    Balasenthil, S., Broaddus, R. R., & Kumar, R. (2006). Expression of metastasis-associated protein 1 (MTA1) in benign endometrium and endometrial adenocarcinomas. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Human Pathology, 37(6), 656–661. doi: 10.1016/j.humpath.2006.01.024.PubMedGoogle Scholar
  20. 20.
    Prisco, M. G., Zannoni, G. F., De Stefano, I., Vellone, V. G., Tortorella, L., Fagotti, A., et al. (2012). Prognostic role of metastasis tumor antigen 1 in patients with ovarian cancer: a clinical study. Human Pathology, 43(2), 282–288. doi: 10.1016/j.humpath.2011.05.002.PubMedGoogle Scholar
  21. 21.
    Cheng, C. W., Liu, Y. F., Yu, J. C., Wang, H. W., Ding, S. L., Hsiung, C. N., et al. (2012). Prognostic significance of cyclin D1, beta-catenin, and MTA1 in patients with invasive ductal carcinoma of the breast. [Research Support, Non-U.S. Gov′t]. Annals of Surgical Oncology, 19(13), 4129–4139. doi: 10.1245/s10434-012-2541-x.PubMedGoogle Scholar
  22. 22.
    Hofer, M. D., Kuefer, R., Varambally, S., Li, H., Ma, J., Shapiro, G. I., et al. (2004). The role of metastasis-associated protein 1 in prostate cancer progression. [Research Support, U.S. Gov′t, Non-P.H.S. Research Support, U.S. Gov′t, P.H.S.]. Cancer Research, 64(3), 825–829.PubMedGoogle Scholar
  23. 23.
    Li, K., Dias, S. J., Rimando, A. M., Dhar, S., Mizuno, C. S., Penman, A. D., et al. (2013). Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. [Research Support, N.I.H., Intramural]. PLoS ONE, 8(3), e57542. doi: 10.1371/journal.pone.0057542.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Wang, H., Fan, L., Wei, J., Weng, Y., Zhou, L., Shi, Y., et al. (2012). Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. [Research Support, Non-U.S. Gov′t]. PLoS ONE, 7(12), e46888. doi: 10.1371/journal.pone.0046888.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Wallace, T. A., Prueitt, R. L., Yi, M., Howe, T. M., Gillespie, J. W., Yfantis, H. G., et al. (2008). Tumor immunobiological differences in prostate cancer between African-American and European-American men. [Research Support, N.I.H., Intramural]. Cancer Research, 68(3), 927–936. doi: 10.1158/0008-5472.CAN-07-2608.PubMedGoogle Scholar
  26. 26.
    Timofeeva, O. A., Zhang, X., Ressom, H. W., Varghese, R. S., Kallakury, B. V., Wang, K., et al. (2009). Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men. [Comparative Study Research Support, N.I.H., Extramural]. International Journal of Oncology, 35(4), 751–760.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Irizarry, R. A., Ooi, S. L., Wu, Z., & Boeke, J. D. (2003). Use of mixture models in a microarray-based screening procedure for detecting differentially represented yeast mutants. Stat Appl Genet Mol Biol, 2, Article1, doi: 10.2202/1544-6115.1002.
  28. 28.
    Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., et al. (2001). Delineation of prognostic biomarkers in prostate cancer. [Research Support, Non-U.S. Gov′t]. Nature, 412(6849), 822–826. doi: 10.1038/35090585.PubMedGoogle Scholar
  29. 29.
    Abbas, A., & Gupta, S. (2008). The role of histone deacetylases in prostate cancer. [Research Support, N.I.H., Extramural Review]. Epigenetics, 3(6), 300–309.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Minucci, S., & Pelicci, P. G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. [Review]. Nature Reviews Cancer, 6(1), 38–51. doi: 10.1038/nrc1779.PubMedGoogle Scholar
  31. 31.
    Xu, W. S., Parmigiani, R. B., & Marks, P. A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Review]. Oncogene, 26(37), 5541–5552. doi: 10.1038/sj.onc.1210620.PubMedGoogle Scholar
  32. 32.
    Nair, S. S., Li, D. Q., & Kumar, R. (2013). A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Molecular Cell, 49(4), 704–718. doi: 10.1016/j.molcel.2012.12.016.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Sankaran, D., Pakala, S. B., Nair, V. S., Sirigiri, D. N., Cyanam, D., Ha, N. H., et al. (2012). Mechanism of MTA1 protein overexpression-linked invasion: MTA1 regulation of hyaluronan-mediated motility receptor (HMMR) expression and function. [Research Support, N.I.H., Extramural Retracted Publication]. Journal of Biological Chemistry, 287(8), 5483–5491. doi: 10.1074/jbc.M111.324632.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature Cell Biology, 3(1), 30–37. doi: 10.1038/35050532.PubMedGoogle Scholar
  35. 35.
    Marzook, H., Li, D. Q., Nair, V. S., Mudvari, P., Reddy, S. D., Pakala, S. B., et al. (2012). Metastasis-associated protein 1 drives tumor cell migration and invasion through transcriptional repression of RING finger protein 144A. Journal of Biological Chemistry, 287(8), 5615–5626. doi: 10.1074/jbc.M111.314088.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Molli, P. R., Singh, R. R., Lee, S. W., & Kumar, R. (2008). MTA1-mediated transcriptional repression of BRCA1 tumor suppressor gene. [Research Support, N.I.H., Extramural]. Oncogene, 27(14), 1971–1980. doi: 10.1038/sj.onc.1210839.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. (2010). Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 285(13), 10044–10052. doi: 10.1074/jbc.M109.079095.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Manavathi, B., Peng, S., Rayala, S. K., Talukder, A. H., Wang, M. H., Wang, R. A., et al. (2007). Repression of Six3 by a corepressor regulates rhodopsin expression. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13128–13133. doi: 10.1073/pnas.0705878104.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Journal of Biological Chemistry, 282(3), 1529–1533. doi: 10.1074/jbc.R600029200.PubMedGoogle Scholar
  40. 40.
    Ohshiro, K., Rayala, S. K., Wigerup, C., Pakala, S. B., Natha, R. S., Gururaj, A. E., et al. (2010). Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. [Research Support, N.I.H., Extramural]. EMBO Reports, 11(9), 691–697. doi: 10.1038/embor.2010.99.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Yan, C., Wang, H., Toh, Y., & Boyd, D. D. (2003). Repression of 92-kDa type IV collagenase expression by MTA1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation. [Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 278(4), 2309–2316. doi: 10.1074/jbc.M210369200.PubMedGoogle Scholar
  42. 42.
    Zhang, H., Singh, R. R., Talukder, A. H., & Kumar, R. (2006). Metastatic tumor antigen 3 is a direct corepressor of the Wnt4 pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Genes and Development, 20(21), 2943–2948. doi: 10.1101/gad.1461706.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Gururaj, A. E., Singh, R. R., Rayala, S. K., Holm, C., den Hollander, P., Zhang, H., et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. [Research Support, N.I.H., Extramural]. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6670–6675. doi: 10.1073/pnas.0601989103.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Balasenthil, S., Gururaj, A. E., Talukder, A. H., Bagheri-Yarmand, R., Arrington, T., Haas, B. J., et al. (2007). Identification of Pax5 as a target of MTA1 in B-cell lymphomas. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Cancer Research, 67(15), 7132–7138. doi: 10.1158/0008-5472.CAN-07-0750.PubMedGoogle Scholar
  45. 45.
    Luo, J., Su, F., Chen, D., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature, 408(6810), 377–381. doi: 10.1038/35042612.PubMedGoogle Scholar
  46. 46.
    Scott, G. K., Mattie, M. D., Berger, C. E., Benz, S. C., & Benz, C. C. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Research, 66(3), 1277–1281. doi: 10.1158/0008-5472.CAN-05-3632.PubMedGoogle Scholar
  47. 47.
    Saito, Y., Liang, G., Egger, G., Friedman, J. M., Chuang, J. C., Coetzee, G. A., et al. (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Cell, 9(6), 435–443. doi: 10.1016/j.ccr.2006.04.020.PubMedGoogle Scholar
  48. 48.
    Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. [Research Support, Non-U.S. Gov′t Review]. Nature Reviews Molecular Cell Biology, 10(2), 126–139. doi: 10.1038/nrm2632.PubMedGoogle Scholar
  49. 49.
    Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Nature Genetics, 38(2), 228–233. doi: 10.1038/ng1725.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Wang, H., Wu, J., Meng, X., Ying, X., Zuo, Y., Liu, R., et al. (2011). MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. [Research Support, Non-U.S. Gov′t]. Carcinogenesis, 32(7), 1033–1042. doi: 10.1093/carcin/bgr081.PubMedGoogle Scholar
  51. 51.
    Reddy, S. D., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. [Research Support, N.I.H., Extramural]. Cancer Research, 69(14), 5639–5642. doi: 10.1158/0008-5472.CAN-09-0898.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Zhou, H., Xu, X., Xun, Q., Yu, D., Ling, J., Guo, F., et al. (2012). microRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 27(3), 807–812. doi: 10.3892/or.2011.1574.PubMedGoogle Scholar
  53. 53.
    Xia, Y., Chen, Q., Zhong, Z., Xu, C., Wu, C., Liu, B., et al. (2013). Down-regulation of miR-30c promotes the invasion of non-small cell lung cancer by targeting MTA1. Cellular Physiology and Biochemistry, 32(2), 476–485. doi: 10.1159/000354452.PubMedGoogle Scholar
  54. 54.
    Li, Y., Chao, Y., Fang, Y., Wang, J., Wang, M., Zhang, H., et al. (2013). MTA1 promotes the invasion and migration of non-small cell lung cancer cells by downregulating miR-125b. [Research Support, Non-U.S. Gov′t]. J Exp Clin Cancer Res, 32, 33. doi: 10.1186/1756-9966-32–33.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Zhu, X., Zhang, X., Wang, H., Song, Q., Zhang, G., Yang, L., et al. (2012). MTA1 gene silencing inhibits invasion and alters the microRNA expression profile of human lung cancer cells. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 28(1), 218–224. doi: 10.3892/or.2012.1770.PubMedGoogle Scholar
  56. 56.
    Li, Y., Vandenboom, T. G., 2nd, Wang, Z., Kong, D., Ali, S., Philip, P. A., et al. (2010). miR-146a suppresses invasion of pancreatic cancer cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Cancer Research, 70(4), 1486–1495. doi: 10.1158/0008-5472.CAN-09-2792.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Chu, H., Chen, X., Wang, H., Du, Y., Wang, Y., Zang, W., et al. (2013). MiR-495 regulates proliferation and migration in NSCLC by targeting MTA3. Tumour Biol, doi: 10.1007/s13277-013-1460-1
  58. 58.
    Dhar, S., Hicks, C., & Levenson, A. S. (2011). Resveratrol and prostate cancer: promising role for microRNAs. [Research Support, Non-U.S. Gov′t]. Molecular Nutrition & Food Research, 55(8), 1219–1229. doi: 10.1002/mnfr.201100141.Google Scholar
  59. 59.
    Giri, D., & Ittmann, M. (1999). Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma. [Research Support, U.S. Gov′t, Non-P.H.S.]. Human Pathology, 30(4), 419–424.PubMedGoogle Scholar
  60. 60.
    Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Genes and Development, 14(4), 391–396.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Hsieh, A. C., Liu, Y., Edlind, M. P., Ingolia, N. T., Janes, M. R., Sher, A., et al. (2012). The translational landscape of mTOR signalling steers cancer initiation and metastasis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Nature, 485(7396), 55–61. doi: 10.1038/nature10912.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Li, W., Zhang, J., Liu, X., Xu, R., & Zhang, Y. (2007). Correlation of appearance of metastasis-associated protein1 (Mta1) with spermatogenesis in developing mouse testis. [Research Support, Non-U.S. Gov′t]. Cell and Tissue Research, 329(2), 351–362. doi: 10.1007/s00441-007-0412-8.PubMedGoogle Scholar
  63. 63.
    Li, W., Liu, X. P., Xu, R. J., & Zhang, Y. Q. (2007). Immunolocalization assessment of metastasis-associated protein 1 in human and mouse mature testes and its association with spermatogenesis. [Comparative Study Research Support, Non-U.S. Gov′t]. Asian Journal of Andrology, 9(3), 345–352. doi: 10.1111/j.1745-7262.2007.00245.x.PubMedGoogle Scholar
  64. 64.
    Thakur, M. K., & Ghosh, S. (2009). Interaction of estrogen receptor alpha transactivation domain with MTA1 decreases in old mouse brain. [Research Support, Non-U.S. Gov′t]. Journal of Molecular Neuroscience, 37(3), 269–273. doi: 10.1007/s12031-008-9131-1.PubMedGoogle Scholar
  65. 65.
    Reddy, S. D., Rayala, S. K., Ohshiro, K., Pakala, S. B., Kobori, N., Dash, P., et al. (2011). Multiple coregulatory control of tyrosine hydroxylase gene transcription. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4200–4205. doi: 10.1073/pnas.1101193108.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Hung, H., Kohnken, R., & Svaren, J. (2012). The nucleosome remodeling and deacetylase chromatin remodeling (NuRD) complex is required for peripheral nerve myelination. [Comparative Study Research Support, N.I.H., Extramural]. Journal of Neuroscience, 32(5), 1517–1527. doi: 10.1523/JNEUROSCI.2895-11.2012.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Pakala, S. B., Bui-Nguyen, T. M., Reddy, S. D., Li, D. Q., Peng, S., Rayala, S. K., et al. (2010). Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. Journal of Biological Chemistry, 285(31), 23590–23597. doi: 10.1074/jbc.M110.139469.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Li, W., Wu, Z. Q., Zhao, J., Guo, S. J., Li, Z., Feng, X., et al. (2011). Transient protection from heat-stress induced apoptotic stimulation by metastasis-associated protein 1 in pachytene spermatocytes. [Research Support, Non-U.S. Gov′t]. PLoS ONE, 6(10), e26013. doi: 10.1371/journal.pone.0026013.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Li, W., Zhu, H., Bao, W., Fu, H., Li, Z., Liu, X., et al. (2008). Involvement of metastasis tumor antigen 1 in hepatic regeneration and proliferation. [Research Support, Non-U.S. Gov′t]. Cellular Physiology and Biochemistry, 22(1–4), 315–326. doi: 10.1159/000149810.PubMedGoogle Scholar
  70. 70.
    Roche, A. E., Bassett, B. J., Samant, S. A., Hong, W., Blobel, G. A., & Svensson, E. C. (2008). The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex. [Research Support, N.I.H., Extramural]. Journal of Molecular and Cellular Cardiology, 44(2), 352–360. doi: 10.1016/j.yjmcc.2007.10.023.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Karantanos, T., & Thompson, T. C. (2013). GEMMs shine a light on resistance to androgen deprivation therapy for prostate cancer. [Research Support, N.I.H., Extramural]. Cancer Cell, 24(1), 11–13. doi: 10.1016/j.ccr.2013.06.007.PubMedGoogle Scholar
  72. 72.
    Karantanos, T., Corn, P. G., & Thompson, T. C. (2013). Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. [Research Support, N.I.H., Extramural Review]. Oncogene, 32(49), 5501–5511. doi: 10.1038/onc.2013.206.PubMedGoogle Scholar
  73. 73.
    Fu, M., Wang, C., Reutens, A. T., Wang, J., Angeletti, R. H., Siconolfi-Baez, L., et al. (2000). p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 275(27), 20853–20860. doi: 10.1074/jbc.M000660200.PubMedGoogle Scholar
  74. 74.
    Fu, M., Wang, C., Wang, J., Zhang, X., Sakamaki, T., Yeung, Y. G., et al. (2002). Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. [In Vitro Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Molecular Cell. Biology, 22(10), 3373–3388.Google Scholar
  75. 75.
    Guo, Z., Dai, B., Jiang, T., Xu, K., Xie, Y., Kim, O., et al. (2006). Regulation of androgen receptor activity by tyrosine phosphorylation. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Cell, 10(4), 309–319. doi: 10.1016/j.ccr.2006.08.021.PubMedGoogle Scholar
  76. 76.
    Dai, B., Chen, H., Guo, S., Yang, X., Linn, D. E., Sun, F., et al. (2010). Compensatory upregulation of tyrosine kinase Etk/BMX in response to androgen deprivation promotes castration-resistant growth of prostate cancer cells. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Research, 70(13), 5587–5596. doi: 10.1158/0008-5472.CAN-09-4610.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Mahajan, K., Challa, S., Coppola, D., Lawrence, H., Luo, Y., Gevariya, H., et al. (2010). Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. [Research Support, Non-U.S. Gov′t]. Prostate, 70(12), 1274–1285. doi: 10.1002/pros.21163.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Mahajan, K., & Mahajan, N. P. (2010). Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. [Research Support, Non-U.S. Gov′t Review]. Journal of Cellular Physiology, 224(2), 327–333. doi: 10.1002/jcp.22162.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Montie, H. L., Pestell, R. G., & Merry, D. E. (2011). SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Journal of Neuroscience, 31(48), 17425–17436. doi: 10.1523/JNEUROSCI.3958-11.2011.PubMedGoogle Scholar
  80. 80.
    Fu, M., Rao, M., Wang, C., Sakamaki, T., Wang, J., Di Vizio, D., et al. (2003). Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. [In Vitro Research Support, U.S. Gov′t, P.H.S.]. Molecular Cell. Biology, 23(23), 8563–8575.Google Scholar
  81. 81.
    Zhang, S., Li, W., Zhu, C., Wang, X., Li, Z., Zhang, J., et al. (2012). Sertoli cell-specific expression of metastasis-associated protein 2 (MTA2) is required for transcriptional regulation of the follicle-stimulating hormone receptor (FSHR) gene during spermatogenesis. [Research Support, Non-U.S. Gov′t]. Journal of Biological Chemistry, 287(48), 40471–40483. doi: 10.1074/jbc.M112.383802.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Sfanos, K. S., & De Marzo, A. M. (2012). Prostate cancer and inflammation: the evidence. [Review]. Histopathology, 60(1), 199–215. doi: 10.1111/j.1365-2559.2011.04033.x.PubMedCentralPubMedGoogle Scholar
  83. 83.
    De Marzo, A. M., Platz, E. A., Sutcliffe, S., Xu, J., Gronberg, H., Drake, C. G., et al. (2007). Inflammation in prostate carcinogenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S. Review]. Nature Reviews Cancer, 7(4), 256–269. doi: 10.1038/nrc2090.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Bostwick, D. G., & Cheng, L. (2012). Precursors of prostate cancer. [Review]. Histopathology, 60(1), 4–27. doi: 10.1111/j.1365-2559.2011.04007.x.PubMedGoogle Scholar
  85. 85.
    Putzi, M. J., & De Marzo, A. M. (2001). Prostate pathology: histologic and molecular perspectives. [Research Support, U.S. Gov′t, P.H.S. Review]. Hematology/Oncology Clinics of North America, 15(3), 407–421.PubMedGoogle Scholar
  86. 86.
    Bohonowych, J. E., Hance, M. W., Nolan, K. D., Defee, M., Parsons, C. H., & Isaacs, J. S. (2014). Extracellular Hsp90 mediates an NF-kappaB dependent inflammatory stromal program: implications for the prostate tumor microenvironment. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Prostate, 74(4), 395–407. doi: 10.1002/pros.22761.PubMedGoogle Scholar
  87. 87.
    Fujioka, T., Arakawa, T., Shimoyama, T., Yoshikawa, T., Itoh, M., Asaka, M., et al. (2003). Effects of rebamipide, a gastro-protective drug on the Helicobacter pylori status and inflammation in the gastric mucosa of patients with gastric ulcer: a randomized double-blind placebo-controlled multicentre trial. [Clinical Trial Multicenter Study Randomized Controlled Trial]. Alimentary Pharmacology & Therapeutics, 18(1), 146–152.Google Scholar
  88. 88.
    Saadi-Thiers, K., Huck, O., Simonis, P., Tilly, P., Fabre, J. E., Tenenbaum, H., et al. (2013). Periodontal and systemic responses in various mice models of experimental periodontitis: respective roles of inflammation duration and Porphyromonas gingivalis infection. Journal of Periodontology, 84(3), 396–406. doi: 10.1902/jop.2012.110540.PubMedGoogle Scholar
  89. 89.
    Senftleben, U., & Karin, M. (2002). The IKK/NF-kappa B pathway. [Review]. Critical Care Medicine, 30(1 Suppl), S18–S26.Google Scholar
  90. 90.
    Pakala, S. B., Reddy, S. D., Bui-Nguyen, T. M., Rangparia, S. S., Bommana, A., & Kumar, R. (2010). MTA1 coregulator regulates LPS response via MyD88-dependent signaling. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 285(43), 32787–32792. doi: 10.1074/jbc.M110.151340.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Ghanta, K. S., Pakala, S. B., Reddy, S. D., Li, D. Q., Nair, S. S., & Kumar, R. (2011). MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 286(9), 7132–7138. doi: 10.1074/jbc.M110.199273.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, R. D., Xia, W., Hung, M. C., Sarin, S. K., et al. (2010). NF-kappaB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. [Research Support, N.I.H., Extramural]. Oncogene, 29(8), 1179–1189. doi: 10.1038/onc.2009.404.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Chen, L., Zhang, Q., Chang, W., Du, Y., Zhang, H., & Cao, G. (2012). Viral and host inflammation-related factors that can predict the prognosis of hepatocellular carcinoma. [Research Support, Non-U.S. Gov′t]. European Journal of Cancer, 48(13), 1977–1987. doi: 10.1016/j.ejca.2012.01.015.PubMedGoogle Scholar
  94. 94.
    Ryu, S. H., Chung, Y. H., Lee, H., Kim, J. A., Shin, H. D., Min, H. J., et al. (2008). Metastatic tumor antigen 1 is closely associated with frequent postoperative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology, 47(3), 929–936. doi: 10.1002/hep.22124.PubMedGoogle Scholar
  95. 95.
    Salot, S., & Gude, R. (2013). MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines. European Journal of Cancer, 49(2), 492–499. doi: 10.1016/j.ejca.2012.06.019.PubMedGoogle Scholar
  96. 96.
    Nagakawa, O., Murakami, K., Yamaura, T., Fujiuchi, Y., Murata, J., Fuse, H., et al. (2000). Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) on prostate cancer cell lines. [Research Support, Non-U.S. Gov′t]. Cancer Letters, 155(2), 173–179.PubMedGoogle Scholar
  97. 97.
    Sehgal, I., & Thompson, T. C. (1999). Novel regulation of type IV collagenase (matrix metalloproteinase-9 and −2) activities by transforming growth factor-beta1 in human prostate cancer cell lines. [Research Support, U.S. Gov′t, P.H.S.]. Molecular Biology of the Cell, 10(2), 407–416.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Zhang, X. Y., DeSalle, L. M., Patel, J. H., Capobianco, A. J., Yu, D., Thomas-Tikhonenko, A., et al. (2005). Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13968–13973. doi: 10.1073/pnas.0502330102.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Dannenmann, C., Shabani, N., Friese, K., Jeschke, U., Mylonas, I., & Bruning, A. (2008). The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. [Research Support, Non-U.S. Gov′t]. Cancer Biology and Therapy, 7(9), 1460–1467.PubMedGoogle Scholar
  100. 100.
    Pakala, S. B., Singh, K., Reddy, S. D., Ohshiro, K., Li, D. Q., Mishra, L., et al. (2011). TGF-beta1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. [Research Support, N.I.H., Extramural]. Oncogene, 30(19), 2230–2241. doi: 10.1038/onc.2010.608.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Pakala, S. B., Rayala, S. K., Wang, R. A., Ohshiro, K., Mudvari, P., Reddy, S. D., et al. (2013). MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. [Research Support, N.I.H., Extramural]. Cancer Research, 73(12), 3761–3770. doi: 10.1158/0008-5472.CAN-12-3998.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Seda Tuncay Cagatay, I. C., Savas, B., & Banerjee, S. (2013). MTA-1 expression is associated with metastasis and epithelial to mesenchymal transition in colorectal cancer cells. Tumor Biology, 34, 1189–1204.PubMedGoogle Scholar
  103. 103.
    Wei Zhu, M.-Y. C., Tong, Z.-T., Dong, S.-S., Mai, S.-J., Liao, Y.-J., Bian, X.-W., Marie, C., Lin, H.-F. K., Zeng, Y.-X., Guan, X.-Y., & Xie, D. (2012). Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial to mesenchymal transition. Gut, 61, 562–575.PubMedGoogle Scholar
  104. 104.
    Yan, D., Avtanski, D., Saxena, N. K., & Sharma, D. (2012). Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires beta-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 287(11), 8598–8612. doi: 10.1074/jbc.M111.322800.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Folkman, J., Watson, K., Ingber, D., & Hanahan, D. (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature, 339(6219), 58–61. doi: 10.1038/339058a0.PubMedGoogle Scholar
  106. 106.
    Fidler, I. J., & Ellis, L. M. (1994). The implications of angiogenesis for the biology and therapy of cancer metastasis. [Comment Review]. Cell, 79(2), 185–188.PubMedGoogle Scholar
  107. 107.
    Brawer, M. K., Bigler, S. A., & Deering, R. E. (1992). Quantitative morphometric analysis of the microcirculation in prostate carcinoma. [Research Support, U.S. Gov′t, Non-P.H.S.]. Journal of Cellular Biochemistry Supplement, 16H, 62–64.PubMedGoogle Scholar
  108. 108.
    Bostwick, D. G., Wheeler, T. M., Blute, M., Barrett, D. M., MacLennan, G. T., Sebo, T. J., et al. (1996). Optimized microvessel density analysis improves prediction of cancer stage from prostate needle biopsies. [Multicenter Study Research Support, Non-U.S. Gov′t]. Urology, 48(1), 47–57.PubMedGoogle Scholar
  109. 109.
    de la Taille, A., Katz, A. E., Bagiella, E., Buttyan, R., Sharir, S., Olsson, C. A., et al. (2000). Microvessel density as a predictor of PSA recurrence after radical prostatectomy. A comparison of CD34 and CD31. [Comparative Study Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. American Journal of Clinical Pathology, 113(4), 555–562. doi: 10.1309/02W2-KE50-PKEF-G2G4.PubMedGoogle Scholar
  110. 110.
    Fidler, I. J. (2001). Angiogenic heterogeneity: regulation of neoplastic angiogenesis by the organ microenvironment. [Comment Editorial Research Support, U.S. Gov′t, P.H.S.]. Journal of the National Cancer Institute, 93(14), 1040–1041.PubMedGoogle Scholar
  111. 111.
    Nicholson, B., Schaefer, G., & Theodorescu, D. (2001). Angiogenesis in prostate cancer: biology and therapeutic opportunities. [Review]. Cancer and Metastasis Reviews, 20(3–4), 297–319.PubMedGoogle Scholar
  112. 112.
    Borgstrom, P., Bourdon, M. A., Hillan, K. J., Sriramarao, P., & Ferrara, N. (1998). Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. [Research Support, U.S. Gov′t, P.H.S.]. Prostate, 35(1), 1–10.PubMedGoogle Scholar
  113. 113.
    Noordzij, M. A., van der Kwast, T. H., van Steenbrugge, G. J., Hop, W. J., & Schroder, F. H. (1995). The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow-up study with patients treated by radical prostatectomy. [Comparative Study]. International Journal of Cancer, 62(3), 252–258.Google Scholar
  114. 114.
    Joseph, I. B., & Isaacs, J. T. (1997). Potentiation of the antiangiogenic ability of linomide by androgen ablation involves down-regulation of vascular endothelial growth factor in human androgen-responsive prostatic cancers. [Research Support, U.S. Gov′t, P.H.S.]. Cancer Research, 57(6), 1054–1057.PubMedGoogle Scholar
  115. 115.
    Li, J., Perrella, M. A., Tsai, J. C., Yet, S. F., Hsieh, C. M., Yoshizumi, M., et al. (1995). Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 270(1), 308–312.PubMedGoogle Scholar
  116. 116.
    Du, B., Yang, Z. Y., Zhong, X. Y., Fang, M., Yan, Y. R., Qi, G. L., et al. (2011). Metastasis-associated protein 1 induces VEGF-C and facilitates lymphangiogenesis in colorectal cancer. [Research Support, Non-U.S. Gov′t]. World Journal of Gastroenterology, 17(9), 1219–1226. doi: 10.3748/wjg.v17.i9.1219.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Deng, X., Du, L., Wang, C., Yang, Y., Li, J., Liu, H., et al. (2013). Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. [Research Support, Non-U.S. Gov′t]. World Journal of Surgery, 37(4), 792–798. doi: 10.1007/s00268-012-1898-0.PubMedGoogle Scholar
  118. 118.
    Powell, I. J., & Meyskens, F. L., Jr. (2001). African American men and hereditary/familial prostate cancer: Intermediate-risk populations for chemoprevention trials. [Comparative Study]. Urology, 57(4 Suppl 1), 178–181.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Cancer InstituteUniversity of Mississippi Medical CenterJacksonUSA
  2. 2.Department of PathologyUniversity of Mississippi Medical CenterJacksonUSA
  3. 3.Center of Biostatistics and BioinformaticsUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations