Cancer and Metastasis Reviews

, Volume 33, Issue 2–3, pp 809–822 | Cite as

Antibody-based imaging strategies for cancer

  • Jason M. Warram
  • Esther de Boer
  • Anna G. Sorace
  • Thomas K. Chung
  • Hyunki Kim
  • Rick G. Pleijhuis
  • Gooitzen M. van Dam
  • Eben L. RosenthalEmail author


Although mainly developed for preclinical research and therapeutic use, antibodies have high antigen specificity, which can be used as a courier to selectively deliver a diagnostic probe or therapeutic agent to cancer. It is generally accepted that the optimal antigen for imaging will depend on both the expression in the tumor relative to normal tissue and the homogeneity of expression throughout the tumor mass and between patients. For the purpose of diagnostic imaging, novel antibodies can be developed to target antigens for disease detection, or current FDA-approved antibodies can be repurposed with the covalent addition of an imaging probe. Reuse of therapeutic antibodies for diagnostic purposes reduces translational costs since the safety profile of the antibody is well defined and the agent is already available under conditions suitable for human use. In this review, we will explore a wide range of antibodies and imaging modalities that are being translated to the clinic for cancer identification and surgical treatment.


Antibody Imaging Cancer 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sliwkowski, M. X., & Mellman, I. (2013). Antibody therapeutics in cancer. Science, 341(6151), 1192–1198. doi: 10.1126/science.1241145341/6151/1192.PubMedGoogle Scholar
  2. 2.
    LoRusso, P. M., Weiss, D., Guardino, E., Girish, S., & Sliwkowski, M. X. (2011). Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clinical Cancer Research, 17(20), 6437–6447. doi: 10.1158/1078-0432.Ccr-11-0762.PubMedGoogle Scholar
  3. 3.
    Sampath, L., Kwon, S., Ke, S., Wang, W., Schiff, R., Mawad, M. E., et al. (2007). Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. Journal of Nuclear Medicine, 48(9), 1501–1510. doi: 10.2967/jnumed.107.042234.PubMedGoogle Scholar
  4. 4.
    Peng, X. H., Qian, X. M., Mao, H., Wang, A. Y., Chen, Z., Nie, S. M., et al. (2008). Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. International Journal of Nanomedicine, 3(3), 311–321.PubMedCentralPubMedGoogle Scholar
  5. 5.
    van Dam, G. M., Themelis, G., Crane, L. M., Harlaar, N. J., Pleijhuis, R. G., Kelder, W., et al. (2011). Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nature Medicine, 17(10), 1315–1319. doi: 10.1038/nm.2472nm.2472.PubMedGoogle Scholar
  6. 6.
    Korb, M. L., Hartman, Y. E., Kovar, J., Zinn, K. R., Bland, K. I., & Rosenthal, E. L. (2013). Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer. Journal of Surgical Research. doi: 10.1016/j.jss.2013.11.1089.Google Scholar
  7. 7.
    van Scheltinga, A. G. T. T., van Dam, G. M., Nagengast, W. B., Ntziachristos, V., Hollema, H., Herek, J. L., et al. (2011). Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. Journal of Nuclear Medicine, 52(11), 1778–1785. doi: 10.2967/Jnumed.111.092833.Google Scholar
  8. 8.
    Byrne, W. L., DeLille, A., Kuo, C., de Jong, J. S., van Dam, G. M., Francis, K. P., et al. (2013). Use of optical imaging to progress novel therapeutics to the clinic. Journal of Controlled Release, 172(2), 523–534. doi: 10.1016/j.jconrel.2013.05.004S0168-3659(13)00250-2.PubMedGoogle Scholar
  9. 9.
    van der Vorst, J. R., Schaafsma, B. E., Verbeek, F. P., Keereweer, S., Jansen, J. C., van der Velden, L. A., et al. (2013). Near-infrared fluorescence sentinel lymph node mapping of the oral cavity in head and neck cancer patients. Oral Oncology, 49(1), 15–19. doi: 10.1016/j.oraloncology.2012.07.017S1368-8375(12)00245-X.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Alberti, C. (2012). From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. European Review for Medical and Pharmacological Sciences, 16(14), 1925–1933.PubMedGoogle Scholar
  11. 11.
    Bai, M., & Bornhop, D. J. (2012). Recent advances in receptor-targeted fluorescent probes for in vivo cancer imaging. Current Medicinal Chemistry, 19(28), 4742–4758.PubMedGoogle Scholar
  12. 12.
    Bremer, C., Ntziachristos, V., & Weissleder, R. (2003). Optical-based molecular imaging: contrast agents and potential medical applications. European Radiology, 13(2), 231–243. doi: 10.1007/s00330-002-1610-0.PubMedGoogle Scholar
  13. 13.
    Du, W., Wang, Y., Luo, Q. M., & Liu, B. F. (2006). Optical molecular imaging for systems biology: from molecule to organism. Analytical and Bioanalytical Chemistry, 386(3), 444–457. doi: 10.1007/S00216-006-0541-Z.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Hoppin, J., Orcutt, K. D., Hesterman, J. Y., Silva, M. D., Cheng, D., Lackas, C., et al. (2011). Assessing antibody pharmacokinetics in mice with in vivo imaging. Journal of Pharmacology and Experimental Therapeutics, 337(2), 350–358. doi: 10.1124/jpet.110.172916jpet.110.172916.PubMedGoogle Scholar
  15. 15.
    Liu, Y., Yu, G., Tian, M., & Zhang, H. (2011). Optical probes and the applications in multimodality imaging. Contrast Media & Molecular Imaging, 6(4), 169–177. doi: 10.1002/cmmi.428.Google Scholar
  16. 16.
    Ntziachristos, V., Bremer, C., & Weissleder, R. (2003). Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. European Radiology, 13(1), 195–208. doi: 10.1007/S00330-002-1524-X.PubMedGoogle Scholar
  17. 17.
    Ripoll, J., Ntziachristos, V., Cannet, C., Babin, A. L., Kneuer, R., Gremlich, H. U., et al. (2008). Investigating pharmacology in vivo using magnetic resonance and optical imaging. Drugs in R&D, 9(5), 277–306. doi: 10.2165/00126839-200809050-00001.Google Scholar
  18. 18.
    Sokolov, K., Nida, D., Descour, M., Lacy, A., Levy, M., Hall, B., et al. (2007). Molecular optical imaging of therapeutic targets of cancer. Advances in Cancer Research, 96(96), 299–344. doi: 10.1016/S0065-230x(06)96011-4.PubMedGoogle Scholar
  19. 19.
    Schaafsma, B. E., van der Vorst, J. R., Gaarenstroom, K. N., Peters, A. A., Verbeek, F. P., de Kroon, C. D., et al. (2012). Randomized comparison of near-infrared fluorescence lymphatic tracers for sentinel lymph node mapping of cervical cancer. Gynecologic Oncology, 127(1), 126–130. doi: 10.1016/j.ygyno.2012.07.002S0090-8258(12)00496-9.PubMedCentralPubMedGoogle Scholar
  20. 20.
    van der Vorst, J. R., Schaafsma, B. E., Verbeek, F. P., Hutteman, M., Mieog, J. S., Lowik, C. W., et al. (2012). Randomized comparison of near-infrared fluorescence imaging using indocyanine green and 99(m) technetium with or without patent blue for the sentinel lymph node procedure in breast cancer patients. Annals of Surgical Oncology, 19(13), 4104–4111. doi: 10.1245/s10434-012-2466-4.PubMedCentralPubMedGoogle Scholar
  21. 21.
    van der Vorst, J. R., Schaafsma, B. E., Verbeek, F. P., Swijnenburg, R. J., Hutteman, M., Liefers, G. J., et al. (2013). Dose optimization for near-infrared fluorescence sentinel lymph node mapping in patients with melanoma. British Journal of Dermatology, 168(1), 93–98. doi: 10.1111/bjd.12059.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Verbeek, F. P., Troyan, S. L., Mieog, J. S., Liefers, G. J., Moffitt, L. A., Rosenberg, M., et al. (2014). Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience. Breast Cancer Research and Treatment, 143(2), 333–342. doi: 10.1007/s10549-013-2802-9.PubMedGoogle Scholar
  23. 23.
    Beer, A. J., & Schwaiger, M. (2008). Imaging of integrin alphavbeta3 expression. Cancer and Metastasis Reviews, 27(4), 631–644. doi: 10.1007/s10555-008-9158-3.PubMedGoogle Scholar
  24. 24.
    Ye, Y., & Chen, X. (2011). Integrin targeting for tumor optical imaging. Theranostics, 1, 102–126.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Faust, A., Waschkau, B., Waldeck, J., Holtke, C., Breyholz, H. J., Wagner, S., et al. (2009). Synthesis and evaluation of a novel hydroxamate based fluorescent photoprobe for imaging of matrix metalloproteinases. Bioconjugate Chemistry, 20(5), 904–912. doi: 10.1021/bc8004478.PubMedGoogle Scholar
  26. 26.
    Sheth, R. A., Kunin, A., Stangenberg, L., Sinnamon, M., Hung, K. E., Kucherlapati, R., et al. (2012). In vivo optical molecular imaging of matrix metalloproteinase activity following celecoxib therapy for colorectal cancer. Molecular Imaging, 11(5), 417–425.PubMedCentralPubMedGoogle Scholar
  27. 27.
    van Dongen, G. A., Visser, G. W., Lub-de Hooge, M. N., de Vries, E. G., & Perk, L. R. (2007). Immuno-PET: a navigator in monoclonal antibody development and applications. The Oncologist, 12(12), 1379–1389. doi: 10.1634/theoncologist.12-12-137912/12/1379.PubMedGoogle Scholar
  28. 28.
    Kaur, S., Venktaraman, G., Jain, M., Senapati, S., Garg, P. K., & Batra, S. K. (2012). Recent trends in antibody-based oncologic imaging. Cancer Letters, 315(2), 97–111. doi: 10.1016/j.canlet.2011.10.017S0304-3835(11)00634-3.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Stummer, W., Pichlmeier, U., Meinel, T., Wiestler, O. D., Zanella, F., & Reulen, H. J. (2006). Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncology, 7(5), 392–401. doi: 10.1016/s1470-2045(06)70665-9.PubMedGoogle Scholar
  30. 30.
    Ishizawa, T., Fukushima, N., Shibahara, J., Masuda, K., Tamura, S., Aoki, T., et al. (2009). Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer, 115(11), 2491–2504. doi: 10.1002/cncr.24291.PubMedGoogle Scholar
  31. 31.
    Mieog, J. S., Hutteman, M., van der Vorst, J. R., Kuppen, P. J., Que, I., Dijkstra, J., et al. (2011). Image-guided tumor resection using real-time near-infrared fluorescence in a syngeneic rat model of primary breast cancer. Breast Cancer Research and Treatment, 128(3), 679–689. doi: 10.1007/s10549-010-1130-6.PubMedGoogle Scholar
  32. 32.
    Pleijhuis, R. G., Graafland, M., de Vries, J., Bart, J., de Jong, J. S., & van Dam, G. M. (2009). Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. Annals of Surgical Oncology, 16(10), 2717–2730. doi: 10.1245/s10434-009-0609-z.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Van Terwisscha Scheltinga, A. G. T., Van Dam, G. M., Nagengast, W. B., Ntziachristos, V., Hollema, H., Herek, J. L., et al. (2011). Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. Journal of Nuclear Medicine, 52(11), 1778–1785.Google Scholar
  34. 34.
    Korb, M. L., Hartman, Y. E., Kovar, J., Zinn, K. R., Bland, K. I., & Rosenthal, E. L. (2014). Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer. Journal of Surgical Research, 188(1), 119–128.PubMedGoogle Scholar
  35. 35.
    Day, K. E., Sweeny, L., Kulbersh, B., Zinn, K. R., & Rosenthal, E. L. (2013). Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Molecular Imaging and Biology, 15(6), 722–729.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Heath, C. H., Deep, N. L., Sweeny, L., Zinn, K. R., & Rosenthal, E. L. (2012). Use of panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Annals of Surgical Oncology, 19(12), 3879–3887. doi: 10.1245/s10434-012-2435-y.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Wu, A. M. (2014). Engineered antibodies for molecular imaging of cancer. Methods, 65(1), 139–147. doi: 10.1016/j.ymeth.2013.09.015S1046-2023(13)00384-8.PubMedGoogle Scholar
  38. 38.
    Agdeppa, E. D., & Spilker, M. E. (2009). A review of imaging agent development. AAPS Journal, 11(2), 286–299. doi: 10.1208/S12248-009-9104-5.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Scheuer, W., van Dam, G. M., Dobosz, M., Schwaiger, M., & Ntziachristos, V. (2012). Drug-based optical agents: infiltrating clinics at lower risk. Science Translational Medicine, 4(134), 134ps111. doi: 10.1126/scitranslmed.30035724/134/134ps11.Google Scholar
  40. 40.
    Lappin, G., Wagner, C. C., Langer, O., & van de Merbel, N. (2009). New ultrasensitive detection technologies and techniques for use in microdosing studies. Bioanalysis, 1(2), 357–366. doi: 10.4155/Bio.09.40.PubMedGoogle Scholar
  41. 41.
    Pauwels, E. K. J., Bergstrom, K., Mariani, G., & Kairemo, K. (2009). Microdosing, imaging biomarkers and SPECT: a multi-sided tripod to accelerate drug development. Current Pharmaceutical Design, 15(9), 928–934.PubMedGoogle Scholar
  42. 42.
    Wagner, C. C., & Langer, O. (2011). Approaches using molecular imaging technology—use of PET in clinical microdose studies. Advanced Drug Delivery Reviews, 63(7), 539–546. doi: 10.1016/J.Addr.2010.09.011.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Ferrara, K., Pollard, R., & Borden, M. (2007). Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annual Review of Biomedical Engineering, 9, 415–447. doi: 10.1146/annurev.bioeng.8.061505.095852.PubMedGoogle Scholar
  44. 44.
    Klibanov, A. L. (1999). Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Advanced Drug Delivery Reviews, 37(1–3), 139–157.PubMedGoogle Scholar
  45. 45.
    Bachmann, C., Klibanov, A. L., Olson, T. S., Sonnenschein, J. R., Rivera-Nieves, J., Cominelli, F., et al. (2006). Targeting mucosal addressin cellular adhesion molecule (MAdCAM)-1 to noninvasively image experimental Crohn’s disease. Gastroenterology, 130(1), 8–16. doi: 10.1053/j.gastro.2005.11.009.PubMedGoogle Scholar
  46. 46.
    Ferrante, E. A., Pickard, J. E., Rychak, J., Klibanov, A., & Ley, K. (2009). Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. Journal of Controlled Release, 140(2), 100–107. doi: 10.1016/j.jconrel.2009.08.001S0168-3659(09)00544-6.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Kaufmann, B. A., Sanders, J. M., Davis, C., Xie, A., Aldred, P., Sarembock, I. J., et al. (2007). Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation, 116(3), 276–284. doi: 10.1161/CIRCULATIONAHA.106.684738.PubMedGoogle Scholar
  48. 48.
    Lindner, J. R., Song, J., Christiansen, J., Klibanov, A. L., Xu, F., & Ley, K. (2001). Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation, 104(17), 2107–2112.PubMedGoogle Scholar
  49. 49.
    Warram, J. M., Sorace, A. G., Saini, R., Umphrey, H. R., Zinn, K. R., & Hoyt, K. (2011). A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. Journal of Ultrasound in Medicine, 30(7), 921–931.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Willmann, J. K., Lutz, A. M., Paulmurugan, R., Patel, M. R., Chu, P., Rosenberg, J., et al. (2008). Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology, 248(3), 936–944. doi: 10.1148/radiol.2483072231248/3/936.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Deshpande, N., Pysz, M. A., & Willmann, J. K. (2010). Molecular ultrasound assessment of tumor angiogenesis. Angiogenesis, 13(2), 175–188. doi: 10.1007/s10456-010-9175-z.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Kaufmann, B. A. (2009). Ultrasound molecular imaging of atherosclerosis. Cardiovascular Research, 83(4), 617–625. doi: 10.1093/cvr/cvp179cvp179.PubMedGoogle Scholar
  53. 53.
    Schumann, P. A., Christiansen, J. P., Quigley, R. M., McCreery, T. P., Sweitzer, R. H., Unger, E. C., et al. (2002). Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Investigative Radiology, 37(11), 587–593. doi: 10.1097/01.RLI.0000031077.17751.B2.PubMedGoogle Scholar
  54. 54.
    Sheffield, P., Trehan, A., Boyd, B., & Wong, O. L. (2008). Microbubbles as ultrasound contrast agents and in targeted drug delivery. Critical Reviews in Biomedical Engineering, 36(4), 225–255.PubMedGoogle Scholar
  55. 55.
    Kiessling, F., Huppert, J., & Palmowski, M. (2009). Functional and molecular ultrasound imaging: concepts and contrast agents. Current Medicinal Chemistry, 16(5), 627–642.PubMedGoogle Scholar
  56. 56.
    Saini, R., Warram, J. M., Sorace, A. G., Umphrey, H., Zinn, K. R., & Hoyt, K. (2011). Model system using controlled receptor expression for evaluating targeted ultrasound contrast agents. Ultrasound in Medicine and Biology, 37(8), 1306–1313. doi: 10.1016/j.ultrasmedbio.2011.05.010S0301-5629(11)00253-5.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Hoyt, K., Sorace, A., & Saini, R. (2012). Volumetric contrast-enhanced ultrasound imaging to assess early response to apoptosis-inducing anti-death receptor 5 antibody therapy in a breast cancer animal model. Journal of Ultrasound in Medicine, 31(11), 1759–1766.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Sorace, A. G., Saini, R., Mahoney, M., & Hoyt, K. (2012). Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. Journal of Ultrasound in Medicine, 31(10), 1543–1550.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Korpanty, G., Carbon, J. G., Grayburn, P. A., Fleming, J. B., & Brekken, R. A. (2007). Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clinical Cancer Research, 13(1), 323–330. doi: 10.1158/1078-0432.CCR-06-1313.PubMedGoogle Scholar
  60. 60.
    Lyshchik, A., Fleischer, A. C., Huamani, J., Hallahan, D. E., Brissova, M., & Gore, J. C. (2007). Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography. Journal of Ultrasound in Medicine, 26(11), 1575–1586.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Czarnota, G. J., Karshafian, R., Burns, P. N., Wong, S., Al Mahrouki, A., Lee, J. W., et al. (2012). Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proceedings of the National Academy of Sciences of the United States of America, 109(30), E2033–E2041. doi: 10.1073/pnas.12000531091200053109.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Willmann, J. K., Paulmurugan, R., Chen, K., Gheysens, O., Rodriguez-Porcel, M., Lutz, A. M., et al. (2008). US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology, 246(2), 508–518. doi: 10.1148/radiol.24620705362462070536.PubMedGoogle Scholar
  63. 63.
    Warram, J. M., Sorace, A. G., Mahoney, M., Samuel, S., Harbin, B., Joshi, M., et al. (2014). Biodistribution of P-selectin targeted microbubbles. Journal of Drug Targeting. doi: 10.3109/1061186X.2013.869822.PubMedGoogle Scholar
  64. 64.
    Willmann, J. K., Lutz, A. M., Paulmurugan, R., Patel, M. R., Chu, P., Rosenberg, J., et al. (2008). Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology, 248(3), 936–944. doi: 10.1148/radiol.2483072231.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Knowles, J. A., Heath, C. H., Saini, R., Umphrey, H., Warram, J., Hoyt, K., et al. (2012). Molecular targeting of ultrasonographic contrast agent for detection of head and neck squamous cell carcinoma. Archives of Otolaryngology - Head and Neck Surgery, 138(7), 662–668. doi: 10.1001/archoto.2012.10811217425.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Warram, J. M., Sorace, A. G., Saini, R., Borovjagin, A. V., Hoyt, K., & Zinn, K. R. (2012). Systemic delivery of a breast cancer-detecting adenovirus using targeted microbubbles. Cancer Gene Therapy, 19(8), 545–552. doi: 10.1038/cgt.2012.29cgt201229.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Eisenbrey, J. R., Burstein, O. M., Kambhampati, R., Forsberg, F., Liu, J. B., & Wheatley, M. A. (2010). Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery. Journal of Controlled Release, 143(1), 38–44. doi: 10.1016/j.jconrel.2009.12.021.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Sorace, A. G., Warram, J. M., Umphrey, H., & Hoyt, K. (2012). Microbubble-mediated ultrasonic techniques for improved chemotherapeutic delivery in cancer. Journal of Drug Targeting, 20(1), 43–54. doi: 10.3109/1061186X.2011.622397.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Sorace, A. G., Saini, R., Rosenthal, E., Warram, J. M., Zinn, K. R., & Hoyt, K. (2013). Optical fluorescent imaging to monitor temporal effects of microbubble-mediated ultrasound therapy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(2), 281–289. doi: 10.1109/TUFFC.2013.2564.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Leong-Poi, H., Kuliszewski, M. A., Lekas, M., Sibbald, M., Teichert-Kuliszewska, K., Klibanov, A. L., et al. (2007). Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circulation Research, 101(3), 295–303. doi: 10.1161/CIRCRESAHA.107.148676.PubMedGoogle Scholar
  71. 71.
    Leong-Poi, H. (2012). Contrast ultrasound and targeted microbubbles: diagnostic and therapeutic applications in progressive diabetic nephropathy. Seminars in Nephrology, 32(5), 494–504. doi: 10.1016/j.semnephrol.2012.07.013S0270-9295(12)00137-4.PubMedGoogle Scholar
  72. 72.
    Rapoport, N., Gao, Z., & Kennedy, A. (2007). Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. Journal of the National Cancer Institute, 99(14), 1095–1106. doi: 10.1093/jnci/djm043.PubMedGoogle Scholar
  73. 73.
    Phillips, L. C., Klibanov, A. L., Wamhoff, B. R., & Hossack, J. A. (2010). Targeted gene transfection from microbubbles into vascular smooth muscle cells using focused, ultrasound-mediated delivery. Ultrasound in Medicine and Biology, 36(9), 1470–1480. doi: 10.1016/j.ultrasmedbio.2010.06.010.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Tsutsui, J. M., Xie, F., & Porter, R. T. (2004). The use of microbubbles to target drug delivery. Cardiovascular Ultrasound, 2, 23. doi: 10.1186/1476-7120-2-23.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Weinmann, H. J., Brasch, R. C., Press, W. R., & Wesbey, G. E. (1984). Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR. American Journal of Roentgenology, 142(3), 619–624. doi: 10.2214/ajr.142.3.619.PubMedGoogle Scholar
  76. 76.
    Curtet, C., Bourgoin, C., Bohy, J., Saccavini, J. C., Thedrez, P., Akoka, S., et al. (1988). Gd-25 DTPA-MAb, a potential NMR contrast agent for MRI in the xenografted nude mouse: preliminary studies. International Journal of Cancer. Supplement = Journal International du Cancer. Supplement, 2, 126–132.PubMedGoogle Scholar
  77. 77.
    Shahbazi-Gahrouei, D. (2009). Novel MR imaging contrast agents for cancer detection. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 14(3), 141–147.Google Scholar
  78. 78.
    Sun, B. (1994). [Comparative studies of 111In-labeled monoclonal antibody using spacer-containing and non-spacer bifunctional chelates: (II). Biodistribution, metabolism and excretion in vivo]. [Research Support, Non-U.S. Gov’t]. Kaku igaku. The Japanese Journal of Nuclear Medicine, 31(5), 473–487.Google Scholar
  79. 79.
    Kuriu, Y., Otsuji, E., Kin, S., Nakase, Y., Fukuda, K., Okamoto, K., et al. (2006). Monoclonal antibody conjugated to gadolinium as a contrast agent for magnetic resonance imaging of human rectal carcinoma. Journal of Surgical Oncology, 94(2), 144–148. doi: 10.1002/jso.20411.PubMedGoogle Scholar
  80. 80.
    Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews, 53(2), 283–318.PubMedGoogle Scholar
  81. 81.
    Kohler, N., Sun, C., Fichtenholtz, A., Gunn, J., Fang, C., & Zhang, M. (2006). Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Small, 2(6), 785–792. doi: 10.1002/smll.200600009.PubMedGoogle Scholar
  82. 82.
    Lacava, L. M., Lacava, Z. G., Da Silva, M. F., Silva, O., Chaves, S. B., Azevedo, R. B., et al. (2001). Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice. [Research Support, Non-U.S. Gov’t]. Biophysical Journal, 80(5), 2483–2486. doi: 10.1016/S0006-3495(01)76217-0.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Quaglia, F., Ostacolo, L., De Rosa, G., La Rotonda, M. I., Ammendola, M., Nese, G., et al. (2006). Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers. [Research Support, Non-U.S. Gov’t]. International Journal of Pharmaceutics, 324(1), 56–66. doi: 10.1016/j.ijpharm.2006.07.020.PubMedGoogle Scholar
  84. 84.
    Hadjipanayis, C. G., Machaidze, R., Kaluzova, M., Wang, L., Schuette, A. J., Chen, H., et al. (2010). EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cancer Research, 70(15), 6303–6312. doi: 10.1158/0008-5472.CAN-10-1022.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Wei, X., Tang, H., Shang, Y. W., Li, G. H., Li, A., Wang, L., et al. (2013). [Cytotoxicity of PFOB nanoparticle coupled with ICAM-1 antibody on cardiomyocytes and its targeted adhesion to injured cardiomyocytes in vitro]. Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical Science Edition, 44(3), 342–347.PubMedGoogle Scholar
  86. 86.
    Boswell, C. A., & Brechbiel, M. W. (2007). Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nuclear Medicine and Biology, 34(7), 757–778. doi: 10.1016/j.nucmedbio.2007.04.001.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Tolmachev, V., & Stone-Elander, S. (2010). Radiolabelled proteins for positron emission tomography: pros and cons of labelling methods. Biochimica et Biophysica Acta, 1800(5), 487–510. doi: 10.1016/j.bbagen.2010.02.002S0304-4165(10)00050-4.PubMedGoogle Scholar
  88. 88.
    Perk, L. R., Vosjan, M. J., Visser, G. W., Budde, M., Jurek, P., Kiefer, G. E., et al. (2010). p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. European Journal of Nuclear Medicine and Molecular Imaging, 37(2), 250–259. doi: 10.1007/s00259-009-1263-1.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Zeglis, B. M., Sevak, K. K., Reiner, T., Mohindra, P., Carlin, S. D., Zanzonico, P., et al. (2013). A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. Journal of Nuclear Medicine, 54(8), 1389–1396. doi: 10.2967/jnumed.112.115840jnumed.112.115840.PubMedGoogle Scholar
  90. 90.
    Borjesson, P. K., Jauw, Y. W., Boellaard, R., de Bree, R., Comans, E. F., Roos, J. C., et al. (2006). Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clinical Cancer Research, 12(7 Pt 1), 2133–2140. doi: 10.1158/1078-0432.CCR-05-2137.PubMedGoogle Scholar
  91. 91.
    Borjesson, P. K., Jauw, Y. W., de Bree, R., Roos, J. C., Castelijns, J. A., Leemans, C. R., et al. (2009). Radiation dosimetry of 89Zr-labeled chimeric monoclonal antibody U36 as used for immuno-PET in head and neck cancer patients. Journal of Nuclear Medicine, 50(11), 1828–1836. doi: 10.2967/jnumed.109.065862jnumed.109.065862.PubMedGoogle Scholar
  92. 92.
    Dijkers, E. C., Oude Munnink, T. H., Kosterink, J. G., Brouwers, A. H., Jager, P. L., de Jong, J. R., et al. (2010). Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clinical Pharmacology and Therapeutics, 87(5), 586–592. doi: 10.1038/clpt.2010.12clpt201012.PubMedGoogle Scholar
  93. 93.
    Divgi, C. R., Pandit-Taskar, N., Jungbluth, A. A., Reuter, V. E., Gonen, M., Ruan, S., et al. (2007). Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncology, 8(4), 304–310. doi: 10.1016/S1470-2045(07)70044-X.PubMedGoogle Scholar
  94. 94.
    Tinianow, J. N., Gill, H. S., Ogasawara, A., Flores, J. E., Vanderbilt, A. N., Luis, E., et al. (2010). Site-specifically 89Zr-labeled monoclonal antibodies for immunoPET. Nuclear Medicine and Biology, 37(3), 289–297. doi: 10.1016/j.nucmedbio.2009.11.010S0969-8051(09)00291-1.PubMedGoogle Scholar
  95. 95.
    Celli, J. P., Spring, B. Q., Rizvi, I., Evans, C. L., Samkoe, K. S., Verma, S., et al. (2010). Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chemistry Review, 110(5), 2795–2838. doi: 10.1021/cr900300p.Google Scholar
  96. 96.
    Plaetzer, K., Krammer, B., Berlanda, J., Berr, F., & Kiesslich, T. (2009). Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers in Medical Science, 24(2), 259–268. doi: 10.1007/s10103-008-0539-1.PubMedGoogle Scholar
  97. 97.
    Fingar, V. H., Wieman, T. J., & Haydon, P. S. (1997). The effects of thrombocytopenia on vessel stasis and macromolecular leakage after photodynamic therapy using photofrin. Photochemistry and Photobiology, 66(4), 513–517.PubMedGoogle Scholar
  98. 98.
    Fingar, V. H., Wieman, T. J., Karavolos, P. S., Doak, K. W., Ouellet, R., & Vanlier, J. E. (1993). The effects of photodynamic therapy using differently substituted zinc phthalocyanines on vessel constriction, vessel leakage and tumor response. Photochemistry and Photobiology, 58(2), 251–258. doi: 10.1111/J.1751-1097.1993.Tb09557.X.PubMedGoogle Scholar
  99. 99.
    McMahon, K. S., Wieman, T. J., Moore, P. H., & Fingar, V. H. (1994). Effects of photodynamic therapy using mono-L-aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer Research, 54(20), 5374–5379.PubMedGoogle Scholar
  100. 100.
    Krosl, G., Korbelik, M., & Dougherty, G. J. (1995). Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy. British Journal of Cancer, 71(3), 549–555.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Biel, M. A. (1998). Photodynamic therapy and the treatment of head and neck neoplasia. Laryngoscope, 108(9), 1259–1268.PubMedGoogle Scholar
  102. 102.
    Fan, K. F. M., Hopper, C., Speight, P. M., Buonaccorsi, G., MacRobert, A. J., & Bown, S. G. (1996). Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity. Cancer, 78(7), 1374–1383.PubMedGoogle Scholar
  103. 103.
    Gluckman, J. L. (1991). Hematoporphyrin photodynamic therapy—is there truly a future in head and neck oncology—reflections on a 5-year experience. Laryngoscope, 101(1), 36–42.PubMedGoogle Scholar
  104. 104.
    Grosjean, P., Savary, J. F., Mizeret, J., Wagnieres, G., Woodtli, A., Theumann, J. F., et al. (1996). Photodynamic therapy for cancer of the upper aerodigestive tract using tetra(m-hydroxyphenyl)chlorin. Journal of Clinical Laser Medicine and Surgery, 14(5), 281–287.PubMedGoogle Scholar
  105. 105.
    Grossweiner, L. I., Hill, J. H., & Lobraico, R. V. (1987). Photodynamic therapy of head and neck squamous cell carcinoma: optical dosimetry and clinical trial. Photochemistry and Photobiology, 46(5), 911–917.PubMedGoogle Scholar
  106. 106.
    Keller, G. S., Doiron, D. R., & Fisher, G. U. (1985). Photodynamic therapy in otolaryngology–head and neck surgery. Archives of Otolaryngology, 111(11), 758–761.PubMedGoogle Scholar
  107. 107.
    Savary, J. F., Monnier, P., Fontolliet, C., Mizeret, J., Wagnieres, G., Braichotte, D., et al. (1997). Photodynamic therapy for early squamous cell carcinomas of the esophagus, bronchi, and mouth with m-tetra (hydroxyphenyl) chlorin. Archives of Otolaryngology - Head and Neck Surgery, 123(2), 162–168.PubMedGoogle Scholar
  108. 108.
    Taber, S. W., Fingar, V. H., & Wieman, T. J. (1998). Photodynamic therapy for palliation of chest wall recurrence in patients with breast cancer. Journal of Surgical Oncology, 68(4), 209–214. doi: 10.1002/(SICI)1096-9098(199808)68:4<209::AID-JSO2>3.0.CO;2-8.PubMedGoogle Scholar
  109. 109.
    Wyss, P., Schwarz, V., Dobler-Girdziunaite, D., Hornung, R., Walt, H., Degen, A., et al. (2001). Photodynamic therapy of locoregional breast cancer recurrences using a chlorin-type photosensitizer. International Journal of Cancer, 93(5), 720–724. doi: 10.1002/Ijc.1400.Google Scholar
  110. 110.
    Baas, P., Saarnak, A. E., Oppelaar, H., Neering, H., & Stewart, F. A. (2001). Photodynamic therapy with meta-tetrahydroxyphenylchlorin for basal cell carcinoma: a phase I/II study. British Journal of Dermatology, 145(1), 75–78. doi: 10.1046/J.1365-2133.2001.04284.X.PubMedGoogle Scholar
  111. 111.
    Jeffes, E. W., McCullough, J. L., Weinstein, G. D., Fergin, P. E., Nelson, J. S., Shull, T. F., et al. (1997). Photodynamic therapy of actinic keratosis with topical 5-aminolevulinic acid—a pilot dose-ranging study. Archives of Dermatology, 133(6), 727–732. doi: 10.1001/Archderm.133.6.727.PubMedGoogle Scholar
  112. 112.
    McCaughan, J. S., Jr., Guy, J. T., Hicks, W., Laufman, L., Nims, T. A., & Walker, J. (1989). Photodynamic therapy for cutaneous and subcutaneous malignant neoplasms. Archives of Surgery, 124(2), 211–216.PubMedGoogle Scholar
  113. 113.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. doi: 10.1016/j.cell.2011.02.013S0092-8674(11)00127-9.PubMedGoogle Scholar
  114. 114.
    Duska, L. R., Hamblin, M. R., Bamberg, M. P., & Hasan, T. (1997). Biodistribution of charged F(ab’)(2) photoimmunoconjugates in a xenograft model of ovarian cancer. British Journal of Cancer, 75(6), 837–844. doi: 10.1038/Bjc.1997.149.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Pelegrin, A., Folli, S., Buchegger, F., Mach, J. P., Wagnieres, G., & van den Bergh, H. (1991). Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer, 67(10), 2529–2537.PubMedGoogle Scholar
  116. 116.
    Slinkin, M. A., Curtet, C., Faivrechauvet, A., Saimaurel, C., Gestin, J. F., Torchilin, V. P., et al. (1993). Biodistribution of anti-Cea F(Ab’)2 fragments conjugated with chelating polymers—influence of conjugate electron charge on tumor uptake and blood clearance. Nuclear Medicine and Biology, 20(4), 443–452. doi: 10.1016/0969-8051(93)90075-6.PubMedGoogle Scholar
  117. 117.
    Vrouenraets, M. B., Visser, G. W., Stewart, F. A., Stigter, M., Oppelaar, H., Postmus, P. E., et al. (1999). Development of meta-tetrahydroxyphenylchlorin-monoclonal antibody conjugates for photoimmunotherapy. Cancer Research, 59(7), 1505–1513.PubMedGoogle Scholar
  118. 118.
    Vrouenraets, M. B., Visser, G. W. M., Loup, C., Meunier, B., Stigter, M., Oppelaar, H., et al. (2000). Targeting of a hydrophilic photosensitizer by use of internalizing monoclonal antibodies: a new possibility for use in photodynamic therapy. International Journal of Cancer, 88(1), 108–114. doi: 10.1002/1097-0215(20001001)88:1<108::Aid-Ijc17>3.0.Co;2-H.Google Scholar
  119. 119.
    Brasseur, N., Langlois, R., La Madeleine, C., Ouellet, R., & van Lier, J. E. (1999). Receptor-mediated targeting of phthalocyanines to macrophages via covalent coupling to native or maleylated bovine serum albumin. Photochemistry and Photobiology, 69(3), 345–352. doi: 10.1562/0031-8655(1999)069<0345:Rmtopt>2.3.Co;2.PubMedGoogle Scholar
  120. 120.
    Del Governatore, M., Hamblin, M. R., Piccinini, E. E., Ugolini, G., & Hasan, T. (2000). Targeted photodestruction of human colon cancer cells using charged 17.1A chlorin(e6) immunoconjugates. British Journal of Cancer, 82(1), 56–64.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Mew, D., Wat, C. K., Towers, G. H., & Levy, J. G. (1983). Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. Journal of Immunology, 130(3), 1473–1477.Google Scholar
  122. 122.
    Pogrebniak, H. W., Matthews, W., Black, C., Russo, A., Mitchell, J. B., Smith, P., et al. (1993). Targeted phototherapy with sensitizer-monoclonal antibody conjugate and light. Surgical Oncology, 2(1), 31–42.PubMedGoogle Scholar
  123. 123.
    Mitsunaga, M., Ogawa, M., Kosaka, N., Rosenblum, L. T., Choyke, P. L., & Kobayashi, H. (2011). Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nature Medicine, 17(12), 1685–1691. doi: 10.1038/nm.2554nm.2554.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Detty, M. R., Gibson, S. L., & Wagner, S. J. (2004). Current clinical and preclinical photosensitizers for use in photodynamic therapy. Journal of Medicinal Chemistry, 47(16), 3897–3915. doi: 10.1021/Jm040074b.PubMedGoogle Scholar
  125. 125.
    Ntziachristos, V., Ripoll, J., Wang, L. H. V., & Weissleder, R. (2005). Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnology, 23(3), 313–320. doi: 10.1038/Nbt1074.PubMedGoogle Scholar
  126. 126.
    Nakajima, T., Sano, K., Mitsunaga, M., Choyke, P. L., & Kobayashi, H. (2012). Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging. Cancer Research, 72(18), 4622–4628. doi: 10.1158/0008-5472.CAN-12-12980008-5472.CAN-12-1298.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Reichert, J. M., Rosensweig, C. J., Faden, L. B., & Dewitz, M. C. (2005). Monoclonal antibody successes in the clinic. Nature Biotechnology, 23(9), 1073–1078. doi: 10.1038/nbt0905-1073.PubMedGoogle Scholar
  128. 128.
    Waldmann, T. A. (2003). Immunotherapy: past, present and future. Nature Medicine, 9(3), 269–277. doi: 10.1038/nm0303-269nm0303-269.PubMedGoogle Scholar
  129. 129.
    Nakajima, T., Sano, K., Choyke, P. L., & Kobayashi, H. (2013). Improving the efficacy of photoimmunotherapy (PIT) using a cocktail of antibody conjugates in a multiple antigen tumor model. Theranostics, 3(6), 357–365. doi: 10.7150/thno.5908thnov03p0357.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jason M. Warram
    • 1
  • Esther de Boer
    • 1
  • Anna G. Sorace
    • 3
  • Thomas K. Chung
    • 1
  • Hyunki Kim
    • 2
  • Rick G. Pleijhuis
    • 4
  • Gooitzen M. van Dam
    • 4
  • Eben L. Rosenthal
    • 1
    • 5
    Email author
  1. 1.Department of SurgeryUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of RadiologyUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of Radiology & Radiological SciencesVanderbilt UniversityNashvilleUSA
  4. 4.Department of Surgery, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
  5. 5.Division of OtolaryngologyBirminghamUSA

Personalised recommendations