Advertisement

Cancer and Metastasis Reviews

, Volume 33, Issue 2–3, pp 747–756 | Cite as

Circulating tumour cells—a bona fide cause of metastatic cancer

  • N. J. Caixeiro
  • N. Kienzle
  • S. H. Lim
  • K. J. Spring
  • A. Tognela
  • K. F. Scott
  • P. de Souza
  • T. M. Becker
NON-THEMATIC REVIEW

Abstract

Circulating tumour cells (CTCs) are emerging as important prognostic markers and have potential clinical utility as tumour biomarkers for targeted cancer therapy. Although CTCs were proposed more than 100 years ago as potential precursors that may form metastatic lesions, formal evidence that CTCs are indeed capable of initiating metastases is limited. Moreover, the process of CTCs shedding into the circulation, relocating to distant organ sites and initiating metastatic foci is complex and intrinsically inefficient. To partially explain the metastatic process, the concepts of CTCs as metastatic precursors or pre-metastatic conditioners have been proposed; however, it is questionable as to whether these are both variable pathways to metastasis or just markers of metastatic burden. This review explores the evidence for CTCs in the initiation and progression of metastatic cancer and the data supporting these different concepts in an attempt to better understand the role of CTCs in metastasis. A greater understanding of the metastatic potential of CTCs will open new avenues for therapeutic interventions in the future.

Keywords

Circulating tumour cells Disseminated tumour cells Metastasis Dormancy 

Notes

Acknowledgments

This work was supported by the University of Western Sydney and the University of New South Wales. Funding sources include the Cancer Institute New South Wales for the South West Sydney Translational Cancer Research Unit, University of New South Wales Equipment Grant and Prostate Cancer Foundation of Australia.

References

  1. 1.
    Cohen, S. J., Punt, C. J., Iannotti, N., Saidman, B. H., Sabbath, K. D., Gabrail, N. Y., et al. (2009). Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Annals of Oncology, 20(7), 1223–1229. doi: 10.1093/annonc/mdn786.PubMedCrossRefGoogle Scholar
  2. 2.
    Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Matera, J., Miller, M. C., et al. (2004). Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New England Journal of Medicine, 351(8), 781–791. doi: 10.1056/NEJMoa040766.PubMedCrossRefGoogle Scholar
  3. 3.
    Pierga, J. Y., Hajage, D., Bachelot, T., Delaloge, S., Brain, E., Campone, M., et al. (2012). High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Annals of Oncology, 23(3), 618–624. doi: 10.1093/annonc/mdr263.PubMedCrossRefGoogle Scholar
  4. 4.
    Thalgott, M., Rack, B., Maurer, T., Souvatzoglou, M., Eiber, M., Kress, V., et al. (2013). Detection of circulating tumor cells in different stages of prostate cancer. Journal of Cancer Research and Clinical Oncology, 139(5), 755–763. doi: 10.1007/s00432-013-1377-5.PubMedCrossRefGoogle Scholar
  5. 5.
    Hayes, D. F., Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Miller, M. C., et al. (2006). Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clinical Cancer Research, 12(14 Pt 1), 4218–4224. doi: 10.1158/1078-0432.CCR-05-2821.PubMedCrossRefGoogle Scholar
  6. 6.
    Scher, H. I., Jia, X., de Bono, J. S., Fleisher, M., Pienta, K. J., Raghavan, D., et al. (2009). Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncology, 10(3), 233–239. doi: 10.1016/S1470-2045(08)70340-1.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Dong, X., Alpaugh, K. R., & Cristofanilli, M. (2012). Circulating tumor cells (CTCs) in breast cancer: a diagnostic tool for prognosis and molecular analysis. Chinese Journal of Cancer Research, 24(4), 388–398. doi: 10.3978/j.issn.1000-9604.2012.11.03.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Khan, M. S., Kirkwood, A., Tsigani, T., Garcia-Hernandez, J., Hartley, J. A., Caplin, M. E., et al. (2013). Circulating tumor cells as prognostic markers in neuroendocrine tumors. Journal of Clinical Oncology, 31(3), 365–372. doi: 10.1200/JCO.2012.44.2905.PubMedCrossRefGoogle Scholar
  9. 9.
    Giuliano, M., Giordano, A., Jackson, S., Hess, K. R., De Giorgi, U., Mego, M., et al. (2011). Circulating tumor cells as prognostic and predictive markers in metastatic breast cancer patients receiving first-line systemic treatment. Breast Cancer Research, 13(3), R67. doi: 10.1186/bcr2907.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Lucci, A., Hall, C. S., Lodhi, A. K., Bhattacharyya, A., Anderson, A. E., Xiao, L., et al. (2012). Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncology, 13(7), 688–695. doi: 10.1016/S1470-2045(12)70209-7.PubMedCrossRefGoogle Scholar
  11. 11.
    Aggarwal, C., Meropol, N. J., Punt, C. J., Iannotti, N., Saidman, B. H., Sabbath, K. D., et al. (2013). Relationship among circulating tumor cells, CEA and overall survival in patients with metastatic colorectal cancer. Annals of Oncology, 24(2), 420–428. doi: 10.1093/annonc/mds336.PubMedCrossRefGoogle Scholar
  12. 12.
    Miyamoto, D. T., Lee, R. J., Stott, S. L., Ting, D. T., Wittner, B. S., Ulman, M., et al. (2012). Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discovery, 2(11), 995–1003. doi: 10.1158/2159-8290.CD-12-0222.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ashworth, T. R. (1869). A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Australian Medical Journal, 14, 146–147.Google Scholar
  14. 14.
    Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147(2), 275–292. doi: 10.1016/j.cell.2011.09.024.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Fidler, I. J. (2002). The organ microenvironment and cancer metastasis. Differentiation, 70(9–10), 498–505. doi: 10.1046/j.1432-0436.2002.700904.x.PubMedCrossRefGoogle Scholar
  16. 16.
    Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.CrossRefGoogle Scholar
  17. 17.
    Baccelli, I., Schneeweiss, A., Riethdorf, S., Stenzinger, A., Schillert, A., Vogel, V., et al. (2013). Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nature Biotechnology, 31(6), 539–544. doi: 10.1038/nbt.2576.PubMedCrossRefGoogle Scholar
  18. 18.
    Meng, S., Tripathy, D., Frenkel, E. P., Shete, S., Naftalis, E. Z., Huth, J. F., et al. (2004). Circulating tumor cells in patients with breast cancer dormancy. Clinical Cancer Research, 10(24), 8152–8162. doi: 10.1158/1078-0432.CCR-04-1110.PubMedCrossRefGoogle Scholar
  19. 19.
    Tiwari, N., Gheldof, A., Tatari, M., & Christofori, G. (2012). EMT as the ultimate survival mechanism of cancer cells. Seminars in Cancer Biology, 22(3), 194–207. doi: 10.1016/j.semcancer.2012.02.013.PubMedCrossRefGoogle Scholar
  20. 20.
    Nieto, M. A., & Cano, A. (2012). The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity. Seminars in Cancer Biology, 22(5–6), 361–368. doi: 10.1016/j.semcancer.2012.05.003.PubMedCrossRefGoogle Scholar
  21. 21.
    Lindemann, F., Schlimok, G., Dirschedl, P., Witte, J., & Riethmuller, G. (1992). Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet, 340(8821), 685–689.PubMedCrossRefGoogle Scholar
  22. 22.
    Vogel, P., Ruschoff, J., Kummel, S., Zirngibl, H., Hofstadter, F., Hohenberger, W., et al. (2000). Prognostic value of microscopic peritoneal dissemination: comparison between colon and gastric cancer. Diseases of the Colon and Rectum, 43(1), 92–100.PubMedCrossRefGoogle Scholar
  23. 23.
    de Bono, J. S., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., et al. (2008). Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research, 14(19), 6302–6309. doi: 10.1158/1078-0432.CCR-08-0872.PubMedCrossRefGoogle Scholar
  24. 24.
    De Giorgi, U., Mego, M., Scarpi, E., Giuliano, M., Giordano, A., Reuben, J. M., et al. (2012). Relationship between lymphocytopenia and circulating tumor cells as prognostic factors for overall survival in metastatic breast cancer. Clinical Breast Cancer, 12(4), 264–269. doi: 10.1016/j.clbc.2012.04.004.PubMedCrossRefGoogle Scholar
  25. 25.
    Hiltermann, T. J., Pore, M. M., van den Berg, A., Timens, W., Boezen, H. M., Liesker, J. J., et al. (2012). Circulating tumor cells in small-cell lung cancer: a predictive and prognostic factor. Annals of Oncology, 23(11), 2937–2942. doi: 10.1093/annonc/mds138.PubMedCrossRefGoogle Scholar
  26. 26.
    Hou, J. M., Krebs, M. G., Lancashire, L., Sloane, R., Backen, A., Swain, R. K., et al. (2012). Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. Journal of Clinical Oncology, 30(5), 525–532. doi: 10.1200/JCO.2010.33.3716.PubMedCrossRefGoogle Scholar
  27. 27.
    Nieva, J., Wendel, M., Luttgen, M. S., Marrinucci, D., Bazhenova, L., Kolatkar, A., et al. (2012). High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: a longitudinal analysis. Physical Biology, 9(1), 016004. doi: 10.1088/1478-3975/9/1/016004.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F., et al. (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153(3), 865–873. doi: 10.1016/S0002-9440(10)65628-3.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Mervic, L. (2012). Time course and pattern of metastasis of cutaneous melanoma differ between men and women. PLoS ONE, 7(3), e32955. doi: 10.1371/journal.pone.0032955.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Tas, F. (2012). Factors influencing the hormone receptor and HER2 levels in breast cancer: a population-based analysis. Onkologie, 35(3), 95–98. doi: 10.1159/000336812.PubMedCrossRefGoogle Scholar
  31. 31.
    Coumans, F. A., Siesling, S., & Terstappen, L. W. (2013). Detection of cancer before distant metastasis. BMC Cancer, 13(1), 283. doi: 10.1186/1471-2407-13-283.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ito, S., Nakanishi, H., Ikehara, Y., Kato, T., Kasai, Y., Ito, K., et al. (2001). Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line. International Journal of Cancer, 93(2), 212–217. doi: 10.1002/ijc.1318.CrossRefGoogle Scholar
  33. 33.
    Weiss, L. (2000). Metastasis of cancer: a conceptual history from antiquity to the 1990s. Cancer and Metastasis Reviews, 19(3-4), I–XI. 193-383.PubMedGoogle Scholar
  34. 34.
    Becker, T. M., Caixeiro, N. J., Lim, S. H., Tognela, A., Kienzle, N., Scott, K. F., et al. (2014). New frontiers in circulating tumor cell analysis: a reference guide for biomolecular profiling toward translational clinical use. International Journal of Cancer, 134(11), 2523–2533. doi: 10.1002/ijc.28516.CrossRefGoogle Scholar
  35. 35.
    Rossi, E., Basso, U., Celadin, R., Zilio, F., Pucciarelli, S., Aieta, M., et al. (2010). M30 neoepitope expression in epithelial cancer: quantification of apoptosis in circulating tumor cells by cell search analysis. Clinical Cancer Research, 16(21), 5233–5243. doi: 10.1158/1078-0432.CCR-10-1449.PubMedCrossRefGoogle Scholar
  36. 36.
    Larson, C. J., Moreno, J. G., Pienta, K. J., Gross, S., Repollet, M., & O’Hara, S. M. (2004). Apoptosis of circulating tumor cells in prostate cancer patients. Cytometry Part A, 62(1), 46–53. doi: 10.1002/cyto.a.20073.CrossRefGoogle Scholar
  37. 37.
    Powell, A. A., Talasaz, A. H., Zhang, H., Coram, M. A., Reddy, A., Deng, G., et al. (2012). Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE, 7(5), e33788. doi: 10.1371/journal.pone.0033788.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Duda, D. G., Duyverman, A. M., Kohno, M., Snuderl, M., Steller, E. J., Fukumura, D., et al. (2010). Malignant cells facilitate lung metastasis by bringing their own soil. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21677–21682. doi: 10.1073/pnas.1016234107.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9(4), 239–252. doi: 10.1038/nrc2618.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Honn, K. V., Tang, D. G., & Crissman, J. D. (1992). Platelets and cancer metastasis: a causal relationship? Cancer and Metastasis Reviews, 11(3–4), 325–351.PubMedCrossRefGoogle Scholar
  41. 41.
    Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 105(1), 178–185. doi: 10.1182/blood-2004-06-2272.PubMedCrossRefGoogle Scholar
  42. 42.
    Erpenbeck, L., Nieswandt, B., Schon, M., Pozgajova, M., & Schon, M. P. (2010). Inhibition of platelet GPIb alpha and promotion of melanoma metastasis. Journal of Investigative Dermatology, 130(2), 576–586. doi: 10.1038/jid.2009.278.PubMedCrossRefGoogle Scholar
  43. 43.
    Hafner, M., Orosz, P., Kruger, A., & Mannel, D. N. (1996). TNF promotes metastasis by impairing natural killer cell activity. International Journal of Cancer, 66(3), 388–392. doi: 10.1002/(SICI)1097-0215(19960503)66:3<388::AID-IJC20>3.0.CO;2-6.CrossRefGoogle Scholar
  44. 44.
    Steinert, G., Scholch, S., Niemietz, T., Iwata, N., Garcia, S. A., Behrens, B., et al. (2014). Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Research, 74(6), 1694–1704. doi: 10.1158/0008-5472.CAN-13-1885.PubMedCrossRefGoogle Scholar
  45. 45.
    Shao, B., Wahrenbrock, M. G., Yao, L., David, T., Coughlin, S. R., Xia, L., et al. (2011). Carcinoma mucins trigger reciprocal activation of platelets and neutrophils in a murine model of Trousseau syndrome. Blood, 118(15), 4015–4023. doi: 10.1182/blood-2011-07-368514.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Letai, A., & Kuter, D. J. (1999). Cancer, coagulation, and anticoagulation. The Oncologist, 4(6), 443–449.PubMedGoogle Scholar
  47. 47.
    Micalizzi, D. S., Farabaugh, S. M., & Ford, H. L. (2010). Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 15(2), 117–134. doi: 10.1007/s10911-010-9178-9.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2(2), 76–83. doi: 10.1038/35000025.PubMedCrossRefGoogle Scholar
  49. 49.
    Talbot, L. J., Bhattacharya, S. D., & Kuo, P. C. (2012). Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. International Journal of Biochemistry and Molecular Biology, 3(2), 117–136.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Sieuwerts, A. M., Mostert, B., Bolt-de Vries, J., Peeters, D., de Jongh, F. E., Stouthard, J. M., et al. (2011). mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clinical Cancer Research, 17(11), 3600–3618. doi: 10.1158/1078-0432.CCR-11-0255.PubMedCrossRefGoogle Scholar
  51. 51.
    Yokobori, T., Iinuma, H., Shimamura, T., Imoto, S., Sugimachi, K., Ishii, H., et al. (2013). Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Research, 73(7), 2059–2069. doi: 10.1158/0008-5472.CAN-12-0326.PubMedCrossRefGoogle Scholar
  52. 52.
    Kallergi, G., Papadaki, M. A., Politaki, E., Mavroudis, D., Georgoulias, V., & Agelaki, S. (2011). Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Research, 13(3), R59. doi: 10.1186/bcr2896.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Balasubramanian, P., Lang, J. C., Jatana, K. R., Miller, B., Ozer, E., Old, M., et al. (2012). Multiparameter analysis, including EMT markers, on negatively enriched blood samples from patients with squamous cell carcinoma of the head and neck. PLoS ONE, 7(7), e42048. doi: 10.1371/journal.pone.0042048.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Becker, T. M., Caixeiro, N. J., Lim, S. H., Tognela, A., Kienzle, N., Scott, K. F., et al. (2013). New frontiers in circulating tumor cell analysis—a reference guide for biomolecular profiling towards translational clinical use. International Journal of Cancer. doi: 10.1002/ijc.28516.Google Scholar
  55. 55.
    Giordano, A., Gao, H., Anfossi, S., Cohen, E., Mego, M., Lee, B. N., et al. (2012). Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Molecular Cancer Therapeutics, 11(11), 2526–2534. doi: 10.1158/1535-7163.MCT-12-0460.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Mego, M., Mani, S. A., Lee, B. N., Li, C., Evans, K. W., Cohen, E. N., et al. (2012). Expression of epithelial-mesenchymal transition-inducing transcription factors in primary breast cancer: the effect of neoadjuvant therapy. International Journal of Cancer, 130(4), 808–816. doi: 10.1002/ijc.26037.CrossRefGoogle Scholar
  57. 57.
    Satelli, A., Mitra, A., Cutrera, J. J., Devarie, M., Xia, X., Ingram, D. R., et al. (2014). Universal marker and detection tool for human sarcoma circulating tumor cells. Cancer Research, 74(6), 1645–1650. doi: 10.1158/0008-5472.CAN-13-1739.PubMedCrossRefGoogle Scholar
  58. 58.
    Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56. doi: 10.1038/35065016.PubMedCrossRefGoogle Scholar
  59. 59.
    Craig, M. J., & Loberg, R. D. (2006). CCL2 (monocyte chemoattractant protein-1) in cancer bone metastases. Cancer and Metastasis Reviews, 25(4), 611–619. doi: 10.1007/s10555-006-9027-x.PubMedCrossRefGoogle Scholar
  60. 60.
    Thiery, J. P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15(6), 740–746.PubMedCrossRefGoogle Scholar
  61. 61.
    Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572. doi: 10.1038/nrc865.PubMedCrossRefGoogle Scholar
  62. 62.
    Pantel, K., & Brakenhoff, R. H. (2004). Dissecting the metastatic cascade. Nature Reviews Cancer, 4(6), 448–456. doi: 10.1038/nrc1370.PubMedCrossRefGoogle Scholar
  63. 63.
    Chiang, A. C., & Massague, J. (2008). Molecular basis of metastasis. New England Journal of Medicine, 359(26), 2814–2823. doi: 10.1056/NEJMra0805239.PubMedCrossRefGoogle Scholar
  64. 64.
    Nierodzik, M. L., & Karpatkin, S. (2006). Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell, 10(5), 355–362. doi: 10.1016/j.ccr.2006.10.002.PubMedCrossRefGoogle Scholar
  65. 65.
    Gantus, M. A., Alves, L. M., Stipursky, J., Souza, E. C., Teodoro, A. J., Alves, T. R., et al. (2011). Estradiol modulates TGF-beta1 expression and its signaling pathway in thyroid stromal cells. Molecular and Cellular Endocrinology, 337(1–2), 71–79. doi: 10.1016/j.mce.2011.02.001.PubMedCrossRefGoogle Scholar
  66. 66.
    Heitzer, E., Auer, M., Gasch, C., Pichler, M., Ulz, P., Hoffmann, E. M., et al. (2013). Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Research, 73(10), 2965–2975. doi: 10.1158/0008-5472.CAN-12-4140.PubMedCrossRefGoogle Scholar
  67. 67.
    Smirnov, D. A., Zweitzig, D. R., Foulk, B. W., Miller, M. C., Doyle, G. V., Pienta, K. J., et al. (2005). Global gene expression profiling of circulating tumor cells. Cancer Research, 65(12), 4993–4997. doi: 10.1158/0008-5472.CAN-04-4330.PubMedCrossRefGoogle Scholar
  68. 68.
    Shaikhibrahim, Z., Lindstrot, A., Ellinger, J., Rogenhofer, S., Buettner, R., & Wernert, N. (2012). Genes differentially expressed in the peripheral zone compared to the transitional zone of the normal human prostate and their potential regulation by ETS factors. Molecular Medicine Reports, 5(1), 32–36. doi: 10.3892/mmr.2011.628.PubMedGoogle Scholar
  69. 69.
    Raja, S. B., Murali, M. R., Devaraj, H., & Devaraj, S. N. (2012). Differential expression of gastric MUC5AC in colonic epithelial cells: TFF3-wired IL1 beta/Akt crosstalk-induced mucosal immune response against Shigella dysenteriae infection. Journal of Cell Science, 125(Pt 3), 703–713. doi: 10.1242/jcs.092148.PubMedCrossRefGoogle Scholar
  70. 70.
    Bidard, F. C., Pierga, J. Y., Vincent-Salomon, A., & Poupon, M. F. (2008). A “class action” against the microenvironment: do cancer cells cooperate in metastasis? Cancer and Metastasis Reviews, 27(1), 5–10. doi: 10.1007/s10555-007-9103-x.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. doi: 10.1016/j.cell.2011.02.013.PubMedCrossRefGoogle Scholar
  72. 72.
    Vanderlaag, K. E., Hudak, S., Bald, L., Fayadat-Dilman, L., Sathe, M., Grein, J., et al. (2010). Anterior gradient-2 plays a critical role in breast cancer cell growth and survival by modulating cyclin D1, estrogen receptor-alpha and survivin. Breast Cancer Research, 12(3), R32. doi: 10.1186/bcr2586.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Khatib, A. M., Auguste, P., Fallavollita, L., Wang, N., Samani, A., Kontogiannea, M., et al. (2005). Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. American Journal of Pathology, 167(3), 749–759. doi: 10.1016/S0002-9440(10)62048-2.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Auguste, P., Fallavollita, L., Wang, N., Burnier, J., Bikfalvi, A., & Brodt, P. (2007). The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. American Journal of Pathology, 170(5), 1781–1792. doi: 10.2353/ajpath.2007.060886.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour-host interface. Nature, 411(6835), 375–379. doi: 10.1038/35077241.PubMedCrossRefGoogle Scholar
  76. 76.
    Obermayr, E., Castillo-Tong, D. C., Pils, D., Speiser, P., Braicu, I., Van Gorp, T., et al. (2013). Molecular characterization of circulating tumor cells in patients with ovarian cancer improves their prognostic significance—a study of the OVCAD consortium. Gynecologic Oncology, 128(1), 15–21. doi: 10.1016/j.ygyno.2012.09.021.PubMedCrossRefGoogle Scholar
  77. 77.
    Bidard, F. C., Pierga, J. Y., Soria, J. C., & Thiery, J. P. (2013). Translating metastasis-related biomarkers to the clinic–progress and pitfalls. Nature Reviews Clinical Oncology, 10(3), 169–179. doi: 10.1038/nrclinonc.2013.4.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhe, X., Cher, M. L., & Bonfil, R. D. (2011). Circulating tumor cells: finding the needle in the haystack. American Journal of Cancer Research, 1(6), 740–751.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Braun, S., Vogl, F. D., Naume, B., Janni, W., Osborne, M. P., Coombes, R. C., et al. (2005). A pooled analysis of bone marrow micrometastasis in breast cancer. New England Journal of Medicine, 353(8), 793–802. doi: 10.1056/NEJMoa050434.PubMedCrossRefGoogle Scholar
  80. 80.
    Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18(6), 883–891. doi: 10.1038/nm.2753.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Pantel, K., Schlimok, G., Kutter, D., Schaller, G., Genz, T., Wiebecke, B., et al. (1991). Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells. Cancer Research, 51(17), 4712–4715.PubMedGoogle Scholar
  82. 82.
    Schlimok, G., & Riethmuller, G. (1990). Detection, characterization and tumorigenicity of disseminated tumor cells in human bone marrow. Seminars in Cancer Biology, 1(3), 207–215.PubMedGoogle Scholar
  83. 83.
    Pantel, K., Schlimok, G., Angstwurm, M., Passlick, B., Izbicki, J. R., Johnson, J. P., et al. (1995). Early metastasis of human solid tumours: expression of cell adhesion molecules. Ciba Foundation Symposium, 189, 157–170. discussion 170-153, 174-156.PubMedGoogle Scholar
  84. 84.
    Dawson, M. R., Duda, D. G., Fukumura, D., & Jain, R. K. (2009). VEGFR1-activity-independent metastasis formation. Nature, 461(7262), E4. doi: 10.1038/nature08254. discussion E5.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Brandt, B., Junker, R., Griwatz, C., Heidl, S., Brinkmann, O., Semjonow, A., et al. (1996). Isolation of prostate-derived single cells and cell clusters from human peripheral blood. Cancer Research, 56(20), 4556–4561.PubMedGoogle Scholar
  86. 86.
    Al-Mehdi, A. B., Tozawa, K., Fisher, A. B., Shientag, L., Lee, A., & Muschel, R. J. (2000). Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nature Medicine, 6(1), 100–102. doi: 10.1038/71429.PubMedCrossRefGoogle Scholar
  87. 87.
    Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., et al. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New England Journal of Medicine, 366(10), 883–892. doi: 10.1056/NEJMoa1113205.PubMedCrossRefGoogle Scholar
  88. 88.
    Gasch, C., Bauernhofer, T., Pichler, M., Langer-Freitag, S., Reeh, M., Seifert, A. M., et al. (2013). Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clinical Chemistry, 59(1), 252–260. doi: 10.1373/clinchem.2012.188557.PubMedCrossRefGoogle Scholar
  89. 89.
    Niikura, N., Liu, J., Hayashi, N., Mittendorf, E. A., Gong, Y., Palla, S. L., et al. (2012). Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. Journal of Clinical Oncology, 30(6), 593–599. doi: 10.1200/JCO.2010.33.8889.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Dupont Jensen, J., Laenkholm, A. V., Knoop, A., Ewertz, M., Bandaru, R., Liu, W., et al. (2011). PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clinical Cancer Research, 17(4), 667–677. doi: 10.1158/1078-0432.CCR-10-1133.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. J. Caixeiro
    • 1
    • 2
    • 4
    • 7
  • N. Kienzle
    • 1
    • 3
  • S. H. Lim
    • 1
    • 3
    • 4
    • 5
  • K. J. Spring
    • 1
    • 2
    • 4
  • A. Tognela
    • 1
    • 2
    • 4
    • 6
  • K. F. Scott
    • 1
    • 2
    • 3
    • 4
  • P. de Souza
    • 1
    • 2
    • 3
    • 4
    • 5
  • T. M. Becker
    • 1
    • 2
    • 3
    • 4
  1. 1.South West Sydney Translational Cancer Research Unit, Ingham Institute for Applied Medical ResearchLiverpool HospitalLiverpoolAustralia
  2. 2.School of MedicineUniversity of Western SydneyLiverpoolAustralia
  3. 3.School of MedicineUniversity of New South WalesKensingtonAustralia
  4. 4.Medical Oncology GroupIngham Institute for Applied Medical ResearchLiverpoolAustralia
  5. 5.Department of Medical OncologyLiverpool HospitalLiverpoolAustralia
  6. 6.Department of Medical OncologyCampbelltown HospitalCampbelltownAustralia
  7. 7.South West Sydney Translational Cancer Research UnitIngham Institute for Applied Medical ResearchLiverpoolAustralia

Personalised recommendations